

supernemo

NEMO3 results and status of SuperNEMO

F. Piquemal (Modane Underground Laboratory) for SuperNEMO collaboration

16th Lomonosov conference 22-28 August 2013, Moscow

Double beta decay observables

Particle physic approach: to measure all kinematic parameters

- Identification of electrons
- Identification of e+, g, a particles
- High background rejection
- Vertex emission: possible identification of « hot spot » on the source foil
- Cross-check of background with several topologies
- Multi-isotopes
- Mesurement of all kinematics parameters: possibility to determine the process in case of signal
- Reliable techniques

Fréjus Underground Laboratory : 4800 m.w.e. Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter:

1940 plastic scintillators coupled to low radioactivity PMTs

20 sectors

Fréjus Underground Laboratory : 4800 m.w.e.Source:10 kg of $\beta\beta$ isotopes
cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water + Wood

Able to identify e^- , e^+ , γ and α

Fréjus Underground Laboratory : 4800 m.w.e.Source:10 kg of $\beta\beta$ isotopes
cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water + Wood

Background: natural radioactivity, mainly ²¹⁴Bi et ²⁰⁸Tl (γ 2.6 MeV) Radon, neutrons (n, γ), muons, $\beta\beta(2\nu)$

Modane Underground Laboratory (Laboratoire Souterrain de Modane, LSM, CNRS and CEA)

1700 m (4800 m.w.e. under Fréjus mountain

Agreement of International Associated Laboratory with JINR Dubna (Russia and CTU Prague (Czech Republic)

A typical ββ event in NEMO 3

- Criteria to select $\beta\beta$ events • 2 tracks with charge < 0
- 2 PMT, each > 200 keV
- PMT-Track association
- Common vertex
- - Internal hypothesis (external event rejection)
 - No other isolated PMT (y rejection)
 - No delayed track (²¹⁴Bi rejection)

Isotope	Mass (g)	Q _{ββ} (keV)	T _{1/2} (2v) (10 ¹⁹ yrs)	S/B	Comment	Reference
⁸² Se	932	2998	9.6 ± 1.0	4	World's best!	Phys.Rev.Lett. 95(2005) 483
¹¹⁶ Cd	405	2813	2.8 ± 0.3	10	World's best!	
¹⁵⁰ Nd	37	3371	0.91 ± 0.07	2.7	World's best!	Phys. Rev. C 80, 032501 (2009)
⁹⁶ Zr	9.4	3350	2.35 ± 0.21	1	World's best!	Nucl.Phys.A 847(2010) 168
⁴⁸ Ca	7	4263	4.4 ± 0.6	6.8 (h.e.)	World's best!	
¹⁰⁰ M0	6914	3034	0.71 ± 0.05	80	World's best!	Phys.Rev.Lett. 95(2005) 483
¹³⁰ Te	454	2527	70 ± 14	0,5	First direct detection!!!	Phys. Rev. Lett. 107, 062504 (2011)

First direct observation: 7.7 σ stat significance

Indirect observations:

- \sim 2.7 x 10²¹ yrs in 10⁹ yr old rocks
- ~8 x10²⁰ yrs in 10⁷-10⁸ yr old rocks

Result from MIBETA Coll in isotopically enriched crystals: $6.1 \pm 1.4(st) +2.9_{-3.5}(sy) \times 10^{20} yrs$

¹⁰⁰Mo $\beta\beta(0v)$ preliminary results

⁸²Se: 1kg × 4.5 years N events / 0.1 MeV NEMO 3 ⁸²Se Data 10 2vββ⁸²Se Radon int BKG 0vββ⁸²Se for T_{1/2}(0v)=10²³y 10 1 3.2 3.4 3.6 2.2 2.4 2.6 2.8 2 3 E_{TOT} (MeV) [2.6 - 3.2] MeV 14 observed events, 11.3 ± 1.3 expected Total mean 0v efficiency [2.0,3.2]MeV $\varepsilon = 0.14$ ⁸²Se $T_{1/2}(0\nu) > 3.2 \cdot 10^{23} \text{ y}$ @90% C.L. <m_v> < 0.94 – 1.71 eV NME [1-4] $< m_v > < 2.6 \text{ eV}$ NME [6]

 [1] QRPA M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R)

 [2] QRPA M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315

 [3] QRPA F.Simkovic, et al. Phys.Rev. C 79 (2009) 055501

 [4] IBM2 J.Barrea and F.Iachello Phys.Rev.C 79(2009)044301

	NME
HFB	[5] P.K. Rath et al., Phys. Rev. C 82 (2010) 064310
SM	[6] E.Caurrier et al. Phys.Rev.Lett 100 (2008) 052503

Majoron emission would distort the shape of the energy sum spectrum

	V+A*	n=1**	n=2**	n=3**	n=7**
Mo	>5.7·10 ²³ λ<1.4·10 ⁻⁶	> <mark>2.7·10²²</mark> G _{ee} <(0.4- 1.8)·10 ⁻⁴	>1.7.1022	>1.0.1022	>7·10 ¹⁹
Se	>2.4·10 ²³ λ<2.0·10 ⁻⁶	> 1.5·10²² G _{ee} <(0.7- 1.9)·10 ⁻⁴	>6.1021	>3.1.10 ²¹	>5·10 ²⁰

n: spectral index, limits on half-life in years

Phase I+Phase II data (including 2008)

"Phase I data, R.Arnold et al. Nucl. Phys. A765 (2006) 483

$\beta\beta$ decay to excited states with detection of 2e⁻ and γ (s)

 $\begin{array}{l} T_{1/2}^{\ 2v}(0^+ \rightarrow 0^+_{\ 1}) = 5.7^{+1.3}_{\ -0.9} \ (\text{stat}) \pm 0.8 \ (\text{syst}) \times 10^{20} \ \text{y} \\ T_{1/2}^{\ 0v}(0^+ \rightarrow 0^+_{\ 1}) \ > 8.9 \ \text{x} \ 10^{22} \ \text{y} \ @ \ 90\% \ \text{C.L.} \\ T_{1/2}^{\ 2v}(0^+ \rightarrow 2^+_{\ 1}) \ > 1.1 \ \text{x} \ 10^{21} \ \text{y} \ @ \ 90\% \ \text{C.L.} \\ T_{1/2}^{\ 0v}(0^+ \rightarrow 2^+_{\ 1}) \ > 1.6 \ \text{x} \ 10^{23} \ \text{y} \ @ \ 90\% \ \text{C.L.} \\ \textbf{Nuclear Physics A781} \ (2006) \ 209-226. \end{array}$

$$\mathsf{T}_{1/2}(\beta\beta0\nu) > \ln 2 \times \frac{\mathsf{N}_{\mathsf{A}}}{\mathsf{A}} \times \frac{\mathsf{M} \times \varepsilon \times \mathsf{T}_{\mathsf{obs}}}{\mathsf{N}_{90}}$$

NEMO-3		SuperNEMO
¹⁰⁰ Mo	isotope	⁸² Se (baseline) or 150Nd or ⁴⁸ Ca
7 kg	isotope mass M	100 kg
8 %	efficiency ε	~ 30 %
²⁰⁸ TI: < 20 μBq/kg ²¹⁴ Bi: < 300 μBq/kg	internal contaminations ^{208}Tl and ^{214}Bi in the $\beta\beta$ foil	²⁰⁸ Tl < 2 μBq/kg <i>if ⁸²Se</i> : ²¹⁴ Bi < 10 μBq/kg
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
T _{1/2} (ββ0ν) > 2 x 10 ²⁴ y <m<sub>v> < 0.3 – 1.3 eV</m<sub>		T _{1/2} (ββ0ν) > 1 x 10 ²⁶ y <m<sub>v> < 40 - 100 meV</m<sub>

SuperNEMO collaboration

SuperNEMO

	Demonstrator module	20 Modules
Source : ⁸² Se	7 kg	100 kg
Drift chambers for tracking	2 0000	40 000
Electron calorimeter	500	10 000
γ veto (up and down)	100	2 000
T _{1/2} sensitivity	6.6 10 ²⁴ y (No background)	1. 10 ²⁶ y
<m<sub>v> sensitivity</m<sub>	200 – 400 meV	40 – 100 meV

Demonstrator module (7 kg) under construction

Calorimeter

To measure electrons energy To detect γ -rays for excited state decay search To measure and reject backgrounds

8" PMT **Plastic Scintillator** +

- Use of PVT instead of PS
- Optimization geometry
- Optimization electronics

Tracker Construction and R&D

- Automated wiring robot design to mass produce at ultra low background condition
- First cartridge with 18 cells produced and tested
- NEMO3 Gas system refurbished with low Rn emanation materials
 - · for commissioning and running of Demonstrator

Tracker

Main challenge Radon < 150 μ Bq/m³

- Material selection
- Control of emanation
- Radiopurity of gas

 $< 2 \mu Bq/kg$ for ²⁰⁸Tl

 $< 10 \ \mu Bq/kg$ for ^{214}Bi

Bi – Po delayed coincidence in U and Th chains

BiPo installed in Canfranc Underground Laboratory (Spain) since 2012

Test with Al foil contaminated in $^{212}\text{Bi} \rightarrow ^{212}\text{Po}$

SuperNEMO sensitivity for 5 years

⁸²Se

¹⁵⁰Nd

$< m_v > < 40 - 100 \text{ meV}$

SuperNEMO demonstrator at present LSM

Construction started in the laboratories

□ Installation and commissioning @ Modane Underground Laboratory

Data taking in 2014 - 2015

□ No background expected for 7 kg of ⁸²Se and 2 years of data

Given Sensitivity after 2 years : $T_{1/2} > 6.6 \ 10^{24} \text{ y and } < m_v > < 0.2 \ -0.4 \text{ eV}$

SuperNEMO and Modane extension

✓ 5 times the present LSM
✓ Digging in 2014 -2015
✓ In Operation 2016

- The NEMO detectors have the unique feature to track the electrons and to measure all kinematic parameters
- Publication of final NEMO3 results for 30 kg.an of ¹⁰⁰Mo soon
- Possibility to use different double beta decay isotopes
- Construction of the demonstrator in progress
- Installation at present LSM
- Data taking 2014 2015 with 7 kg of ⁸²Se No background expected in 2 years <m_v> < 0.2 – 0.4 eV</p>
- Possibility to share the full SuperNEMO detector (20 modules) in different underground laboratories (LSM extension, ANDES,...)

Backup

$\beta\beta(2\nu)$ results for other isotopes

Results of NEMO3 and Status of SuperNEMO

Laboratoire Souterrain de Modane

Depth: 4800 m.w.e.

Surface: 400 m2

Volume : **3500 m³**

Muon flux: 4 10⁻⁵ μ.m⁻².s⁻¹

Neutrons: Fast flux: 4 10⁻² n.m⁻².s⁻¹ Thermal flux: 1.6 10⁻² n.m⁻².s⁻¹

Radon: 15 Bq/m³

Access : horizontal

Budget (full cost): 1 M€/yr Staff: 3 Physicists 3 Engineers 7 Technicians

International associated laboratory agreement with JINR Dubna (Russia) and F. Piquemal SuperNEMO CTU Prague (Czech Republic)

Comparison of Underground Labs

F. Piquemal

Remark on $\Delta E \times N_{bckg}$

Experiment	∆E (keV)	N _{bckg} (cts/ keV/kg/y	$\Delta E \times N_{bckg}$	
H-M	4.5	0.06	0.3	CALO
Cuoricino	6	0.13	0.8	CALO
NEMO3	260	0.003	0.8	TRACKING
KamLAND-Zen	250	0.0028	0.7	CALO
EXO-200	120	0.0015	0.2	CALO
GERDA Phase I Phase 2	4 4	0.01 0.001	0.04 0.004	CALO CALO
CUORE	6	0.01	0.06	CALO
Majorana	4	0.003	0.01	CALO
SuperNEMO	120	0.0001	0.01	TRACKING

Experimental techniques

With background:

$$T_{1/2}^{0\nu}(y) > \frac{\ln 2 \cdot \mathcal{N}}{k_{C.L.}} \cdot \frac{\epsilon}{A} \cdot \sqrt{\frac{M \cdot t}{N_{Bckg}} \cdot \Delta \epsilon}$$

M: masse (g)
ε : efficiency
K_{c.L}: Confidence level
𝕂: Avogadro number
t: time (γ)
N_{Bckg}: Background events (keV⁻¹.g⁻¹.y⁻¹)
ΔE: energy resolution (keV)

Today, no technique able to optimize all the parameters

F. Piquemal

Results of NEMO3 and Status of SuperNEMO

 ϵ :efficiency, M: Mass, t: time, N_{bckg}: Background events, ΔE : energie resolution, A: isotope mass

Goal of the next generation

SuperNEMO

Next generation of experiments

SuperNEMO

Nucleus	Existing method	R&D	
⁴⁸ Ca		Laser separation, gazeous diffusion	
⁷⁶ Ge	Centrifugation		
⁸² Se	Centrifugation		
⁹⁶ Zr		Laser separation	
¹⁰⁰ Mo	Centrifugation		
¹¹⁶ Cd	Centrifugation		
¹³⁰ Te	Centrifugation		
¹³⁶ Xe	Centrifugation		
¹⁵⁰ Nd		Centrifugation, Laser	

R&D in KAERI (Korea) for ⁴⁸Ca enrichment by laser

R&D in Russia for ¹⁵⁰Nd enrichment by centrifugation R&D in France for ¹⁵⁰Nd enrichment by laser

- Radiopurity of source foil < 2 μBq/kg in ²⁰⁸Tl and < 10 μBq/kg in ²¹⁴Bi
- Thickness of source foil 40 mg/cm²

Enriched ⁸²Se already **5,5 kg in the collaboration**

Source production R&D @ ITEP

Chemical purification @INL

- □ Chemical purification (INL)
- Physical purification (ITEP)
- □ Reverse method (JINR,LSM)

Cells: Diameter= 44 mm Length = 3.7 m

Basic 90 cells prototype demonstrated: $\sigma_{\text{trans}} = 0.7 \text{ mm} \quad \sigma_{\text{long}} = 1 \text{ cm}$

Efficiency > 98%

90 cells prototype : data with cosmic rays

Results of NEMO3 and Status of SuperNEMO

Measurement of Rn activity in tracker

Radon measurements

Prague : setup to measure permeability of materials

Bratislava: emanation setup

Saga U, JINR, CENBG, Marseille, Prague: Electrostatic detectors for gas measurements