PRD71(2005), JPG32(2006), PRD77(2008), NPBPS234(2013), arXiv:1306.4970 [hep-ph]

Hadronic vacuum polarization function in the framework of dispersive approach to QCD

A.V. Nesterenko

Bogoliubov Laboratory of Theoretical Physics

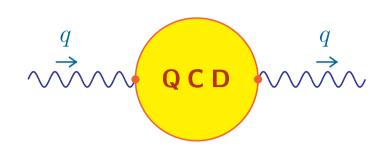
Joint Institute for Nuclear Research, Dubna, Russian Federation

16th Lomonosov Conference on Elementary Particle Physics

Moscow, Russia, 22 – 28 August 2013

INTRODUCTION

Hadronic vacuum polarization function $\Pi(q^2)$ plays a central role in various issues of QCD and Standard



Model. In particular, the theoretical description of some strong interaction processes and hadronic contributions to electroweak observables is inherently based on $\Pi(q^2)$:

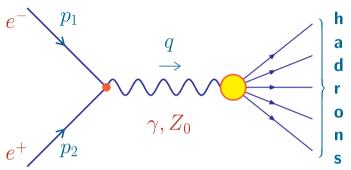
- electron–positron annihilation into hadrons
- hadronic τ lepton decay
- muon anomalous magnetic moment
- running of the electromagnetic coupling

GENERAL DISPERSION RELATIONS

The cross–section of $e^+e^- \to \text{hadrons:} \ _{e^- \searrow \ p_1}$

$$\sigma = 4\pi^2 \frac{2\alpha^2}{s^3} L^{\mu\nu} \Delta_{\mu\nu},$$

where $s = q^2 = (p_1 + p_2)^2 > 0$,



$$L_{\mu\nu} = \frac{1}{2} \Big[q_{\mu}q_{\nu} - g_{\mu\nu}q^2 - (p_1 - p_2)_{\mu}(p_1 - p_2)_{\nu} \Big],$$

$$\Delta_{\mu\nu} = (2\pi)^4 \sum_{\Gamma} \delta(p_1 + p_2 - p_{\Gamma}) \langle 0 | J_{\mu}(-q) | \Gamma \rangle \langle \Gamma | J_{\nu}(q) | 0 \rangle,$$

and $J_{\mu} = \sum_{f} Q_{f} : \bar{q} \gamma_{\mu} q$: is the electromagnetic quark current.

Kinematic restriction: hadronic tensor $\Delta_{\mu\nu}(q^2)$ assumes non-zero values only for $q^2 \geq m^2$, since otherwise no hadron state Γ could be excited Feynman (1972); Adler (1974).

The hadronic tensor can be represented as $\Delta_{\mu\nu} = 2 \operatorname{Im} \Pi_{\mu\nu}$,

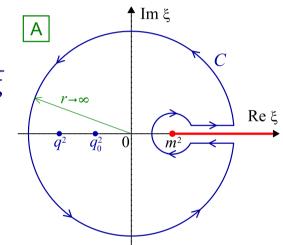
$$\Pi_{\mu\nu}(q^2) = i \int e^{iqx} \langle 0 | T \{ J_{\mu}(x) J_{\nu}(0) \} | 0 \rangle d^4x = i (q_{\mu}q_{\nu} - g_{\mu\nu}q^2) \frac{\Pi(q^2)}{12\pi^2}.$$

Kinematic restriction: $\Pi(q^2)$ has the only cut $q^2 \geq m^2$.

Dispersion relation for $\Pi(q^2)$:

Dispersion relation for
$$\Pi(q^{-})$$
:
$$\Delta\Pi(q^{2}, q_{0}^{2}) = \frac{1}{2\pi i} (q^{2} - q_{0}^{2}) \oint_{C} \frac{\Pi(\xi)}{(\xi - q^{2})(\xi - q_{0}^{2})} d\xi$$

$$= (q^{2} - q_{0}^{2}) \int_{m^{2}}^{\infty} \frac{R(s)}{(s - q^{2})(s - q_{0}^{2})} ds,$$



where $\Delta\Pi(q^2, q_0^2) = \Pi(q^2) - \Pi(q_0^2)$ and R(s) denotes the measurable ratio of two cross-sections ($R(s) \equiv 0$ for $s < m^2$)

$$R(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left[\Pi(s + i\varepsilon) - \Pi(s - i\varepsilon) \right] = \frac{\sigma(e^+e^- \to \text{hadrons}; s)}{\sigma(e^+e^- \to \mu^+\mu^-; s)}.$$

For practical purposes it proves to be convenient to deal with the Adler function $(Q^2 = -q^2 \ge 0)$

$$D(Q^2) = -\frac{d \Pi(-Q^2)}{d \ln Q^2}, \qquad D(Q^2) = Q^2 \int_{m^2}^{\infty} \frac{R(s)}{(s+Q^2)^2} ds$$

■ Adler (1974); De Rujula, Georgi (1976); Bjorken (1989).

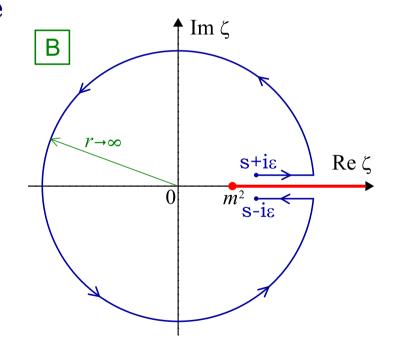
The inverse relations between the functions on hand read

$$R(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \int_{s+i\varepsilon}^{s-i\varepsilon} D(-\zeta) \frac{d\zeta}{\zeta},$$

■ Radyushkin (1982); Krasnikov, Pivovarov (1982)

$$\Delta\Pi(-Q^2, -Q_0^2) = -\int_{Q_0^2}^{Q^2} D(\zeta) \frac{d\zeta}{\zeta}$$

■ Nesterenko (2013).



The integration contour in complex ζ -plane lies in the region of analyticity of the integrand.

The complete set of relations between $\Pi(q^2)$, R(s), and $D(Q^2)$:

$$\Delta\Pi(q^2, q_0^2) = (q^2 - q_0^2) \int_{m^2}^{\infty} \frac{R(\sigma)}{(\sigma - q^2)(\sigma - q_0^2)} d\sigma = -\int_{-q_0^2}^{-q^2} D(\zeta) \frac{d\zeta}{\zeta},$$

$$R(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left[\Pi(s + i\varepsilon) - \Pi(s - i\varepsilon) \right] = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \int_{s + i\varepsilon}^{s - i\varepsilon} D(-\zeta) \frac{d\zeta}{\zeta},$$

$$D(Q^{2}) = -\frac{d \Pi(-Q^{2})}{d \ln Q^{2}} = Q^{2} \int_{m^{2}}^{\infty} \frac{R(\sigma)}{(\sigma + Q^{2})^{2}} d\sigma.$$

Their derivation requires only the location of cut of $\Pi(q^2)$ and its UV asymptotic. Neither additional approximations nor phenomenological assumptions are involved.

Nonperturbative constraints:

- $\Pi(q^2)$: has the only cut $q^2 \geq m^2$;
- R(s): vanishes for $s < m^2$, embodies π^2 -terms;
- $D(Q^2)$: has the only cut $Q^2 \leq -m^2$, vanishes at $Q^2 \to 0$.

DISPERSIVE APPROACH TO QCD

Functions on hand in terms of common spectral density:

$$\begin{split} \Delta\Pi(q^2,\,q_0^2) &= \Delta\Pi^{(0)}(q^2,\,q_0^2) + \int_{m^2}^{\infty} \rho(\sigma) \ln\left(\frac{\sigma - q^2}{\sigma - q_0^2} \frac{m^2 - q_0^2}{m^2 - q^2}\right) \frac{d\,\sigma}{\sigma}, \\ R(s) &= R^{(0)}(s) + \theta(s - m^2) \int_{s}^{\infty} \rho(\sigma) \frac{d\,\sigma}{\sigma}, \\ D(Q^2) &= D^{(0)}(Q^2) + \frac{Q^2}{Q^2 + m^2} \int_{m^2}^{\infty} \rho(\sigma) \frac{\sigma - m^2}{\sigma + Q^2} \frac{d\,\sigma}{\sigma}, \\ \rho(\sigma) &= \frac{1}{\pi} \frac{d}{d\,\ln\sigma} \lim_{\varepsilon \to 0_+} p(\sigma - i\varepsilon) = -\frac{d\,r(\sigma)}{d\,\ln\sigma} = \frac{1}{\pi} \lim_{\varepsilon \to 0_+} \lim_{\varepsilon \to 0_+} d(-\sigma - i\varepsilon), \end{split}$$

with $\Delta\Pi^{(0)}(q^2, q_0^2)$, $R^{(0)}(s)$, and $D^{(0)}(Q^2)$ being leading—order terms, $p(q^2)$, r(s), and $d(Q^2)$ being the strong corrections

■ Nesterenko, Papavassiliou (2005, 2006); Nesterenko (2007–2013).

- The obtained integral representations automatically embody all the aforementioned nonperturbative constraints
- Their derivation requires only the general dispersion relations and the asymptotic ultraviolet behavior of $\Pi(q^2)$
- Neither additional approximations nor model—dependent assumptions were involved

The leading-order terms of the functions on hand:

where $\sin^2 \varphi = q^2/m^2$, $\sin^2 \varphi_0 = q_0^2/m^2$, $\xi = Q^2/m^2$

$$\Delta\Pi^{(0)}(q^2, q_0^2) = \frac{2}{\tan^2\varphi} \left(1 - \frac{\varphi}{\tan\varphi} \right) - \frac{2}{\tan^2\varphi_0} \left(1 - \frac{\varphi_0}{\tan\varphi_0} \right),$$

$$R^{(0)}(s) = \theta(s - m^2) \left(1 - \frac{m^2}{s} \right)^{3/2},$$

$$D^{(0)}(Q^2) = 1 + \frac{3}{\xi} \left[1 - \sqrt{1 + \xi^{-1}} \sinh^{-1}(\xi^{1/2}) \right],$$

■ Feynman (1972); Akhiezer, Berestetsky (1965).

Perturbative contribution to the spectral density:

$$\rho_{\text{pert}}(\sigma) = \frac{1}{\pi} \frac{d}{d \ln \sigma} \operatorname{Im} \lim_{\varepsilon \to 0_+} p_{\text{pert}}(\sigma - i\varepsilon) = -\frac{d \, r_{\text{pert}}(\sigma)}{d \ln \sigma} = \frac{1}{\pi} \operatorname{Im} \lim_{\varepsilon \to 0_+} d_{\text{pert}}(-\sigma - i\varepsilon).$$

The following model for spectral density will be employed:

$$\rho(\sigma) = \frac{4}{\beta_0} \frac{1}{\ln^2(\sigma/\Lambda^2) + \pi^2} + \frac{\Lambda^2}{\sigma}$$

■ Nesterenko (2011–2013).

In the massless limit (m = 0) integral representations read

$$\Delta\Pi(q^2, q_0^2) = -\ln\left(\frac{-q^2}{-q_0^2}\right) + \int_0^\infty \rho(\sigma) \ln\left[\frac{1 - (\sigma/q^2)}{1 - (\sigma/q_0^2)}\right] \frac{d\sigma}{\sigma},$$

$$R(s) = \theta(s) \left[1 + \int_s^\infty \rho(\sigma) \frac{d\sigma}{\sigma}\right], \quad D(Q^2) = 1 + \int_0^\infty \frac{\rho(\sigma)}{\sigma + Q^2} d\sigma.$$

For $\rho(\sigma) = \text{Im } d_{\text{pert}}(-\sigma - i0_+)/\pi$ two highlighted equations become identical to those of the APT \blacksquare Shirkov, Solovtsov (1997–2007).

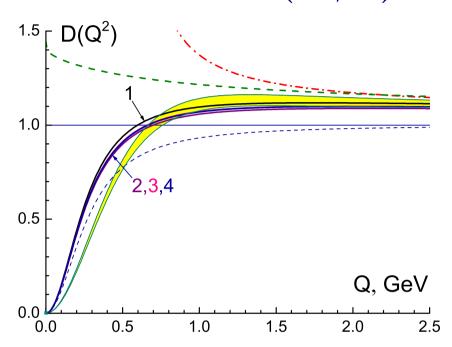
But it is essential to keep the threshold m^2 nonvanishing.

ADLER FUNCTION

massless limit (m=0)

1.5 D(Q²) 1.0 Q, GeV 0.0 0,0 0,5 1,0 1,5 2,0 2,5

realistic case $(m \neq 0)$

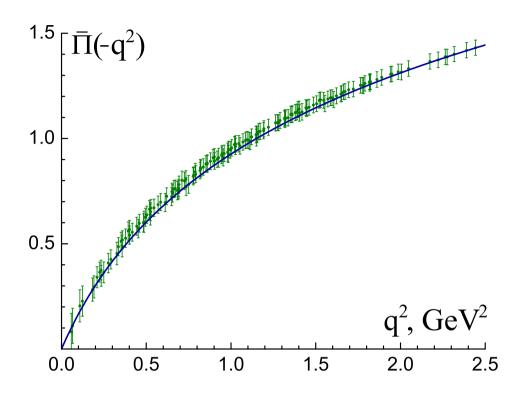


■ Nesterenko, Papavassiliou (2006); Nesterenko (2007–2009).

Reliability of approaches:

- Perturbation theory: $Q \gtrsim 1.5 \,\mathrm{GeV}$
- Massless APT: $Q \gtrsim 1.0 \,\mathrm{GeV}$
- Dispersive approach: entire energy range

HADRONIC VACUUM POLARIZATION FUNCTION



Solid curve presents DispQCD result for $\bar{\Pi}(q^2) = \Delta \Pi(0, q^2)$, whereas its lattice prediction is shown by data points.

■ Della Morte, Jager, Juttner, Wittig (2011); Nesterenko (2013).

DispQCD result is in a good agreement with lattice data in the entire energy range.

INCLUSIVE au LEPTON HADRONIC DECAY

The interest to this process is due to

- The only lepton with hadronic decays
- Precise experimental data
- No need in phenomenological models
- Probes infrared hadron dynamics

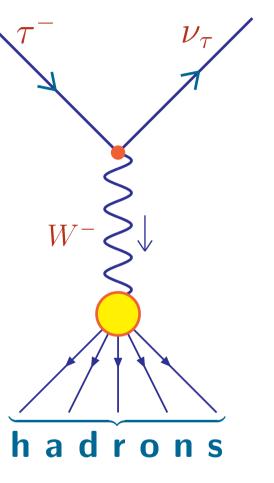
The experimentally measurable quantity:

$$R_{\tau} = \frac{\Gamma(\tau^{-} \to \text{hadrons}^{-} \nu_{\tau})}{\Gamma(\tau^{-} \to e^{-} \bar{\nu}_{e} \nu_{\tau})} = R_{\tau,V} + R_{\tau,A} + R_{\tau,S},$$

$$R_{\tau,V} = R_{\tau,V}^{J=0} + R_{\tau,V}^{J=1} = 1.783 \pm 0.011 \pm 0.002,$$

$$R_{\tau,A} = R_{\tau,A}^{J=0} + R_{\tau,A}^{J=1} = 1.695 \pm 0.011 \pm 0.002.$$

■ ALEPH Collaboration (1998–2008).



The theoretical prediction for the quantities on hand reads

$$R_{\tau,\mathrm{V/A}}^{J=1} = \frac{N_{\mathrm{c}}}{2} |V_{\mathrm{ud}}|^2 S_{\mathrm{EW}} \left(\Delta_{\mathrm{QCD}}^{\mathrm{V/A}} + \delta_{\mathrm{EW}}'\right),$$

 $N_{\rm c} = 3$, $|V_{\rm ud}| = 0.9738 \pm 0.0005$, $S_{\rm EW} = 1.0194 \pm 0.0050$, $\delta'_{\rm EW} = 0.0010$,

$$\Delta_{\text{QCD}}^{\text{V/A}} = 2 \int_{m_{\text{V/A}}^2}^{M_\tau^2} f\left(\frac{s}{M_\tau^2}\right) R^{\text{V/A}}(s) \frac{ds}{M_\tau^2},$$

where $M_{\tau} = 1.777 \,\text{GeV}$, $f(x) = (1-x)^2 \,(1+2x)$,

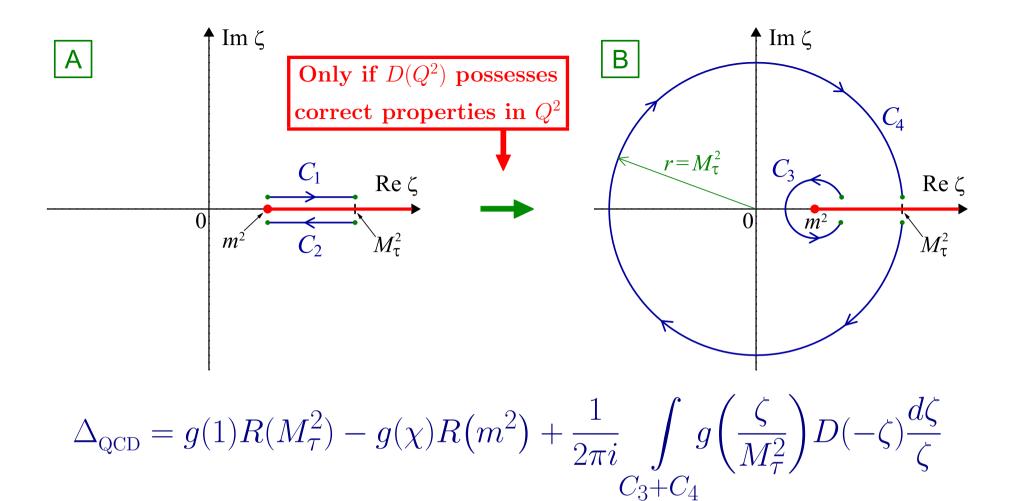
$$R^{\text{V/A}}(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \! \left[\Pi^{\text{V/A}}(s + i\varepsilon) - \Pi^{\text{V/A}}(s - i\varepsilon) \right] = \frac{1}{\pi} \lim_{\varepsilon \to 0_+} \! \lim_{\varepsilon \to 0_+} \! \Pi^{\text{V/A}}(s + i\varepsilon)$$

■ Braaten, Narison, Pich (1992); Pivovarov (1992).

Integration by parts leads to

$$\Delta_{\text{QCD}} = g(1)R(M_{\tau}^{2}) - g(\chi)R(m^{2}) + \frac{1}{2\pi i} \int_{C_{1}+C_{2}} g\left(\frac{\zeta}{M_{\tau}^{2}}\right)D(-\zeta)\frac{d\zeta}{\zeta},$$

where $\chi = m^2/M_{\tau}^2$ and $g(x) = x(2 - 2x^2 + x^3)$.



Despite the aforementioned remarks, in the perturbative analysis the massless limit (m = 0) is assumed, that gives

$$\Delta_{\text{QCD}} = \frac{1}{2\pi} \lim_{\varepsilon \to 0_+} \int_{-\pi + \varepsilon}^{\pi - \varepsilon} \left[1 - g\left(-e^{i\theta}\right) \right] D\left(M_{\tau}^2 e^{i\theta}\right) d\theta.$$

Inclusive τ decay within perturbative approach:

Commonly, perturbative $D(Q^2)$ is directly employed here

$$D(Q^2) \simeq D_{\text{pert}}^{(\ell)}(Q^2) = 1 + \sum_{j=1}^{\ell} d_j \left[\alpha_{\text{pert}}^{(\ell)}(Q^2) \right]^j, \qquad Q^2 \to \infty$$

with
$$\alpha_{\text{pert}}^{(1)}(Q^2) = 4\pi/[\beta_0 \ln(Q^2/\Lambda^2)]$$
, $\beta_0 = 11 - 2n_f/3$, and $d_1 = 1/\pi$.

In what follows the one-loop level ($\ell = 1$) with $n_{\rm f} = 3$ active flavors will be assumed.

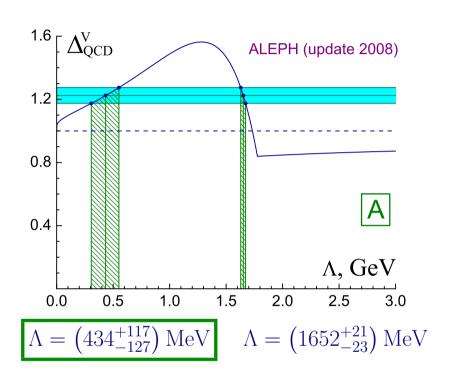
The one–loop perturbative expression for $\Delta_{\rm QCD}^{\rm V/A}$ reads

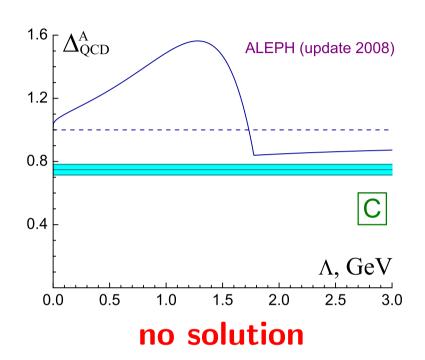
$$\Delta_{\text{pert}}^{\text{V/A}} = 1 + \frac{4}{\beta_0} \int_0^{\pi} \frac{\lambda A_1(\theta) + \theta A_2(\theta)}{\pi (\lambda^2 + \theta^2)} d\theta,$$

where
$$\lambda = \ln(M_{\tau}^2/\Lambda^2)$$
, $A_1(\theta) = 1 + 2\cos(\theta) - 2\cos(3\theta) - \cos(4\theta)$, $A_2(\theta) = 2\sin(\theta) - 2\sin(3\theta) - \sin(4\theta)$.

Perturbative approach gives $\Delta_{\text{pert}}^{\text{V}} \equiv \Delta_{\text{pert}}^{\text{A}}$, but $\Delta_{\text{exp}}^{\text{V}} \neq \Delta_{\text{exp}}^{\text{A}}$:

$$\Delta_{\rm exp}^{\rm V} = 1.224 \pm 0.050, \ \Delta_{\rm exp}^{\rm A} = 0.748 \pm 0.034$$
 [ALEPH-2008 data]





V-channel: perturbative approach gives two equally justified solutions, but only highlighted one is usually retained.

A-channel: perturbative approach fails to describe experimental data on inclusive τ lepton hadronic decay.

Inclusive τ decay within dispersive approach:

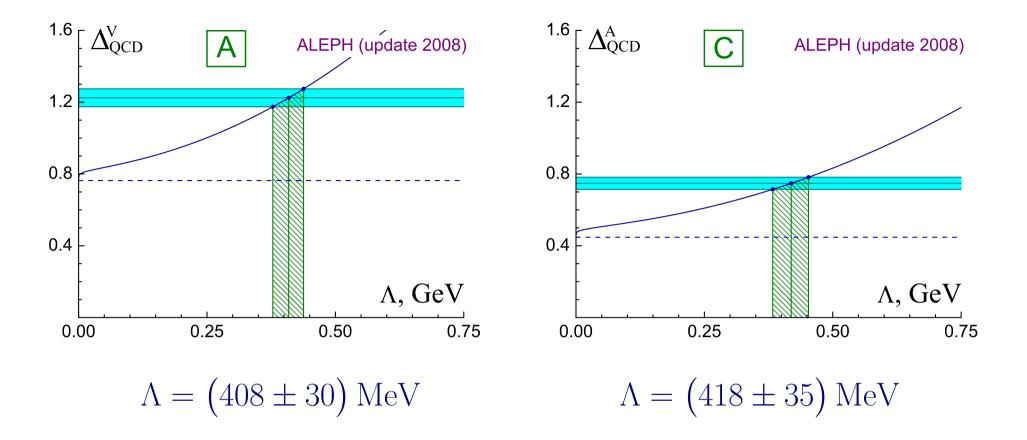
Description of the inclusive τ lepton hadronic decay within DispQCD enables one to properly account for

- effects due to hadronization $(m \neq 0)$
- nonperturbative constraints on the functions on hand

The use of initial expression for $\Delta_{\rm QCD}^{\rm V/A}$ with obtained above integral representations eventually leads to

$$\Delta_{\text{QCD}}^{\text{V/A}} = \sqrt{1 - \zeta_{\text{V/A}}} \left(1 + 6\zeta_{\text{V/A}} - \frac{5}{8}\zeta_{\text{V/A}}^2 + \frac{3}{16}\zeta_{\text{V/A}}^3 \right) + \int_{m_{\text{V/A}}}^{\infty} H\left(\frac{\sigma}{M_{\tau}^2}\right) \rho(\sigma) \frac{d\sigma}{\sigma}$$
$$-3\zeta_{\text{V/A}} \left(1 + \frac{1}{8}\zeta_{\text{V/A}}^2 - \frac{1}{32}\zeta_{\text{V/A}}^3 \right) \ln\left[\frac{2}{\zeta_{\text{V/A}}} \left(1 + \sqrt{1 - \zeta_{\text{V/A}}} \right) - 1 \right],$$
 with $\zeta_{\text{V/A}} = m_{\text{V/A}}^2 / M_{\tau}^2$, $H(x) = g(x) \theta(1 - x) + g(1) \theta(x - 1) - g(\zeta_{\text{V/A}})$

■ Nesterenko (2011–2013).



The comparison of obtained result with experimental data yields nearly identical values of the QCD scale parameter Λ in vector and axial–vector channels, that testifies to the self–consistency of the developed approach.

SUMMARY

- The integral representations for $\Pi(q^2)$, R(s), and $D(Q^2)$ are derived within dispersive approach to QCD
- These representations embody the nonperturbative constraints and retain the effects due to hadronization
- The obtained results are in a good agreement with lattice data and low-energy experimental predictions
- The developed approach is capable of describing experimental data on inclusive τ lepton hadronic decay in vector and axial-vector channels in a self-consistent way