New Results from Belle

Leo Piilonen, Virginia Tech on behalf of the Belle collaboration

XVI Lomonosov Conference on Elementary Particle Physics August 2013

KEK B Factory and Belle: 1999–2010

Integrated luminosity at the B factories

KEKB instantaneous luminosity: $\mathcal{L} = 2.1 imes 10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Belle physics output (compiled by Simon Eidelman)

# citations ➡		50-99	100-199		200-299	300-399	400-499	>500	Total
# papers 🗪		64	37	7	10	2	—	2	115
[]									•
N	Title		Year	Cites	•				
1	X(3872)		2003	739	qrowing at ≈100/year :				
2	Large	e CPV		2001	618			-	•
3	B ightarrow	$X_s\gamma$		2001	381				•
4	CP ir	ו $B^0ar{B}^0$		2002	326				•
5	D0 m	ixing		2007	292				•
6	Y(39	45)		2005	290				•
7	$B \rightarrow$	au u		2006	277				÷
8	2 cc̄			2002	272				
9	b ightarrow	$s\gamma$		2004	265		375 pap	ers pu	blishe
10	$D_{s}^{*}(23)$	$(517), D_{s1}$	(2460)	2003	258		plus	≈ 30 /v	ear
11	D^{**}			2004	249				
12	Z(443	30)		2008	235				
13	D_{sJ}			2006	221				
14	X(394	40) in 2 cc̄		2007	204				

Charmonium(-like) and bottomonium(-like) states

Heavy-quark onia $(q\bar{q})$ are great testbeds for QCD

The "Cornell" potential is a useful simple model for charmonium and bottomonium.

Also: other QCD-inspired models and lattice QCD

All states below open-charm threshold have been observed and match the predictions.

Another $c\bar{c}$ state above open-charm threshold has been observed by Belle in $B \to K(\chi_{c1}\gamma)$... but not in $B \to K(\chi_{c2}\gamma)$

 $M = 3823.1 \pm 1.8 \pm 0.7 \text{ MeV/c}^2$ ($S = 3.8\sigma$) ... consistent with prediction for 1^3D_2

And now for the exotica ... 2003: the X(3872) is found in $B \to K (J/\psi \pi^+ \pi^-)$ by Belle; confirmed by CDF, DØ, BaBar, LHCb, CMS

Steve Olsen snags a big one!

Exotic states don't fit charmonium predictions.

11

Isospin of X(3872) is 0 since we don't see evidence for isovector partners X[±]: favors $D^0\overline{D}^{*0}$ molecule over tetraquark model 4.2 ± 7.8 evts Events / (0.002 GeV 0.002 BELL Events / $B^0 \to X^+ K^- \triangleright$ 5.26 5.28 5.3 M_{bc} (GeV) 3.86 3.88 3.9 3.9 M(J/ψ ππ) (GeV) 3.92 5.22 5.24 PRD 84, 052004 (2011) no signal Events / (0.002 GeV Events / (0.002 GeV BELI $B^+ \to X^+ K^0 \triangleright$

5.22

5.24

5.28

M_{bc} (GeV)

12

M(J/ψ ππ) (GeV)

Except the X^{\pm} might be too broad to be seen! So ... look for the C = -1 neutral partner.

No evidence for the C = -1 partner of the X(3872) in $X \rightarrow \chi_{cJ}\gamma$ or $X \rightarrow J/\psi \eta$: disfavors tetraquark model.

LHCb data favor the 1⁺⁺ over the 2⁻⁺ hypothesis for the X(3872) at 8.4 σ and <u>closes the</u> <u>door for conventional</u> <u>charmonium</u>.

X(3872) looks like a loosely bound $D^0 \overline{D}^{*0}$ molecule predicted by N.A. Törnqvist: Z Phys C 61, 525 (1994)

... but might have a small $c\bar{c}$ admixture. Tetraquark model is unlikely.

Z(4430) is definitely not charmonium: it is charged.

Not seen by *BABAR* although their data are compatible with Belle's. "Artifact due to interference from K* resonances?"

Belle update: $Z(4430)^+$ still 5σ in full Dalitz analysis with interference and excited K^{*(*)} resonances

 $J^{p} = 1^{+}$ is favoured over 0⁻ at the 2.9 σ level. All other assignments are ruled out with over 4.3 σ significance.

BABAR has been unable to confirm this state. No reports from LHCb, CDF, etc... yet.

Dalitz plot and projections for $Z(3900)^+$

 $\Upsilon(5S)$ has anomalously high rates to $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$

Perhaps the " $\Upsilon(5S)$ " is an admixture of bb and the Y_b ... the counterpart of Y(4260) in charmonium. Anyway, let's do something useful with this " $\Upsilon(5S)$ ".

Look for h_b and $h_b(2P)$ in $\Upsilon(5S) \to \pi^+\pi^-$ (anything)

The width of $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$ is unusually large, given the spin flip of a *b* quark

$$\frac{b\bar{b}}{\Gamma[\Upsilon(5S) \to h_b(nP)\pi^+\pi^-]}{\Gamma[\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-]} = \begin{cases} 0.46 \pm 0.08 \pm \frac{0.07}{0.12} & \text{for } h_b(1P) \\ 0.77 \pm 0.08 \pm \frac{0.22}{0.17} & \text{for } h_b(2P) \\ b\bar{b} & b\bar{b} \end{cases}$$

It should be suppressed as $\sim (\Lambda_{QCD}/m_b)^2$ \Rightarrow something unusual here ...

The same intermediate states appear in $\Upsilon(5S)\to\Upsilon(nS)\pi^+\pi^-$

PRL 108, 122001 (2012)

 $\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^{+}\pi^{-}$

 $Z_{b2} = \frac{M = 10657 \pm 6 \pm 3 \text{ MeV}}{\Gamma = 16.3 \pm 9.8 \pm 6.0 \text{ MeV}}$

M=10609±2±3 MeV Γ=24.2±3.1±3.0 MeV

M=10651±2±3 MeV Γ=13.3±3.3±4.0 MeV

M=10608±2±3 MeV Γ=17.6±3.0±3.0 MeV

Γ=8.4±2.0±2.0 MeV₂₈

M=10652±1±2 MeV

Perhaps these are $B \bar{B}^*$ and $B^* \bar{B}^*$ molecules

 Z_b^{\pm} was discovered in $h_b \pi^{\pm}$ and then $\Upsilon \pi^{\pm}$, but it prefers to decay to $B^{(*)} \bar{B}^*$

Assuming Z_b decays to $\Upsilon(nS)\pi$, $h_b(mP)\pi$ and $B^{(*)}B^*$ only:

Channel	\mathcal{B} of $Z_b(10610)$, %	$B \text{ of } Z_b(10650), \%$
$\Upsilon(1S)\pi^+$	0.32 ± 0.09	0.24 ± 0.07
$\Upsilon(2S)\pi^+$	4.38 ± 1.21	2.40 ± 0.63
$\Upsilon(3S)\pi^+$	2.15 ± 0.56	1.64 ± 0.40
$h_b(1P)\pi^+$	2.81 ± 1.10	7.43 ± 2.70
$h_b(2P)\pi^+$	4.34 ± 2.07	14.8 ± 6.22
$B^+\bar{B}^{*0} + \bar{B}^0B^{*+}$	86.0 ± 3.6	_
$B^{*+}\bar{B}^{*0}$	_	73.4 ± 7.0

The neutral partner, $Z_b^0(10610)$, is also seen by Belle in $\Upsilon(5S) \to \Upsilon(nS)\pi^0\pi^0$

arXiv: 1308.2646, submitted to PRD

 $\sigma[e^+e^- \to \Upsilon(2S)\pi^0\pi^0] = (1.87 \pm 0.11 \pm 0.23) \,\mathrm{pb}$ $\sigma[e^+e^- \to \Upsilon(1S)\pi^0\pi^0] = (1.16 \pm 0.06 \pm 0.10) \,\mathrm{pb}$ $\sigma[e^+e^- \to \Upsilon(3S)\pi^0\pi^0] = (0.98 \pm 0.24 \pm 0.15) \,\mathrm{pb}$... consistent with half of $\sigma[e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-]_{32}$

Select $\Upsilon(nS)$ candidates and form $\Upsilon(nS)\pi^0$ combos arXiv: I308.2646, submitted to PRD

 $Z_b^0(16010): M = (10609 \pm 4 \pm 4) \text{ MeV} \quad S = 6.5\sigma$ (consistent with $Z_b^{\pm}(10610)$ mass)

 $Z_b^0(10650)$: not statistically significant

Our high yield of $h_b(nP)$ lets us study the $\eta_b(nS)$ states via E1 transitions $h_b(nP) \rightarrow \gamma \eta_b(nS)$

 $\eta_b(1S)$ was first seen by BABAR: PRL 101,071801 (2008) and PRL 103, 161801 (2009)

"Rediscovered" by Belle

Our high yield of $h_b(nP)$ lets us study the $\eta_b(nS)$ states via E1 transitions $h_b(nP) \rightarrow \gamma \eta_b(nS)$

Belle sees the $\eta_b(2S)$

The claim of Dobbs *et al* of a new state $X_{bb}(9975)$ is inconsistent with Belle's analysis using same method

Summary

- The properties of the X(3872) are consistent with a $D\bar{D}^*$ S-wave molecular state, perhaps admixed with $c\bar{c}$. Its charged and C-odd neutral partners are not seen.
- Charmonium ψ_2 (=1³D₂) has been observed
- Charged charmonium-like states $Z(4430)^+$ and $Z(3900)^+$ ($|c\bar{c}u\bar{d}\rangle$) have been reaffirmed/observed
- The $\Upsilon(5S)$ decays to $h_b(n\mathsf{P})\pi\pi$ and $\Upsilon(n\mathsf{S})\pi\pi$ via one of two exotic states, $Z_b^+(10610)$ and $Z_b^+(10650)$, i.e., $|b\bar{b}u\bar{d}\rangle$, that appear to be $B^{(*)}\bar{B}^*$ S-wave molecular states at or near threshold. These Z_b^{\pm} states prefer to decay to $B^{(*)}\bar{B}^*$.
- The neutral partner, $Z_b^0(16010)$, has been observed.
- The $X_{bb}(9975)$ claim by Dobbs et al is refuted.
- See Peter Krizan's talk tomorrow for more Belle results. ³⁷

Backup

 $X(3872) \rightarrow J/\psi \gamma$ determines C = +1 assignment

• First seen by Belle in 2005. Here, with full data set:

 $\mathcal{B}(B^+ \to K^+ X) \times \mathcal{B}(X \to J/\psi \gamma) = (1.8 \pm 0.5) \times 10^{-6}$ cf BaBar $(2.8 \pm 0.8) \times 10^{-6}$ PRL 102, 132001 (2009) X(3872) decays to $\rho J/\psi$: dipion mass is consistent with $\rho \to \pi^+\pi^-$; also, $C(\pi\pi) = C(X)/C(J/\psi) = -1$ matches *C*-parity of the ρ .

 $c\overline{c} \rightarrow \rho J/\psi$ wouldn't conserve isospin, so this disfavors $X = c\overline{c}$ interpretation.

 $X(3872) \rightarrow \psi' \gamma$ is not seen by Belle \Rightarrow admixture of $c\bar{c}$ with $D^0\bar{D}^{*0}$ molecule is small

Expected mass $\approx (M\chi_{b0} + 3 M\chi_{b1} + 5 M\chi_{b2}) / 9$

 $\Delta M_{\rm HF} \Rightarrow$ test of hyperfine interaction

Deviations from CoG of χ_{bJ} masses

 $\begin{array}{ll} h_{b}(1P) & (1.6 \pm 1.5) \text{ MeV/c}^{2} \\ h_{b}(2P) & (0.5 \stackrel{+1.6}{_{-1.2}}) \text{ MeV/c}^{2} \end{array}$

Agrees with expectations

Repeat for $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$: form Dalitz distributions of $M^2(\Upsilon\pi)$ versus $M^2(\pi\pi)$, discard background, then project onto vertical axis

To exclude contamination from gamma conversions we require: $M^{2}(\pi^{+}\pi^{-}) > 0.20 \text{ GeV}^{2}$ $M^{2}(\pi^{+}\pi^{-}) > 0.16 \text{ GeV}^{2}$ $M^{2}(\pi^{+}\pi^{-}) > 0.10 \text{ GeV}^{2}$ PRL 108, 122001 (2012)

Angular analysis prefers $J^P = 1^+$ for both Z_b^{\pm} states

arXiv: 1105.4583