

Marco Pallavicini

Università di Genova and INFN Genova

TALK OUTLINE

• Solar neutrinos

- Introduction
- Scientific motivations
- Running experiments
- Recent results
- Future developments

• Geo-neutrinos [see S. Zavatarelli's talk]

• Discovery and status

Conclusions

SOLAR NEUTRINOS

CNO cycle

- pp chain: dominant in Sun-like main sequence stars (Fowler)
- **CNO cycle:** dominant in more massive stars (Bethe)
 - The role of CNO in the Sun is still uncertain (metallicity problem)

Stellar temperature (10⁶ °K)

(MeV g⁻

Energy production

SOLAR NEUTRINOS (2)

• BUT

- Neutrinos oscillate from Sun to Earth (SNO, 2000)
- MSW-LMA solution (solar data + KamLAND)
- Energy dependent P_{ee}

Lomonosov - Moscow, Aug. 22, 2013

SOLAR NEUTRINO FLUXES: METALLICTY PROBLEM

1.4	High metallicity	Low metallicity	Old calculations	Relativ	e difference
Source	Flux [cm ⁻² s ⁻¹] SSM-GS98	Flux [cm ⁻² s ⁻¹] SSM-AGSS09	Flux [cm ⁻² s ⁻¹] SSM-GS98-2004	due to	metallicity
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	5.94(1±0.01)×10 ¹⁰	DD	% aitt 0.8
рер	1.44(1±0.012)×108	1.47(1±0.012)×108	1.40(1±0.02)×108		
⁷ Be	5.00(1±0.07)×109	4.56(1±0.07)×109	4.86(1±0.12)×109	pep	2.1
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	5.79(1±0.23)×10 ⁶	⁷ Be	8.8
¹³ N	2.96(1±0.15)×108	2.17(1±0.15)×10 ⁸	5.71(1±0.36)×10 ⁸	80	177
¹⁵ O	2.23(1±0.16)×108	1.56(1±0.16)×10 ⁸	5.03(1±0.41)×10 ⁸	D	17.7
¹⁷ F	5.52(1±0.18)×106	3.40(1±0.16)×10 ⁶	5.91(1±0.44)×10 ⁶	¹³ N	26.7
Total CNO: 5.24×10 ⁸ 3.76×10 ⁸		10.8×10 ⁸	150	30.0	
Aldo M. Serenelli <i>et al.</i> 2011 <i>ApJ</i> 743 24					38.4

- CNO reduced by new cross section measurement of ${}^{14}N(p,\gamma){}^{15}O$
- Better accuracy for the ${}^{3}\text{He}({}^{4}\text{He},\gamma){}^{7}\text{Be cross section}$
- New opacity calculations
- New abundance based on 3D models

Lomonosov - Moscow, Aug. 22, 2013

DETECTION OF SOLAR NEUTRINOS

Radiochemical (Homestake [Cl], Gallex, SAGE [Ga])

- Only integral count rate above threshold
- Historically crucial, now less appealing

• Water (or D₂0) Cherenkov detector (SK, SNO)

- Directionality, neutral-charge currents separation with D₂0
- Very large mass cost effective (SK)
- ⁸B neutrinos only (E>4 MeV)

Liquid scintillator (Borexino, KamLAND, SNO+)

- Low energy threshold (200 keV, limited by ¹⁴C, not by signal)
- No directionality, superbe purity required to reject radioactivity

Possibly, future detectors with noble liquids (XMASS, Clean)

Lomonosov - Moscow, Aug. 22, 2013

⁸B MEASUREMENTS

- Kamiokande and SK original measurement
 - E > 6 MeV (90's)
 - Now down to 4.5 MeV

• SNO: charged and neutral currents, total flux confirmed (2000-2002)

- Discovery of neutrino oscillations
- SNO Leta and SK low energy analysis down to 3.5 MeV

• KamLAND > 5 MeV

Borexino E>3 MeV

• Lowest threshold, but smaller statistics w.r.t. SK and SNO

Lomonosov - Moscow, Aug. 22, 2013

SUPER-KAMIOKANDE

⁸B RESULTS

Kamland PRC 84, 035804 (2011)

SK Suzuki@Neutrino Telescopes Venice 2013

Lomonosov - Moscow, Aug. 22, 2013

Borexino PRD 82 033006 (2010)

SNO LETA 3.5 MeV threshold arxiv 1109.0763

SUMMARY OF ⁸B RESULTS

PRC 84, 035804 (2011) Kamland coll.

Absolute solar flux from SNO neutral current measurements

UPTURN OR NOT UPTURN?

LMA-MSW predicts Pee increase below 6 MeV (upturn)

• No evidence so far

- All experiments see flat distributions or even a <u>decrease</u>, but statistics is still insufficient
- Intriguing, however
- Sterile v or non-standard interactions may play a role
- SK might be able to say something clear

 Borexino probably too small, despite lower energy threshold

BOREXINO EXPERIMENT

Mainly, a solar v experiment:

- $v + e^- \rightarrow v + e^-$ in liquid scintillator
 - Ultra-low radioactive background obtained via selection, shielding, and purifications
 - Low energy threshold, good resolution, spatial reconstruction, and pulse shape ID

• But also:

• <u>Geo-neutrinos</u>, search for rare events

BOREXINO DETECTOR

<u>Buffer region</u>: PC+DMP quencher 4.25 m < R < 6.75 m

The principle of graded shielding: materials more and more pure moving toward center.

Borexino core is the less radioactive place on Earth: 9-10 orders of magnitude less than good mineral water

v detection in Borexino

Scintillation light

- # of photons → energy
- time of flight → **position**
- pulse shape $\rightarrow \alpha/\beta \beta^+/\beta^-$

α / β separation (²¹⁴Bi - ²¹⁴Po)

Lomonosov - Moscow, Aug. 22, 2013

MEASUREMENT OF ⁷BE RATE

Monte Carlo fit to the spectrum, without α/β subtraction of the ²¹⁰Po peak

Phys. Lett. B658:101-108, 2008 Phys. Rev. Lett. 101, 091302, 2008 **Phys. Rev. Lett. 107, 141302, 2011**

Two methods:

- Consistent results. Small difference included in systematic error.
- Final rate (100 t target):

• 46.0 ± 1.5 (stat) ± 1.5 (sys) c d^{-1}

Analytical fit of the spectrum after α/β subtraction of ²¹⁰Po peak

Source	%
Trigger (eff. and stability)	< 0.1
Live time	0.04
Scintillator density	0.05
Fiducial volume	+0.5 -1.3
Fit method	2
Energy response	2.7
Cuts efficiency	0.1
Total	+3.4 -3.6

DAY-NIGHT MODULATION OF ⁷BE RATE

Lomonosov - Moscow, Aug. 22, 2013

⁷BE ANNUAL MODULATION

• Two methods: count rate and Lombs-Scargle periodogram

No oscillations excluded at > 3 σ

Lomonosov - Moscow, Aug. 22, 2013

FIRST PEP DETECTION AND CNO LIMIT

- Borexino got first direct evidence of pepv and set a strong upper limit on CNO
 - Thanks to low background and ¹¹C rejection techniques
 - Tagging of ¹¹C with triple coincidence (TFC)
 - β⁺ β separation exploiting positronium formation

Global multivariate analysis

PHYSICAL REVIEW C 74, 045805 (2006)

Lomonosov - Moscow, Aug. 22, 2013

PEP: B⁺ TAGGING WITH POSITRONIUM

Lomonosov - Moscow, Aug. 22, 2013

19

PEP-CNO: FINAL RESULT

pep rate: 3.1 ± 0.6(stat) ± 0.3(sys) cpd/100 t

• No oscillations excluded at 97% c.l.

• Novpep excluded at 98%

Assuming MSW-LMA:
\$\Phi_{pep}\$ = 1.6 \pm 0.3 10⁸ cm⁻² s⁻¹
CNO limit assuming pep @ SSM
CNO rate < 7.1 cpd/100 t (95% c.l.)

Lomonosov - Moscow, Aug. 22, 2013

20

CAN WE ESTABLISH METALLICITY?

Not yet

- ⁷Be central value is right in the middle.....
 - Smaller error is possible in Phase 2 (maybe, 3%) but this is not enough to give more than a hint
- **CNO** measurement would work, but it is very difficult
 - An upper limit disfavoring High Metallicity is maybe possible in Phase 2, if Nature chose Low.....

Lomonosov - Moscow, Aug. 22, 2013

CURRENT STATUS OF P_{ee} probe

Example of non-standard interactions [Friedland et al. PLB 594 (2004) 347]

Lomonosov - Moscow, Aug. 22, 2013

22

WHAT NEXT ON SOLAR NEUTRINOS?

• Hot items:

• Direct measurement of pp vs: test Sun luminosity

 High precision pep: Non Standard Interactions (NSI), precision test of P_{ee}

yes, not easy to improve much

Borex Phase 2 goal

yes

• Measure CNO : solar and stellar models

good upper limit possible measurement very difficult

⁸B up-turn: reduce the threshold (NSI, sterile vs...)
Statistics

 Improve ⁷Be measurement (usefull if model and calculation improve as well)

down to 3% maybe

WHAT NEXT: SNO+

SNO detector with liquid scintillator

- 780 tonnes LAB+PPO
- 9000 PMTS
- Water shield by Ultra Pure Water
- Wide physics program
- Reduced ¹¹C background due to the depth
 - 10⁴ µ/day@Borexino
 - 70 μ /day@SNO+
 - Worse background is 210Bi

Begin scintillator filling: early 2014

- Check background
- Priority is ββ decay (with ¹³⁰Te in scintillator)

Assuming Borexino Background

A BY	1 year	2 yrs		
рер	9.1%	6.5%		
⁸ B	7.5%	5.4%		
⁷ Be	4%	2.8%		
рр	a few %?			
CNO	CNO 15%?			

WHAT NEXT: LENS

¹¹⁵In provides a nice neutrino tagging $\nu_e + {}^{115}In \rightarrow e^- + {}^{155}Sn^*$ ${}^{155}Sn^* \rightarrow {}^{155}Sn + \gamma + \gamma$

- Q= 114 keV
 - sensitivity to pp , ⁷Be, pep, CNO, ⁸B
 - Neat coincidence
- Main background from
 ¹¹⁵In β decay
 - Relevant for pp only
- µLENS at Kimbalton (VA, USA)
- LENS not approved yet

Cell Size mm	Cube size m	Pe yield /MeV	Det Eff %	pp-v /t In/y	Bgd /t In/y	S/N	M (In)* ton	M (InLS) ton	РМТ
75	4	1000	64%	40	13	3	10	125	13300 (3")
125	5	950	40%	26	9	2.9	15.3	190	6250 (5")

25

WHAT NEXT: XMASS, CLEAN

Liquid noble gas as scintillators

- XMASS: liquid xenon for dark matter and solar neutrinos
 - First run done, upgrade in progress, resume data taking soon
 - Current focus: dark matter
- CLEAN: liquid neon
 - Small prototype running at SNOlab
 - 100t detector under design

• Very low flux (3 orders less than solar neutrinos)

- Clean anti-neutrino signature
- Only background: reactors (much bigger at KamLAND site)

GEO-NEUTRINOS

Expected signal differ between KamLAND and Borexino

- Reactor background very different
 - No reactors in Italy, several in Japan around KamLAND site
- Continental crust for Borexino, partially oceanic in Japan

BOREXINO AND KAMLAND RESULTS

M. Pallavicini

29

150

CONCLUSIONS

Solar neutrinos have been pivotal to the discovery of neutrino oscillations

- A very active field of research yet
- Next goals: precision low energy neutrino physics and stellar physics
 - Search for new physics in solar neutrino interactions
 - Several projects under way
- Solar neutrino detectors important for other science as well
 - Geo-neutrinos (KamLAND, Borexino)
 - Dark matter search (XMass, Clean)
 - Neutrinoless double beta decay (KamLAND, SNO+, Borexino in the future)
 - Sterile neutrino search (Borexino-SOX, KamLAND-Celand)
 - See T. Lasserre and I. Machulin talks

Thanks