Fermi at Five Some highlights from Fermi Large Area Telescope

Igor V. Moskalenko Stanford University

For the Fermi LAT Collaboration

16th Lomonosov Conference Moscow, August 24, 2013

For deeper insight into each topic see the 4th Fermi Symposium

http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2012/

The 5th Fermi Symposium: October 20-25, 2014 Nagoya, Japan

4th Fermi Symposium ²⁸ Oct. 2No. The fourth symposium will becase on herestigations and measure processing

The fourth symposium will focus on new scientific investigations and results enabled by the Fermi Gamma-ray Space Telescope, as well as mission and instrument characteristics, coordinated multiwavelength/multimessenger studies, and future opportunities.

Topics include:

Pulsars
Superious remnants & pulsar wind nebulae
-y-ray-bright binaries & noviei
-Diffuse y-ray emission
-Diffuse y-ray emission
-Cosmic rays
-Active, starburnt, & normal galaxies
-GRBs & other transient sources
-Dark matter & new physics
-Unidentified y-ray sources

http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2012/

Peter Michelson

Bill Atwood

Pre-launch test

June 11, 2008 12:05 pm (EDT)

* 1 1

MAL MEAN

Fermi Gamma-ray Space Telescope

Y₁ incoming gamma ray

Large Area Telescope 20 MeV – >300 GeV

Gamma-ray Burst Monitor 10 keV – 30 MeV

The LAT is a unique resource providing

+ Broad energy coverage, overlap with ACTs

Large FoV: all-sky coverage every 3 hours – transients

 \diamond Observatory is operating smoothly

 Instruments and spacecraft operate as designed, no degradation in science performance since launch

Fermi-LAT skymap >1 GeV

4-year sky map, >1 GeV, front converting (best psf) (4.52M events)

Fermi's skymap of particle interactions

- >100 MeV, 36 months
- shows where accelerated particles meet target (gas, photons)
- ~80% of the emission is diffuse
- many transients in the γray sky

Solar System

- Allows to reconcile direct & indirect observations
 - Test models of interactions
 - Calibration of the instrument
- Detected sources:
 - The Earth (PRD 80, 122004, 2009)
 - The limb
 - Terrestrial γ-ray flashes
 - The Moon (ApJ 758, 140, 2012)
 - The steady Sun (ApJ 734, 116, 2011)
 - Solar flares
 - Potential sources (in progress):
 - Main Belt rocks & dust
 - Jovian & Neptunian Trojans
 - Kuiper Belt rocks & dust
 - Oort Cloud

Fermi-LAT observations of the Earth's limb

- Due to its proximity, the Earth is the brightest γ-ray source on the sky
- ♦ The emission is produced by the CR cascades in the atmosphere
- Most energetic γ-rays are produced by CRs hitting the top of the atmosphere at tangential directions (thin target)

Inferring the CR spectrum

- A fit with a single powerlaw with free index yields index 2.74
- A broken power-law provides a comparable quality fit
- Fermi-LAT continues to collect data: more statistics, and extension to higher energies

Fermi LAT observation of the Moon (3 years)

- \Rightarrow Emits γ -rays due to the cosmic ray interactions with the surface material
- The spectrum is softer than predicted effect of the surface roughness?
- Independent method to monitor cosmic ray flux outside of the geomagnetic field

The March 7, 2012, X5.4 solar flare was the second most intense in 5 years. Fermi observed gamma-ray flux at >100 MeV:

◆1,000 times brighter than the steady Sun
◆100 times brighter than the Vela pulsar

♦ 50 times brighter than the Crab "superflare" of April 2011

♦ Highest-energy photon (4 GeV) ever detected from a solar flare!

 \Rightarrow The high-energy emission lasted about 20 hours – the longest ever seen from a solar flare.

Solar system

 ♦ Raw data sliced by 2 months interval, background removed; → the solar track is clearly visible

Fermi-LAT observations of the Sun

Fermi-LAT: e⁺ & e⁻ fluxes and positron fraction

All-electron spectrum

- Fermi-LAT and PAMELA data agree well
- Shows some structure (breaks and bumps)
- Flatter than extrapolated from low energies
- Sharp cutoff at 1 TeV (HESS), as expected

- Cannot be reproduced with a single power-law injection spectrum
- Origin
 - Local sources?
 - perhaps needs a second component with hard spectrum (positrons?)

The Milky Way galaxy

Fermi-LAT skymaps, 48 months

- $\sim 80\%$ of the emission is diffuse a lot of statistics
- Fewer sources at high energies
- Pion-decay emission at high latitudes is "local"

Diffuse emission skymaps

• Observed Fermi-LAT counts in the energy range 200 MeV to 100 GeV

- Predicted counts calculated using GALPROP model tuned to CR data
- Grid of 128 models covering plausible confinement volume, CR source distributions, etc.
- A massive Fermi-LAT study – ApJ 750 (2012) 3

Spectrum and profiles

- Components of the model
 - Neutral pion emission from gas H₂, HI, HII
 - Inverse Compton
 - Bremsstrahlung
 - Detected sources
 - Isotropic emission

NASA press release Fermi data reveal giant gamma-ray bubbles

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.

- ♦ Models reproduce the main features of the diffuse emission quite well
- Discrepancies between the physical model and high-resolution data (residuals) are the gold mines of new phenomena!
- Every extended source and/or process that is not included into the model pops up and exposes itself as a residual

- Agreement for models is overall good, but features are visible in residuals at ~% level
- Difference between illustrative models shown in right maps : structure due to variations of model parameters
- Models details: 2: SNR^Z4^R20^T150^C5 44: Lorimer^Z6^R20^T∞^C5 93: Yusifov^Z10^R30^T150^C2 119: OB^Z8^R30^T∞^C2

Pulsars

LAT Pulsar Population Explosion

- Number is still increasing rapidly >200 soon
- First blind search MSP announced recently: Pletsch et al. found PSR J1311-3430
 - Optical observations (Romani 2012) constrained the search somewhat
 - Most compact MSP known (1.56 h) & M_{pulsar} >2.1 M_{Sun} (Romani et al.)

The Crab Nebula, the brightest VHE source...

The brightest VHE galactic «steady» source, observed by every Cherenkov experiment & Fermi (Abdo et al, 2010, 708, 1254):

- y-ray emission below 500 MeV due to synchrotron emission

 \rightarrow electrons accelerated up to ~1 PeV

- high energy component due to IC (mainly on synchrotron photons)

- \rightarrow fit of the IC peak at ~60 GeV (using Fermi and IACT results)
- \rightarrow magnetic field constraint in the 100 200 μG range

Marianne Lemoine-Goumard, 2012, APC (Paris)

... but no more a standard candle

Recent flares of the synchrotron component (Oct. 2007, Feb. 2009, Sept. 2010, Apr. 2011):

R. Buehler, Fermi Symposium 2011

Three day Crab synchrotron curve

- Average flux ~6e-7 ph/cm2/s above 100 MeV, whith three flares as extremes of persistent variability

- Flux increase by ~5 during 2009 and 2010 flares, by ~30 during 2011 flare!

- - Compact emission region < 0.0004 pc ~ 0.04" (for D<4) \rightarrow Emission from the inner nebula

Marianne Lemoine-Goumard, 2012, APC (Paris)

Supernova Remnants

• 13 identified SNRs -9 interacting -4 young SNRs

Tycho

from Thompson, Baldini, & Uchiyama (2012)

Our previous papers reported spectra only >200 MeV.
 Here we report spectra down to 60 MeV thanks to:

***** Recent update ("Pass-7") of event reconstruction, which largely improved effective area at low energies.

Increased exposure time: 1 yr → 4 yr

Sub-GeV spectra of IC443/W44 agree well with π⁰-decay spectra. Y.Uchiyama

- **The** π^0 -decay γ -rays come from shocked molecular clouds
- Radiative shock → high compression → high CR & gas density
- ***** Shock: slow (~100 km/s), partially ionized → Maximum energy < TeV
- **☆** Thin filaments or sheets → Hard to confine CRs at high energies
- ***** Reacceleration of pre-existing CRs may be important

Dermi

Gamma-ray Space Telescope

Extragalactic Sources

- Active Galaxies
- Gamma-Ray Bursts
- Starforming Galaxies
 - Isotropic background

Starforming Galaxies

Cosmic Rays as a Universal Phenomenon

- γ-ray luminosity vs. IR luminosity for normal galaxies detected with Fermi-LAT
- The γ-ray luminosity scales
 linearly (index ~1.1) with the
 total emission of hot stars
 reprocessed by dust a tracer
 of star formation
- The ratio approaches the calorimetric limit in star-burst galaxies
- An evidence of the SNR-CR connection in normal star-forming galaxies

2nd LAT AGN Catalog

1,016 sources

FSRQs

ահահահահա

of source

Spectral Index

BL Lacs:423 Other AGN (including radio and starburst): 30 Unknown: 203

Look for spatial association between 2FGL sources and known AGN

Less sensitivity near galactic plane (foreground confusion & survey bias)

Fermi GRB detections by August 1, 2011

The Brightest and Most Distant GRBs

GRB Name	GBM T90	N Pred. Events (>100MeV, Trans.)	HE Delayed Onset?	Long Lived HE Emission?	Maximum Energy (GeV)	Arrival time of the highest events (seconds since trigger)	Redshift
GRB080825C	Long	10	1	1	0.6	28.3	-
GRB080916C	Long	188	1	1	13.2	16.5	4.35
GRB081006	Long	13	1	1	0.8	1.8	-
GRB081024B	Short	11	1	1	3.1	0.6	-
GRB081207	Long	LLE	-	-	-	-	-
GRB090217	Long	17	1	1	1.2	179.1	-
GRB090227B	Short	3	-	-	0.0	0.0	-
GRB090323	Long	30	1	1	7.5	195.4	3.57
GRB090328	Long	50	1	1	24.5	261.7	0.736
GRB090510	Short	186	1	1	31.3	0.8	0.903
GRB090531B	Short	LLE	-	-	1.6	115.2	-
GRB090626	Long	LLE	1	1	2.1	111.6	-
GRB090902B	Long	314	1	1	33.4	81.8	1.822
GRB090926	Long	249	1	1	19.6	24.8	2.106
GRB091003	Long	3231	1	1	2.8	6.5	0.897
GRB091031	Long	15	1	1	1.2	79.8	-
GRB100116A	Long	14	-	1	13.1	296.4	-
GRB100225A	Long	LLE	-	-	-	-	-
GRB100325A	Long	6	-	1	1.9	71.4	-
GRB100414A	Long	27	1	1	4.7	288.3	1.368
GRB100724B	Long	22	-	-	0.2	61.8	-
GRB100728A	Long	4	-	-	0.1	81.2	-
GRB100728A	Long	LLE	-	-	0.1	81.2	-
GRB101014A	Long	LLE	-	-	-	-	-
GRB101123A	Long	LLE	-	-	-	-	-
GRB110120A	Long	5	-	-	1.8	72.5	-
GRB110328B	Long	LLE	-	-	1.6	514.7	-
GRB110428A	Long	17	1	1	2.6	14.8	-
GRB110529A	Short	LLE	-	-	-	-	-
GRB110625A	Long	12	-	1	2.4	272.4	-
GRB110721A	Long	29	-	1	1.7	0.7	0.38
GRB110731A	Long	65	1	1	3.4	436.0	2.83

PRELIMINARY

- ~30 GRB have been seen by LAT above 100 MeV;
- Both long (>2 sec) and short (<2 sec) bursts have been seen;
- Some bursts are only visible in LAT Low Energy events;
- Most of the bursts show highenergy emission afterglow and delayed high-energy onset;
- Constraint: lower limit of bulk Lorentz factor of the colliding shells: ~1000;
- Some bursts have an extra spectral component (a different mechanism at high energy?);
- These short, distant and bright flashes can be used as tools to probe basic physics...

Comparison to older measurements.

In agreement with published spectrum.

- Error bars predominantly systematic. Visible structures in the spectrum are not significant.
- Possible spectral softening at high energies ?

Conclusions

- Fermi is still young just finished its planned 5 year primary mission phase and going for an extended mission
- Will stay in orbit until, at least, 2016
- Pass 8 will extend the energy range toward low energies, more events will be recovered
- Keep tuned

Thanks!