

FAIR – Facility for Antiproton and Ion Research

Thomas Nilsson

*FAIR-NUSTAR BR chair/spokesperson
Board of FAIR Collaborations*

16th Lomonosov Conference on Elementary Particle Physics –
Moscow State University 2013-08-23

Oct 4th 2010 – a FAIR (GmbH) is born

Signing of the **FAIR Convention** by representatives of the founding countries

Finland, France, Germany, India, Poland, Romania, Russia, Slovenia, Sweden
in Wiesbaden

Facility for Antiproton & Ion Research

Nuclear Structure & Astrophysics
(Rare-isotope beams)

Hadron Physics
(Stored and cooled
14 GeV/c anti-protons)

QCD-Phase Diagram
(HI beams 2 to 45 GeV/u)

Fundamental Symmetries
& Ultra-High EM Fields
(Antiprotons & highly stripped ions)

Dense Bulk Plasmas
(Ion-beam bunch compression
& petawatt-laser)

Materials Science & Radiation Biology
(Ion & antiproton beams)

Accelerator Challenges

Compact & cost effective accelerators

Fast cycling superconducting magnets
 $dB/dt \sim 4\text{T/s}$

XHV @ high beam intensities

Extremely high vacuum $\sim 10^{-12}$ mbar

Fast acceleration

High gradient, variable frequency
Ferrite & MA loaded cavities

Precision beams

Electron & stochastic cooling

Major contributions by Russian laboratories (JINR, BINP, ...)

Experiments

Anti-Proton Annihilation @ DA

Two body thresholds

Molecules

Gluonic Excitations

Hybrids

Glueballs

Glueballs+Recoil

q \bar{q} Mesons

light q \bar{q}
 $\pi, \rho, \omega, f_2, K, K^*$

Hadron Physics with PANDA

Courtesy J. Ritman

QCD well understood at high Q^2
Emergence of eff. DoF at low Q^2

Study of the *strong interaction*
in the transition region

Phenomena appear that are hard
to predict from QCD:
e.g. confinement, nature of
hadrons, hadronic masses...

Exotics production in pp collisions

Courtesy J. Ritman

Production: all J^{PC} accessible

Hybrids		
Gluon	1^{-+}	1^{+-}
$1S_0, 0^{-+}$	1^{++}	1^{--}
$3S_1, 1^{--}$	0^{++}	0^{+-}
	1^{+-}	1^{+-}
	2^{+-}	2^{+-}

J^{PC} exotic

Exotic J^{PC} would be clear signal

G.Bali, EPJA 1 (2004) 1 (PS)

Panda

*Charmonium Spectroscopy
QCD Exotics
Hypernuclear physics
Charm in nuclear matter*

The PANDA Collaboration

517 Members from
67 Institutes
18 Countries

Australia, Austria, Belarus, China, France, Germany, India,
Italy, Poland, Romania, Russia, Spain, Sweden, Switzerland,
Thailand, The Netherlands, USA, UK

XLII Collaboration Meeting - September 10-14, 2012 - PARIS (CNRS)

Experiments

Fundamental Questions of (QCD-) Physics

- What is the structure of compact stars?

Fundamental Questions of (QCD-) Physics

➤ What is the structure of compact stars?

➤ What is the origin of the mass of the hadrons which determine the visible mass of the universe?

Fundamental Questions of (QCD-) Physics

➤ What is the structure of compact stars?

➤ What is the origin of the mass of the hadrons which determine the visible mass of the universe?

➤ Why do we not observe individual quarks, the elementary building blocks of matter?

Fundamental Questions of (QCD-) Physics

➤ What is the structure of compact stars?

➤ What is the origin of the mass of the hadrons which determine the visible mass of the universe?

➤ Why do we not observe individual quarks, the elementary building blocks of matter?

➤ What are the properties and the degrees-of-freedom of nuclear matter under extreme conditions (high temperature and/or high density)?

Exploring the QCD phase diagram

Probing the QCD diagram at very high T and $\rho_B \sim 0$ (early universe):

ALICE, ATLAS, CMS at LHC

STAR, PHENIX at top RHIC energies

Previous talk

Probing the QCD diagram at moderate T and very high ρ_B :

Beam energy scan at RHIC, NA61 at CERN SPS, CBM at FAIR, MPD at NICA

Exploring the QCD phase diagram

Baryon density in central Au+Au collisions

Courtesy P. Senger

The Compressed Baryonic Matter Experiment

The CBM Collaboration: 58 institutions, 500 members

Croatia:
RBI Zagreb
Split Univ.

China:
CCNU Wuhan
Tsinghua Univ.
USTC Hefei

Czech Republic:
CAS, Rez
Techn. Univ. Prague

France:
IPHC Strasbourg

Hungary:
KFKI Budapest
Budapest Univ.

Germany:

Darmstadt TU
FAIR
Frankfurt Univ. IKF
Frankfurt Univ. FIAS
GSI Darmstadt
Giessen Univ.
Heidelberg Univ. P.I.
Heidelberg Univ. ZITI
HZ Dresden-Rossendorf
Münster Univ.
Tübingen Univ.
Wuppertal Univ.

India:

Aligarh Muslim Univ.
Bose Inst. Kolkata
Panjab Univ.
Rajasthan Univ.
Univ. of Jammu
Univ. of Kashmir
Univ. of Calcutta
B.H. Univ. Varanasi
VECC Kolkata
SAHA Kolkata
IOP Bhubaneswar
IIT Kharagpur
Gauhati Univ.

Korea:

Korea Univ. Seoul
Pusan Nat. Univ.

Romania:

NIPNE Bucharest
Univ. Bucharest

Poland:

AGH Krakow
Jag. Univ. Krakow
Silesia Univ. Katowice
Warsaw Univ.
Warsaw TU

Russia:

IHEP Protvino
INR Troitzk
ITEP Moscow
KRI, St. Petersburg
Kurchatov Inst., Moscow
LHEP, JINR Dubna
LIT, JINR Dubna
MEPHI Moscow
Obninsk State Univ.
PNPI Gatchina
SINP MSU, Moscow
St. Petersburg P. Univ.

Ukraine:

T. Shevchenko Univ. Kiev
Kiev Inst. Nucl. Research

Experiments

Which are the nuclei relevant for astrophysical processes and what are their properties?

FAIR will provide unique access to many nuclei relevant in explosive nucleosynthesis

rp-, p-process:

- masses at & beyond the proton drip-line
- (p,γ) , (γ,p) rates

Proton number, Z ↑

— Neutron number, N —

82

Synthesized

Stable

82

Nucleogenesis

126

UNKNOWN NUCLEI

114

rp-process

28

20

8

2

r-process:

- masses, half-lives
- β -delayed neutron emission
- (γ,n) , (n,γ) rates
- shell structure

→ Combine accurate nuclear physics with precision astronomy to constrain astrophysical scenarios

Open questions

- **What are the limits for existence of nuclei?**
 - Where are the proton and neutron drip lines situated?
 - Where does the nuclear chart end?
- **How are complex nuclei built from their basic constituents?**
 - What is the effective nucleon-nucleon interaction?
 - How does QCD constrain its parameters?

How does the nuclear force depend on varying proton-to-neutron ratios?

A. Ozawa et al. PRL 84 (2000) 5493

T. Otsuka et al., PRL 87(2001)082502

Shell quenching and reordering:
Transition from SO gaps (50,82,126) to HO gaps (40,70,112)

Softening of the nuclear potential:
High- l pushed upward and
 $N \gg Z$ *Spin-Orbit splitting reduced*

How to explain collective phenomena from individual motion?

Neutron Skins

Pygmy Resonance

Neutron stars

NUSTAR - The Project

Super-FRS	RIB production, identification and high resolution spectroscopy
DESPEC	γ -, β -, α -, p-, n-decay spectroscopy
HISPEC	in-beam spectroscopy at low and intermediate energy
ILIMA	masses and lifetimes of nuclei in ground and isomeric states
LASPEC	Laser spectroscopy
MATS	in-trap mass measurements and decay studies
R ³ B	kinematically complete reactions at high beam energy
ELISE	elastic, inelastic, and quasi-free e-A scattering
EXL	light-ion scattering reactions in inverse kinematics

The Approach

Complementary measurements leading to consistent answers

The Collaboration

> 800 scientists
146 institutes
38 countries

The Investment

82 M€ Super-FRS
73 M€ Experiments

SUPERconducting FRagment Separator

NUSTAR - The Facility

PreSPEC-AGATA Set-up = Early Implementation of HISPEC

relativistic radioactive heavy-ions
from the GSI Fragment Separator
Up to 1GeV/A ^{238}U , 50% v/c

PreSPEC

Advanced Gamma-ray Tracking Array (AGATA)

up to $5 \times 2 + 10 \times 3 = 40$
segmented HP Ge-crystals

$d \sim 20$ cm

$\varepsilon_{\text{Ph}} \approx 17\%$

$\Delta E \approx 0.4\%$

Lund-Cologne-York Calorimeter (LYCCA)

A and Z particle-ID after
secondary target by means of
-x,y tracking
- $\Delta E-E$ (Si-CsI)
- Δt (plastic)

The (early) 2012 Set-up in Reality

Reactions with Relativistic Radioactive Beams

CR perspective view

Potential for new masses with ILIMA

NUSTAR Week Kolkata Oct 2012

*> 800 scientists
146 institutes
38 countries*

Experiments

Atomic Physics, Plasma Physics, Bio Physics and Materials Research

Research Focus

Matter under Extreme Conditions
&
Extreme States of Matter

- Highest Charge States
- Relativistic Energies
- High Intensities
- High Charge at Low Velocity
- Low-Energy Anti-Protons

Extreme Static Fields
Extreme Dynamical Fields and
Ultrashort Pulses
Very High Energy Densities and
Pressures
Large Energy Deposition
Antimatter Research

Atomic Physics, Plasma Physics, Bio Physics and Materials Research

SPARC

SP: R. Schuch

- 302 scientists

- 83 institutions

- 26 countries

HEDgeHOB

SP: D. Varentsov

- 175 scientists

- 43 institutions

- 14 countries

APPA

- > 500 scientists
- > 90 institutions
- > 30 countries

FLAIR

SP: K. Blaum

- 144 scientists

- 49 institutions

- 15 countries

BIOMAT

SP: M. Durante
C. Trautmann

- 136 scientists

- 70 institutions

- 20 countries

WDM

SP: F. Rosmej

- 71 scientists

- 24 institutions

- 8 countries

MSV for APPA (Status 2012): The Facilities

Atomic & Fundamental Physics

QED in the non-perturbative regime
Correlated multi-body dynamics for atoms and ions
Precision determination of fundamental constants
Influence of atomic structure on nuclear decay properties
Fundamental physics and antimatter

Courtesy Th. Stöhlker

Plasma Physics at FAIR

Interaction of ions and photons with plasmas
Equation of state, phase transitions, transport phenomena
Matter under high pressure
Coupling of intense light with matter

Warm Dense Matter

- $T \sim 0.2 - 10 \text{ eV}$
- $\rho \sim \text{solid density}$
- $P \sim \text{kbar, Mbar}$

- large volume of sample (mm^3)
- fairly uniform physical conditions
- high entropy @ high densities
- high rep. rate and reproducibility
- any target material

Courtesy Th. Stöhlker

Plasma Physics with Intense Ion Beams

Relevant for astrophysics, planetary science, inertial confinement fusion research, research on materials under extreme conditions

Measurements are required for guidance of theoretical models

Degeneracy

$$E_{\text{kin}} = kT \approx E_{\text{Fermi}}$$

Density [cm^{-3}]

Strongly coupled plasmas, $\Gamma = E_c / E_{\text{kin}} > 1$

Courtesy Th. Stöhlker

Staging

Costs

Accelerators and personnel (including Super-FRS)	502 M€
Civil construction (excluding site related costs)	400 M€
FAIR contribution to experimental end stations *	78 M€
FAIR GmbH personnel & running until 2018 (>8 years)	47 M€
Grand Total MSV, Modules 0 - 3	1027 M€

in 2005 €
(inflation escalation until 2018: ca. **+50%**)

* Total experimental end stations (excluding Super-FRS): ca. 210 M€ (2005) = 315 M€ (2018)

FAIR Member States

Contracting Party	Contribution (in 2005 M€)
Finland	5.00
France	27.00
Germany	705.00
India	36.00
Poland	23.74
Romania	11.87
Russia	178.05
Slovenia	12.00
Sweden	10.00
Total	1.008,66

- All numbers in 2005 € (escalation until 2018 ca. +50%)
- UK Associate Member since 3/5/13
- Spain expected to join soon as a full member
- Talks with China on Associate FAIR Member status
- Talks with Italy
- Additional contributions to experiments by many countries

Civil Construction

Synchrotrons: 1.1 km
HESR: 0.6 km
With beamlines: 3.2 km

Total area > 200 000 m²

Area buildings ~ 98 000 m²

Usable area ~ 135 000 m²

Volume of buildings ~ 1 049 000 m³

Substructure: ~ 1500 pillars, up to 65 m deep

Bird's View

Courtesy G. Rosner

16th Lomonosov Conference - MSU

...closing in

05.05.2013

Timeline

Conclusions

- The FAIR facility is that will offer world-wide unique research opportunities
 - plasma, atomic, nuclear and subnuclear physics
 - a truly international infrastructure
- Construction of the start version has commenced
 - Excellent potential for going to the full version and beyond

Thanks to:

Günther Rosner – FAIR Scientific director

James Ritman – PANDA

Peter Senger – CBM

Thomas Stöhlker – APPA

*and numerous NUSTAR colleagues
for providing slides*