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INTRODUCTION

Hadronic vacuum polarization func- q q
tion II(¢%) plays a central role in var-
ious issues of QCD and Standard
Model. In particular, the theoretical description of some
strong interaction processes and hadronic contributions to

electroweak observables is inherently based on I1(¢*):
e electron—positron annihilation into hadrons
e hadronic 7 lepton decay
e muon anomalous magnetic moment

e running of the electromagnetic coupling
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GENERAL DISPERSION RELATIONS

The cross—section of ete™ — hadrons: _\_,,

h
202 1 j
0O = 47-‘-2 ? L'LLVA’LLV7 N (:)I
where s = q2 = (p +p2)2 > (), 4 7> 2 n
1
Lyv =5 {Q,uqy — gua* — (p1 — p2)u(p1 — pz)u} ,
A/LV — (277)425(]?1 T P2 — pF><O‘J,u(_Q)}F><F}JV<Q)’O>7
[

and J,;, =) f Qr:dvuq: 1s the electromagnetic quark current.

Kinematic restriction: hadronic tensor A,,(¢°) assumes
2

non—zero values only for ¢ > m?, since otherwise no hadron

state ' could be excited  ® Feynman (1972); Adler (1974).
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The hadronic tensor can be represented as A, = 2ImlIl,,,

11 2
HW(q)_z/zq:ﬂ@‘T{Ju ) J(O)H0) dbe = i(quay — gwq)léig.

Kinematic restriction: 1I(¢°) has the only cut ¢° > m~.

Dispersion relation for II(¢%): $Im g

ATI( qf) = % R j’é - ql;)(é) [ 3
2 2 > R(s) . 7@ o \ur =
(C] QO)/mQ (S_q2><5_(]8>d : j

where AIl(¢? qg) = I1(¢?%) — H(q(Q)) and R(s) denotes the mea-

surable ratio of two cross—sections ( R(s) =0 for s < m?)
1 , , o(eTe” — hadrons; s)
) = - i (s 2) - 1] = 2
(5) 277 5i>%1+ (s +ie) (s = ie) (e*e ANy
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For practical purposes it proves to be convenient to deal
with the Adler function (Q? = —¢*> > 0)

d11(—Q?) ) ) /OO R(s)
D(Q?) = — D(Q?) = d
(@) dlnQ? (@) =0 m2 (s + Q?)? ”
B Adler (1974); De Rujula, Georgi (1976); Bjorken (1989).

The inverse relations between the

4Im¢
functions on hand read 5
1 S—1€E dC
21 e—04 stie C e
B Radyushkin (1982); Krasnikov, Pivovarov (1982)
Q° d¢
ATI(-Q% —Qp) = — (€)=
Q3 ¢
B Nesterenko (2013).

The integration contour in complex (—plane lies in the re-

gion of analyticity of the integrand.
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The complete set of relations between I1(¢%), R(s), and D(Q?):

2 o _ 2 o [ filo) = - =
All(g”, q5) = (¢° — qp) /m2 (0 — ¢2)(0 — q(Q)) do = —q? D(O -
| 1 S—i€ d

R(s) = %51_1?01 {H(S +ie) =I5 = ig)} N %€£%+ /8+i5 D(_C)?C’

a1l
D@ =~ dl<nQ2 - / 0+Q2) ‘o

Their derivation requires only the location of cut of H(q2)

and its UV asymptotic. Neither additional approximations
nor phenomenological assumptions are involved.

Nonperturbative constraints:

e I1(¢°): has the only cut ¢*> > m?;

2. embodies m*—terms;

e R(s): vanishes for s <m
e D(Q?): has the only cut Q° < —m?, vanishes at Q? — 0.
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DISPERSIVE APPROACH TO QCD

©.0

)

Functions on hand in terms of common spectral density:
2 02 2
— g°m° — d
All(¢%, ¢f) = ATV (g%, gf) + / p(o) In (0 ! qo) :
o—qzm
do

- 2_q2
R(s) = RO +00s = m) [ plo)

S

2 o

2 00 . 2d0‘
DO2) — D)2 @ / o—m
@)= D@+ s [ o)
1 d | | dr(o) 1 | |
= — Im 1 —1E) = — = —Im | —0 —
plo) md Ino mgi%ip(a t€) dno msi{&rd( o~ i),

with AH<O>(q2, q%), R<O>(s), and D<O)(Q2) being leading—order
terms, p(¢°), 7(s), and d(Q?) being the strong corrections

B Nesterenko, Papavassiliou (2005, 2006); Nesterenko (2007-2013).
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e The obtained integral representations automatically em-

body all the aforementioned nonperturbative constraints

e Their derivation requires only the general dispersion re-

lations and the asymptotic ultraviolet behavior of H(q2)

e Neither additional approximations nor model-dependent
assumptions were involved
The leading—order terms of the functions on hand:

AT (g2, ¢3) = & (1— ¢> . (1— =0 )

tan? p tan @  tan? L) tan g
m2 3/2
R<O)(s) = 0(s —m?) (1 — —) ,

S

3
DO =1+ : [1 _ \/1 +el smhl(gl/?)],
where sin’ ¢ = ¢?/m?, sin® g = q%/mQ, ¢ = Q% /m?

B Feynman (1972); Akhiezer, Berestetsky (1965).
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Perturbative contribution to the spectral density:

1 d drpert( ) 1 . .
ppert(o-) — ;d no Imgli%l ppert(g o 28) dlno — ; Im€£%+dpert(_0_ - 26).
The following model for spectral density will be employed:
4 1 A
plo) = +—

Boln*(o/A2) + 72 o
B Nesterenko (2011-2013).

In the massless limit (m = 0) integral representatlons read

All(q%, gf) = —ln(__q§> +/Ooop(a)ln 1 —(0/q°) da’

—q) _1 — (U/C]()> o

R(s)—e(s)lu/:op(a)f], D(QQ)—lJr/OOO P 44

o+ Q?
For p(o) = Imd, . (—0 —104)/7 two highlighted equations be-

come identical to those of the APT m Shirkov, Solovtsov (1997-2007).

But it is essential to keep the threshold m? nonvanishing.
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ADLER FUNCTION

massless limit (m = 0)
15 D(QZ) 1

‘\.

realistic case (m # 0)
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B Nesterenko, Papavassiliou (2006); Nesterenko (2007-2009).

Reliability of approaches:

e Perturbation theory: () = 1.5GeV
e Massless APT: () 2 1.0GeV

e Dispersive approach: entire energy range
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HADRONIC VACUUM POLARIZATION FUNCTION

1.5 = o)
11Cq)
10k
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Solid curve presents DispQCD result for I1(¢%) = AII(0, ¢°),
whereas its lattice prediction is shown by data points.

B Della Morte, Jager, Juttner, Wittig (2011); Nesterenko (2013).

DispQCD result is in a good agreement with lattice data

in the entire energy range.
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INCLUSIVE 7 LEPTON HADRONIC DECAY

The interest to this process is due to
e The only lepton with hadronic decays
e Precise experimental data
e No need in phenomenological models

e Probes infrared hadron dynamics

The experimentally measurable quantity:

['(r™ — hadrons™ v;)

R, = = Rrv+ Rra+ Rrg,

(7= — e Vevy)

Rry = RI0+ RIS = 1.783 £ 0.011 £ 0.002, hadrons

R = RS0+ RJZH = 1.695 + 0.011 + 0.002.

B ALEPH Collaboration (1998-2008).
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The theoretical prediction for the quantities on hand reads
_ N
Riy, = 70 Vial? Sew (Agé‘% + 5]/3\2\/)7

N.=3, |Via|=0.973840.0005, Spw=1.019440.0050, &/, =0.0010,

M2
T d
=2 [, 1) R 7

2, \M? Mz
where M, = 1.777GeV, f(z) = (1 — z)? (1 + 2z),

1 1
RWA(S):%gl_i%liﬂv/A(swLis)—HV/A(s—is)}:;Im€£r8+HV/A(s+i5)
B Braaten, Narison, Pich (1992); Pivovarov (1992).

Integration by parts leads to
1 G dg
_ 2 2
N = 9RO~ g00R(?) + 5 [ o553 ) PO
C1+C5

where Y = m?/M? and g(z) = (2 — 22% + ).
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4Im¢ 4Im¢

A Only if D(Q?) possesses B

correct properties lin Q>

G Re ¢ g Re ¢

0 /ﬁ—'\ > _ 0 C >
m?> C2 M% /
1
2
Moo = 9(0ROE) = g00R(?) + o [ a5 ) D0
Cs+CYy

Despite the aforementioned remarks, in the perturbative

analysis the massless limit (m = 0) is assumed, that gives
1 e 0 2 if
Apep = — | 11— g(—")| D( M2 do.
acn = 5 lim /_ I el e
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Inclusive 7 decay within perturbative approach:

Commonly, perturbative D(QQ) is directly employed here
) J )
D(@ ) pert =1+ Z]_ { pert )} ) Q — X

with oy, (Q?) = 4m/[By n(Q/A%)], By = 11—-2n/3, and dy = 1 /.

In what follows the one—loop level (¢ = 1) with n, = 3 active

flavors will be assumed.

The one—loop perturbative expression for AQCD reads

AA ((9) + 9142(9)
AV/A / 1 de
pert 60 ()\2 n (92> )

where \ = ln(MTQ/AQ), A1(0) = 14 2cos(f) — 2cos(36) — cos(40),
Ag(0) = 2sin(f) — 2sin(36) — sin(46).
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. . vV A \Y% A,
Perturbative approach gives AJ = A/, but Al # A ¢
Ay, = 1.224 £ 0.050, A3, = 0.748 £ 0.034 [ALEPH-2008 data |
1.6 AV 1.6 AA
L Aqcp ALEPH (update 2008) - AQcp ALEPH (update 2008)
12f A 12}
A e
0.8 0.8
04l A 04l c
N A, GeV A, GeV
O.OI | 0.5I - I1.OI - I1.5I - I20I - I25I - I3.O OOI - IO.5I - I1 OI - I1 5I - I20I - I25I - I30
A= (434D MeV| A = (165272) MeV no solution

V-channel: perturbative approach gives two equally justi-

fied solutions, but only highlighted one is usually retained.

A-channel: perturbative approach fails to describe experi-

mental data on inclusive 7 lepton hadronic decay.
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Inclusive 7 decay within dispersive approach:

Description of the inclusive 7 lepton hadronic decay within

DispQCD enables one to properly account for
e effects due to hadronization (m # 0)

e nonperturbative constraints on the functions on hand

The use of initial expression for AQCD with obtained above

integral representations eventually leads to

V/A D 9 3 3 > o do
Ajep=1/1—Cya |14 6Cy/n — éCV/A + 1—6CV/A o H(m) plo) —

o
My /A

—3Cv/a (1 + CV/A 32CV/A> 1HLV/A (1 + /1 - CV/A) — 117

with Gy = my, /M7, H(x) = g(x) 0(1—2)+g(1) 0(z—1)— g(Cva)
B Nesterenko (2011-2013).
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1.6 AA

YT Aben A ALEPH (update 2008) [ Aocp C ALEPH (update 2008)
121 121
08— N\ 0.81
04 oaf N
\ A, GeV A, GeV
000 025 050 075 000 025 050 075
A = (408 £ 30) MeV A = (418 £ 35) MeV

The comparison of obtained result with experimental data
yields nearly identical values of the QCD scale parameter A
in vector and axial-vector channels, that testifies to the

self—consistency of the developed approach.
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SUMMARY

® The integral representations for H(q2), R(s), and D(QQ)

are derived within dispersive approach to QCD

® These representations embody the nonperturbative con-

straints and retain the effects due to hadronization

® The obtained results are in a good agreement with lattice

data and low—energy experimental predictions

@® The developed approach is capable of describing experi-
mental data on inclusive 7 lepton hadronic decay in vec-

tor and axial-vector channels in a self—consistent way

A .V.Nesterenko 16th Lomonosov Conference (Moscow, 2013)

18



