σ[pp→ZZ]: cross section measurement & anomalous Triple Gauge Couplings (at CMS experiment)

Perniè Luca - 27-Aug-2013 (on behalf of CMS Collaboration)

16th Lomonosov Conference

The Large Hadron Collider

- ✤ p-p collision
- Times between bunches: 50 ns
- Center of mass energy: 7 TeV (2011), 8 TeV (2012)
- Instantaneous max. luminosity: 8.10³³ cm⁻²s⁻¹

CMS Integrated Luminosity, pp

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8 \text{ TeV}$

2

The Compact Muon Solenoid

Why double Z boson? (1/2)

Z

Z

 Z^*/γ^*

13

14

NLO, B.F. to one lept. included

aTGC

10

√s [TeV]

11

12

99

Different Feynman diagrams

♦ Common backgrounds ($H \rightarrow ZZ...$)

Most rare di-boson process

\sqrt{s} [TeV]	$\sigma^{LO}(ZZ)$ [pb]	$\sigma^{NLO}(ZZ)$ [pb]
7	4.17(0)	$6.46(0)^{+4.7\%}_{-3.3\%}$
8	5.06(0)	$7.92(0)^{+4.7\%}_{-3.0\%}$

B.F.(ZZ \rightarrow 2|2v) = 0.0404 B.F.(ZZ \rightarrow 2|2|') = 0.0102 where I=e,µ,т

 \bar{q}

Z

Z

107

10⁶

105

10⁴

103

10²

101

σ [fb]

Z

Z

- probe of the electro-weak boson selfinteractions
- neutral anomalous Triple Gauge Couplings:
 - → γ ZZ and ZZZ: zero at tree level

New physics: could be parametrized by aTGC

 $P_T(Z)$, $M_{II'I'}$ distribution: sensitive to aTGC

- → Tail is sensitive to aTGC
- \rightarrow ZZ \rightarrow 2|2|': clean signature
- → ZZ → 2l2v: high branching ratio
 2 leptons + Missing Energy
 Other processes can fake signal

Luca Perniè

I part

$ZZ \rightarrow 2|2|'$ Signal:

2|2|':

 $\begin{array}{ll} I^{-}I^{'+} & \text{where } I = e, \ \mu \ and: \\ M_{II} \ \varepsilon \ [60,120] \ \text{GeV} \ \text{and} \ M_{II'} > 4 \ \text{GeV} \\ & \text{Well identified and isolated, vertex information} \\ & \text{At least one } P_{T}(I) > 20 \ \text{GeV} \ \text{and one } P_{T}(I) > 10 \ \text{GeV} \end{array}$

FSR correction to closest lepton Z_1 : with closer mass to nominal value Z_2 : the other [if more: higher p_T]

INFN DI DE BRUSSEL

2Ι2τ:

 $Z_1 \rightarrow I^-I^+$: is defined as before

 $Z_2 \rightarrow \tau^- \tau^+$ (τ_e, τ_μ, τ_h): $P_T(\tau_e) > 10 \text{ GeV}, P_T(\tau_h) > 20 \text{ GeV}$

No FSR correction

 $M_{min} < m(Z_2) < 90$ GeV. M_{min} is 20 (30) GeV for eµ (others) final state

$ZZ \rightarrow 2|2|'$ backgrounds:

- ✤ Drell Yan
- Top Bkg (B-veto)
- WZ ($E_t^{miss} < 25 \text{ GeV}$)

Data-driven technique of estimation (more important for 2I2τ).

```
Good signal MC description
```

Ex: DY

estimation for \rightarrow Control region Z + X (bb, cc, gluons or light quark): 2I2 τ final state

Z1: standard selection with relaxed identification and isolation criteria

Z₂: II with same charge/flavour in [60, 120] GeV, M_{4l} >100 GeV.

Expected number taken from the lept. misidentification probability

from $Z_1 + I$ sample with no id.+iso. on the 3rd lept.

Luca Perniè

ZZ cross section and aTGC limits, 27-Aug-2013

 γ^*, Z

b

ZZ→2I2I': Cross section

Final shapes signal-dominated

- Data-driven estimation (see backup)
- Combination of all final states:

simultaneous fit on the observed distribution of the ZZ invariant mass

CMS Preliminary $\sqrt{s} = 8$ TeV, L = 19.6 fb⁻¹ • DATA 2Z • WZ/Z + jets 10 • 0 200 400 600 800 1000 m_{eeuu} (GeV)

ZZ→2I2I': Cross section

- Acceptance from simulation. Monte Carlo efficiency corrected with Tag&Probe.
- Likelihood: written as a combination of individual channel likelihoods for the signal and background hypotheses with the statistical and systematic uncertainties in the form of scaling nuisance parameters.
- Each tau decay mode is treated as a separate channel.

Decay	Cross sections			
μμμμ	$\sigma(pp \rightarrow ZZ) = 7.3^{+0.8}_{-0.8} \text{ (stat.)}^{+0.6}_{-0.5} \text{ (syst.)} \pm 0.4 \text{ (theo.)} \pm 0.3 \text{ (lum.) pb}$			
eeee	$\sigma(pp \to ZZ) = 7.2^{+1.0}_{-0.9} \text{ (stat.)}^{+0.6}_{-0.5} \text{ (syst.)} \pm 0.4 \text{ (theo.)} \pm 0.3 \text{ (lum.) pb}$			
μµee	$\sigma(pp \rightarrow ZZ) = 8.1^{+0.7}_{-0.6} \text{ (stat.)}^{+0.6}_{-0.5} \text{ (syst.)} \pm 0.4 \text{ (theo.)} \pm 0.4 \text{ (lum.) pb}$			
$\ell\ell au au$	$\sigma(pp \rightarrow ZZ) = 7.7^{+2.1}_{-1.9} \text{ (stat.)}^{+2.0}_{-1.8} \text{ (syst.)} \pm 0.4 \text{ (theo.)} \pm 0.3 \text{ (lum.) pb}$			
Total	$\sigma(\text{pp} \rightarrow \text{ZZ}) = 7.7^{+0.5}_{-0.5} \text{ (stat.)}^{+0.5}_{-0.4} \text{ (syst.)} \pm 0.4 \text{ (theo.)} \pm 0.3 \text{ (lum.) pb}$			

Theoretical cross section with MCFM: 7.7 \pm 0.6 pb at NLO

Luca Perniè

ZZ→2I2I': Differential cross section

- Further constrains
 Standard Model
- Good agreement on all variables
- Needs more statistics to see small variations

Pt-related observable

Ref: Measurement of the ZZ production cross section and anomalous trilinear gauge couplings in Ill'1' decays at sqrt(s) = 8 TeV at the LHC (SMP-13-005)Luca PernièZZ cross section and aTGC limits, 27-Aug-2013

Ref: Measurement of the ZZ production cross section and anomalous trilinear gauge couplings in Ill'l' decays at sqrt(s) = 8 TeV at the LHC (SMP-13-005)Luca PernièZZ cross section and aTGC limits, 27-Aug-2013

- Further constrains
 Standard Model
- Good agreement on all variables
- Needs more statistics to see small variations

Angular observable

ZZ→2|2|': Differential cross section

 $1/\sigma_{fid}$ d σ_{fid} /d(Lead. lep. p $_{T}$) (1/GeV) $Z_2))$ SMP-13-005 SMP-13-005 0.7 Unfolded Data 0.3 $1/\sigma_{fid} d \sigma_{fid}/d(\Delta \varphi (Z_1,$ 0.6 Total Error 0.25 POWHEG+gg 0.5 0.2 0.4 0.15 0.3 0.1 0.2 0.05 0.1 0 60 0.5 1.5 $\stackrel{2.5}{\Delta} \stackrel{3}{\phi} (Z_1, Z_2)$ Data/MC Data/MC **CMS Preliminary** $\sqrt{s} = 8$ TeV, L = 19.6 fb⁻¹ **CMS Preliminary** Ē 0.16 0.2 $1/\sigma_{fid} d \sigma_{fid}/d(Z, \eta)$ Unfolded Data Unfolded Data 0.2 $1/\sigma_{fid} d \sigma_{fid}/d(Z_2$ 0.14 SMP-18-005 Total Error **Total Error** 0.18 0.12 POWHEG+gg POWHEG+gg 0.16 0.14 0. 0.12 0.08 0. 0.06 0.08 0.06 0.04 0.04 0.02 0.02 -2 -1 0 2 -2 Data/MC Data/MC

 $\sqrt{s} = 8$ TeV, L = 19.6 fb⁻¹

CMS Preliminary

0

2

II part

And now... aTGC

Luca Perniè

aTGC generation:

Effective Lagrangian:

$$\mathcal{L}_{\text{VZZ}} = -\frac{e}{M_Z^2} \left\{ \left[f_4^{\gamma} \left(\partial_{\mu} F^{\mu \alpha} \right) + f_4^Z \left(\partial_{\mu} Z^{\mu \alpha} \right) \right] Z_{\beta} \left(\partial^{\beta} Z_{\alpha} \right) - \left[f_5^{\gamma} \left(\partial^{\mu} F_{\mu \alpha} \right) + f_5^Z \left(\partial^{\mu} Z_{\mu \alpha} \right) \right] \tilde{Z}^{\alpha \beta} Z_{\beta} \right\}$$

* MC signal sample: from SHERPA LO generator JHEP 0902 (2009) 007, doi:10.1088/1126-6708/2009/02/007, arXiv:0811.4622

 aTGC simulation inside a grid: finer binning using the quadratic dependence of the cross section on f_{4/5}^{z/γ}

	Experiment	f_4^Z	f_4^{γ}	f_5^Z	f_5^{γ}	Ref.	Comments
Previous limits:	LEP	[-0.30; 0.30]	[-0.17; 0.19]	[-0.34; 0.38]	[-0.32; 0.36]	[51]	LEP combination No form factors, 1D
	CDF	[-0.12; 0.12]	[-0.10; 0.10]	[-0.13; 0.12]	[-0.11; 0.11]	[52]	$\Lambda = 1.2 \text{ TeV}$
	DØ	[-0.28; 0.28]	[-0.26; 0.26]	[-0.31; 0.29]	[-0.20; 0.28]	[53]	$1 {\rm fb}^{-1}$, $\Lambda = 1.2 {\rm TeV}$
At 5fb ⁻¹	CMS	[-0.011; 0.012]	[-0.013; 0.015]	[-0.012; 0.012]	[-0.014; 0.014]	[6]	No form factors
	ATLAS	[-0.013; 0.013]	[-0.015; 0.015]	[-0.013; 0.013]	[-0.016; 0.015]	[54]	No form factors
	➤ ATLAS	[-0.019; 0.019]	[-0.022; 0.023]	[-0.020; 0.019]	[-0.023; 0.023]	[54]	$\Lambda = 3 \text{TeV}$
★ Actual limits (L ^{8TeV} ~19 fb ⁻¹): $ \begin{array}{l} -0.004 < f_4Z < 0.004 & -0.005 < f_5Z < 0.005 \\ -0.004 < f_4Y < 0.004 & -0.005 < f_5Y < 0.005 \\ (at 95\% CL.) \end{array} $				005 005			

Ref: Measurement of the ZZ production cross section and anomalous trilinear gauge couplings in Ill'l' decays at sqrt(s) = 8 TeV at the LHC (SMP-13-005)Luca PernièZZ cross section and aTGC limits, 27-Aug-2013

aTGC limits:

- ◆ 2I2I' final state has m_{III'I'} as most sensitive variable
- Same selection that for cross section

- Signal: aTGC Standard Model contribution
- Fit on the shape to derive limits

2l2v: backgrounds:

Signal:

 $\sigma_{8TeV} = 7.7 \text{ pb}$

Competitive and independent channel for aTGC limits.

- DY: Z+jets. High rate. E_t^{miss} helps us to discriminate it.
- ♦ Top Bkg: since t→Wb, a B-veto avoid the top contribution.
- ♦ WZ: (Z→II, W→qq,Iv). 3rd Lep Veto and E_t^{miss} avoid part of that.

 \blacklozenge WW: Request of M_z can remove part of that contribution.

2l2v: Reduced Met:

♦ Need to master E^{miss}

CMS

Pre-selection:

- → At least 2 leptons
- Loose selection on: p_T , η , lept. identification and isolation

2l2v: Cross section

- Drell Yan estimated from γ+Jets data
- Non resonant background estimated from sidebands
- After whole selection large ZZ contribution
- Selection efficiency shows cuts efficiency
- Same sensitivity to aTGC of 2l2l' final state

 σ extraction through maximum likelihood fit to the reduced E_{T}^{miss}

Conclusions:

- ♦ $pp \rightarrow ZZ$ cross section at 7 and 8 TeV of center of mass energy has been presented
- Two very different final states have been investigated
- Background estimation needed
- Differential cross section verifies Standard Model
- Strongest limits on aTGCs parameters

Luca Perniè

2l2v: Dataset:

Signal samples			
Dataset	$\int \mathcal{L} \left[\mathrm{pb}^{-1} ight]$	Run range	
7 TeV			
/PD/Run2011A-HZZ-08Nov2011-v1/AOD	2312	160431-173692	PD: DoubleElectron
/PD/Run2011B-HZZ-19Nov2011-v1/AOD	2739	175860-180252	DoubleMu
Total for the 2011 dataset	5051		SingleMu
8 TeV			Singlewiu
/PD/Run2012A-PromptReco-v1/AOD	890	190459-193621	
/PD/Run2012B-PromptReco-v1/AOD	4430	193834-195947	
/PD/Run2012C-PromptReco-v1/AOD	490	197774-198913	2012 D data already available
/PD/Run2012C-PromptReco-v2/AOD	6390	198913-200601	(not in PAS yet) \rightarrow + 7.4 fb ⁻¹
Total for the 2012 dataset	12200		

Background control samples

	/MuEG/Run2011A-HZZ-08Nov2011-v1/AOD			Triggers
Top/WW Estimation	/MuEG/Run2011B-HZZ-19Nov2011-v1/AOD /MuEG/Run2012A-PromptReco-v1/AOD	Channel	2011 $p_{\rm T}$ thresholds	2012 $p_{\rm T}$ thresholds
	/MuEG/Run2012B-PromptReco-v1/AOD	Channel	[GeV/c, GeV/c]	[GeV/ <i>c</i> , GeV/ <i>c</i>]
	/MuEG/Run2012C-PromptReco-v1/AOD	ee	17, 8	17,8
	/MuEG/Run2012C-PromptReco-v2/AOD		7,7	
DY Estimation	/Photon/Run2011A-16Jan2012-v1/AOD	μμ	13, 8	17, 8
	/Photon/Run2011B-16Jan2012-v1/AOD		17, 8	
	/Photon/Run2012B-PromptReco-v1/AOD		17 (µ), 8 (e)	17 (µ), 8 (e)
	/Photon/Run2012B-PromptReco-v1/AOD	еµ	17 (e), 8 (µ)	17 (e), 8 (µ)
	/Photon/Run2012C-PromptReco-v1/AOD		20,30,50,75,90	22,36,50,75,90 (EB only)
	/Photon/Run2012C-PromptReco-v2/AOD	· · · · ·	125,135,200	135,150,160,250,300

aset:

Most cross sections from https://twiki.cern.ch/twiki/bin/viewauth/CMS/StandardModelCrossSections https://twiki.cern.ch/twiki/bin/viewauth/CMS/StandardModelCrossSectionsat8TeV

Process	Dataset	σ	• All cross sections at NLO or
	7 TeV	NNI O when evoluble	
$W \to \ell \nu$	/WJetsToLNu_TuneZ2_7TeV-madgraph-tauola/F11-S6-v1	31314 ± 1558	ININLO WHEN available
$Z \to \ell \ell$	/DYJetsToLL_TuneZ2_M-50_7TeV-madgraph-tauola/F11-S4-v1	3048 ± 132	
tī	/TTJets_TuneZ2_7TeV-madgraph-tauola/F11-S4-v1	165^{+8}_{-11}	• ZZ, WZ cross sections
	/T_TuneZ2_tW-channel-DR_7TeV-powheg-tauola/F11-S6-v1	7.87 ± 0.59	from MCFM
Circola tar	/Tbar_TuneZ2_tW-channel-DR_7TeV-powheg-tauola/F11-86-v1	7.87 ± 0.59	
	/T_TuneZ2_t-channel_7TeV-powheg-tauola/F11-S6-v1	$41.92^{+1.8}_{-0.9}$	 NLO + ag contribution
Single top	/Tbar_TuneZ2_t-channel_7TeV-powheg-tauola/F11-S6-v1	$22.6^{+0.84}_{-1.04}$	99 contraction
	/T_TuneZ2_s-channel_7TeV-powheg-tauola/F11-S6-v1	$3.19_{-0.12}^{+0.14}$	WW from CMS analyses
	/Tbar_TuneZ2_s-channel_7TeV-powheg-tauola/F11-S6-v1	$1.44_{-0.07}^{+0.06}$	·····
	/ZZJetsTo2L2Nu_TuneZ2_7TeV-madgraph-tauola/F11-v1	$6.83^{+0.30}_{-0.21} \times 0.0386$	•
Di-bosons	/WWJetsTo212Nu_TuneZ2_7TeV-madgraph-tauola/F11-S6-v1	$52.4 \pm 2.0_{\rm stat} \pm 4.7_{\rm syst} \times 0.105$	
	/WZJetsTo3LNu_TuneZ2_7TeV-madgraph-tauola/F11-S6-v1	$18.5^{+1.0}_{-0.8} \times 0.033$	
	8 TeV		• Diboson, DY, tt: MADGRAPH
	/WToENu_TuneZ2star_8TeV_pythia6/S12-S50-v1		
$W \rightarrow \ell \nu$	/WToMuNu_TuneZ2star_8TeV_pythia6/S12-S50-v1	12085	• W+jets: PYTHIA/MADGRAPH
	/WToTauNu_TuneZ2star_8TeV_pythia6_tauola_cff/S12-S50-v1		
$Z \to \ell \ell$	/DYJetsToLL_M-50_TuneZ2Star_8TeV-madgraph-tarball/S12-S52-v2	35041	 Single top: POWHEG
tī	/TTJets_MassiveBinDECAY_TuneZ2star_8TeV-madgraph-tauola/S12-v1	225	
	/Tbar_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola/S12-S52(f)	11.2	
Single top	/T_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola/S12-S52(t)	11.2	
	/Tbar_t-channel_TuneZ2star_8TeV-powheg-tauola/S12-S52 (\bar{t})	55.5	
	/T_t-channel_TuneZ2star_8TeV-powheg-tauola/S12-S52(t)	30.0	
	/Tbar_s-channel_TuneZ2star_8TeV-powheg-tauola/S12-S52 (\bar{t})	3.9	
	(t)	1.76	
Dibosons	/ZZJetsTo2L2Nu_TuneZ2star_8TeV-madgraph-tauola/S12-S52-v3	$8.384^{+0.37}_{-0.24} imes 0.0386$	-
	/WWJetsTo2L2Nu_TuneZ2star_8TeV-madgraph-tauola/S12-S52-v1	$69.9\pm2.8_{stat}\pm6.4_{syst}\times0.105$	
	/WZTo3LNu_TuneZ2star_8TeV_pythia6_tauola/S12-S52-v1	$22.9^{+1.2}_{-0.9} imes 0.033$	

2l2v: Object definition:

Muons:	Electrons:	Jets:
◊ η < 2.4	◊ η < 2.5	PF jets, PU subtraction
♦ P _T > 20 GeV	* P _T > 20 GeV	Anti-K _T , ΔR=0.5
* Iso. < 0.2	✤ Iso. < 0.15	 ∗ η < 5.0
♦ Global & tracker	* Track-ECAL: Φ,η, 1/E -1/P	♦ P _T > 15 GeV
 Plus: IP, Hits, χ², σ(p_T)/p_T 	✤ Plus: IP, Hits, H/E	ΔR(lept,jet)=0.4

2l2v: Preliminary corrections:

◆ Cross section from MCFM (generator cut M_I>40 GeV)

 $\sigma_{incl} (7\text{TeV}) = (6.829 \pm 0.025) \text{ pb}$ $\sigma_{excl} (7\text{TeV}) = (87.98 \pm 0.32) \text{ fb}$ $\sigma_{incl} (8\text{TeV}) = (8.384 \pm 0.030) \text{ pb}$ $\sigma_{excl} (8\text{TeV}) = (108.16 \pm 0.39) \text{ fb}$

 $BR(ZZ \rightarrow 2\ell 2v) = 0.0387$

- Standard PU re-weighting
- Events re-weighted for Trigger efficiency (only 2011)
- Events re-weighted for Data/MC scale factor for ID+iso
- ✤ Jet pt: correction according JER measured in Data

Non res. bkg. estimation:

- Estimated from emu final state
- Scaling factor between ee/µµ and eµ for sideband

$$N_{ee}^{sign} = \alpha_{ee} \cdot N_{e\mu}^{sign}, \qquad \alpha_{ee} = N_{ee}^{SB} / N_{e\mu}^{SB}$$
$$N_{\mu\mu}^{sign} = \alpha_{\mu\mu} \cdot N_{e\mu}^{sign}, \qquad \alpha_{\mu\mu} = N_{\mu\mu}^{SB} / N_{e\mu}^{SB}$$

- Statistical error on α: systematic uncertainty
- Optimized errors trying different selection

ZZ cross section and aTGC limits

Since DY is not well modeled: Data-driven estimation

2l2v: γ +jets selection:

- exactly 1 γ in the barrel ($|\eta| < 1.4442$), $p_{T} > 30$ GeV
- no jets with $p_{T} > 30$ GeV/c, no leptons, conversion veto
- re-weight γp_{T} to match Z spectrum in data \rightarrow this also accounts for different photon trigger prescales vs p_{T}
- final normalization to Z yield in region red-MET < 40 GeV
- Processes with real MET from neutrinos contribute to the photon sample
 - Wγ, Zγ, W+jets with fake photon
 - therefore, the estimation from the γ template (N⁰_{DY}) is an upper limit on the actual DY contribution
 - let the DY prediction float between 0 and N⁰_{DY} → 100% uncertainty
 - the best normalization is found by the maximum-likelihood fit to the redMET spectrum during the cross section measurement

Luca Perniè

2|2|' Backgrounds estimation: (1/2)

 \rightarrow Control region Z + X (bb, cc, gluons or light quark):

- Z1 selection but relaxed criteria for additional II (same charge/flavour).
- Z₂ in [60, 120] GeV, M_{4I}>100 GeV.

Expected number taken from the lept. misidentification probability

from $Z_1 + I$ sample with no id.+iso. on the 3rd lept.

 \rightarrow Prob. to misidentify a jet as a τ_h :

Using I⁻I⁺ $\tau_h \tau_h$ sample: Z₁ all selection + no iso. for the τ (only Z+jets events) τ_h misidentification rate: $\frac{\#\tau_h}{\pi}$ passing loose or medium working point

 $\#\tau_h$ initial

→ Misidentify rate for τ_e :

Using $\mu^{-}\mu^{+}\tau_{\mu}\tau_{e}$ sample: Z₁ all selection + 1 lepton and a τ not isolated

 $\#\tau_e$ passing loose or medium working point

 τ_e misidentification rate:

 $\#\tau_e$ initial

Luca Perniè

30

 N_{Bi} is the # background in the Signal region. N_i the events passing fill selection except isolation on 1-2 leptons.

F(I_i) misidentification rate

- \rightarrow <u>Category 0</u>: both object from Z₂ do not pass isolation Mostly Z+Jets
- \rightarrow <u>Category 1</u>: one object from Z₂ do not pass isolation Mostly Z+Jets, WZ+jets
- \rightarrow <u>Category 2</u>: 1st object pass isolation, 2nd fail Mostly Z+Jets, WZ+jets

At the end: $N^{est}_{bkg} = N_1F_1 + N_2F_2 - N_0F_1F_2$

(N.B. category 0 contribute to 1 and 2)

Luca Perniè

ZZ cross section and aTGC limits, 27-Aug-2013

 $N_{B1}: - N_1 F(I_1)$ $1 - F(I_1)$ N_{B2}: $\frac{N_2 F(I_2)}{1 - F(I_2)}$

N_{B0}: $\frac{N_0 F(I_1)F(I_2)}{1-F(I_1)F(I_2)}$

