CMS Experiment at LHC, CERN Data recorded: Sun Nov 25 00:15:46 2012 CEST Run/Event: 207898 / 97057018

Search for SM Higgs boson in ττ final state at CMS

Abdollah Mohammadi IHE-ULB, Université Libre de Bruxelles 16th Lomonosov Conference, Moscow 27 Aug. 2013

Enough indications for a **new** particle (scalar boson) @ ~125 GeV

Our friend couples to bosons, what about coupling to fermions??

Introduction

3

- H→ττ is important channel to check the Yukawa couplings between fermions and Higgs bosons
- The current results are based on full 2011 and 2012 CMS data and includes 4 main Higgs production modes.
- The analysis covers most of the decay modes: eτ_h, μτ_h, eμ, μμ, τ_hτ_h

Tau Reco & Id

Decay mode	Resonance	Mass (MeV/c ²)	Branching fraction (%)		hadron	hadron+strip	3 hadrons
$\tau^- \rightarrow h^- \nu_{\tau}$			11.6%		*		* * *
$\tau^- \rightarrow h^- \pi^0 \nu_{\tau}$	ρ^{-}	770	26.0%		\backslash		\langle / \rangle
$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_{\tau}$	a_	1200	9.5%		\		$\lambda I / I$
$ au^- ightarrow h^- h^+ h^- u_{ au}$	a_1	1200	9.8%		\	11	V
$ au^- ightarrow h^- h^+ h^- \pi^0 u_{ au}$			4.8%	The second	1	11	1

- Reconstruct the hadronic decays of tau based on the Pflow algorithm in 1prong, 1-prong+ π_0 's and 3-prongs.
 - For isolation, use multivariate discriminant based on Σp_T of particles in rings around τ_h

 ϵ_{rec} >60% (flat for p_T(T)>30GeV),Fakerate 1–3%.

 Efficiency and momentum resolution (nearly) independent from pileup(backup)

di-t Mass Reconstruction

Determine invariant mass of di- τ system with

maximum likelihood method.

marginalize the unobserved neutrinos d.o.f.

Inputs: four-vector information of visible leptons,

x- and y- component of MET and MET resolution

Event Categories

eτ _h , μτ _h , eμ, μμ Νυ			umber of Jets			
	0-jet, low-p _T		1-jet, low-p _⊤	2-jet, VBF		
Pt (τ/μ)	Large background & No fit for signal , constrain uncertainties		Enhancement due to jet requirement & Better mass resolution	≥ 2 jets M _{ii} > 500 GeV & Δη > 3.5		
				"		
	0-jet, high-p _⊤		1-jet, high-pT	Central jet veto		
	Large background & No fit for signal, constrain uncertainties		$Z{\rightarrow}\tau\tau$ suppressed by high- $p_T(\tau)$	VBF H signal enhanced		
τ _h τ _h		1-jet	2-jet, VBF			
			$p_T(\tau \tau) > 140 \text{ GeV}$	$p_T(\tau \tau) > 110 \& M_{jj} > 250 \text{ GeV}$		
			Better mass resolution	Δη> 2.5 & Central jet veto		

Background Anatomy

2-Jet VBF Category

After template fit has been applied (S+B hypothesis) Shaded bands > correspond to uncertainties after fit.

m_{TT} [GeV]

300

electroweak

ТΤ

200

bkg. uncertainty

Combined Weighted Mass

Combine channels and categories weighting each by **S/B** :

(S is expected signal and B is fitted background in m_{π} interval containing 68% of signal around 125 GeV)

Excess of events between 100-140 GeV compatible with $H \rightarrow \tau \tau$ from SM

ZH }{tt

$Z \rightarrow (\mu\mu, ee) \& H \rightarrow (\tau_h \tau_h, \tau_h \mu, \tau_h e, e\mu)$

A pair of identified/isolated e/μ compatible with Z boson + 2 more id/iso $e/\mu/\tau_h$

Backgrounds:

- Reducible BG: Z+jets, WZ+jets, ttbar, ... (from data using fake rate method)
- Irreducible BG: ZZ (from MC)

Veto extra lepton to be inclusive from $H \rightarrow ZZ \rightarrow 4l$

- Visible Mass as the observable
- ZH_HWW is also considered as signal

$WH \rightarrow \ell \ell \tau_h$

$$W \rightarrow (\mu \nu) \& H \rightarrow (\tau_h \mu, \tau_h e)$$

2 identified/isolated e/μ + 1 isolated τ_h

Require both lepton to be Same Sign to suppress huge DY→II background

Backgrounds:

- Reducible BG: W/Z+jets, ttbar, ... (from data using fake rate method)
- Irreducible BG: WZ and ZZ (from MC)
- Visible Mass as the observable

$WH \rightarrow \ell \tau_h \tau_h$

$$W \to (\mu v, ev) \& H \to (\tau_h \tau_h)$$

One id/isolated e/μ + 2 isolated τ_h

Backgrounds:

Reducible BG: QCD,W/Z+jets, ttbar, ... (from data using fake rate method)

- Irreducible BG: WZ (from MC)
- Further topological cuts to suppress large backgrounds
- Visible Mass as the observable

Systematics

Uncertainty	Uncert.	Applied on	
Electron Id & Trigger	2%	Normalization	
Muon Id & Trigger	2%	Normalization	
Tau Id & Trigger	8%	Normalization	
Tau Energy Scale	3%	Shape	
Electron Energy Scale	1%	Shape (emu channel)	
JES	2.5-5%	Normalization	
MET	5%	Normalization	
b-tag efficiency	10%	Normalization	
Luminosity 7 TeV (8TeV)	2.2% (4.2%)	Normalization	
ttbar and Diboson	10-30%	Normalization	
QCD multijet	6-32%	Normalization	
Z→II (e,mu,jet fake)	(20%,30%,20%)	Normalization	
PDF	2-8 %	Normalization	

Combined VH Results

Sensitivity of ~3xSM
Small excess

consistent with both SM Higgs at 125 GeV and background

Limit, p-value and Significance

Broad excess compatible with a presence of a SM Higgs boson at 125 GeV

 Minimum p-value at 120 GeV corresponds to 2.93σ → Indicate that our friend couples to τ lepton

Compatibility of Excess with SM Higgs boson

Signal Injection

H125 as background

Both limit plots shows consistency of the excess with one and only one SM Higgs boson at 125 GeV.

Signal Cross-Section

Best-fit signal strength values, σ/σ_{SM} for independent Channel(categories) on left(right)

signal strength μ =1.1±0.4

Mass and Best Fit v.s. Mass

Log likelihood versus SM Higgs boson fit mass

$$m_{H} = 120^{+9}_{-7}(stat+syst) GeV$$

Best fit of signal strength compared to the SM expectation (mu) as a function of the Higgs mass

Conclusions

Search for H→ττ with the full 2011+2012 dataset collected by CMS was shown

- A wide excess compatible with SM Higgs is observed
 - Obs. limit of 1.81xSM at 125 GeV, while 0.76xSM exp.
 - Signal strength of 1.1 ± 0.4
 - Significance of 2.85σ obs. (2.62 exp.) at 125 GeV
- > Strong indication that this new particle couples to τ lepton.
- New updated and improved results will appear soon, stay tuned ...

Back Up

Weighted Mass

1 Jet Category

VBF Category

More about Tau ID

Expected Limit

Per Channel Per Category CMS Preliminary, \sqrt{s} =7-8 TeV, L = 24.3 fb⁻¹, H $\rightarrow \tau \tau$ CMS Preliminary, \sqrt{s} =7-8 TeV, L = 24.3 fb⁻¹, H $\rightarrow \tau \tau$ 10 5.0 95% CL limit on σ/σ_{SM} 95% CL limit on σ/σ_{SM} Expected Limit **Expected Limit** μμ 9 4.5 - 1-Jet 2-Jet (VBF) eu 4.0 -•-- VH→ττ+I(I) eτh μτ. $\bullet - H \rightarrow \tau \tau + V H \rightarrow \tau \tau + I(I)$ 3.5 VH→ττ+I(I) -- $H \rightarrow \tau \tau + V H \rightarrow \tau \tau + I(I)$ 6 3.0 2.5 2.0 1.5 3 1.0 2 0.5 0 E 110 0.0 E 120 130 140 120 130 140 m_H [GeV] m_H [GeV]

Extended Limit (down to 90 GeV)

