

Higgs searches with ATLAS

Joe Price on behalf of the ATLAS experiment

27th Aug 2013 Lomonosov Conference

Introduction

- ATLAS results from $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^{(*)} \rightarrow IIII$ and $H \rightarrow WW^*$ channels already presented in earlier talk by Richard St. Denis.
- Focus on more challenging SM Higgs decays and BR limits on inv. decay of Higgs boson.

Bibliography used in this talk

• ATLAS Higgs results :

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

• LHC Higgs cross section working group : https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

Channel	Reference	Luminosity (fb^{-1})	
Channel	Reference	$\sqrt{s} = 7$ TeV	$\sqrt{s} = 8 \text{ TeV}$
$VH ightarrow Vbar{b}$	ATLAS-CONF-2013-079	4.7	20.3
$H \rightarrow \tau \tau$	ATLAS-CONF-2012-160	4.6	13.0
$VH \rightarrow VWW^*$	ATLAS-CONF-2013-075	4.7	20.7
$H ightarrow Z \gamma$	ATLAS-CONF-2013-009	4.6	20.7
$t\bar{t}H ightarrow t\bar{t}\gamma\gamma$	ATLAS-CONF-2013-080	-	20.3
$H ightarrow \mu ar{\mu}$	ATLAS-CONF-2013-010	-	20.7
$ZH \rightarrow I\overline{I} + inv$	ATLAS-CONF-2013-011	4.7	13.0

- Associated (W/Z)H production, with $W \rightarrow l\nu$, $Z \rightarrow ll$ and $Z \rightarrow \nu\nu$, and with $H \rightarrow bb$.
- Each channel is further divided up into 2/3 jets $\otimes 5p_T^{W/2}$ bins $(p_T^{W/2}) = [<90], [90 120], [120 160], [160 200], [> 200] GeV.$
- Flavour composition of main backgrounds is determined from data.

$VH \rightarrow Vb\bar{b}$ Results

$$\mu = 0.2^{+0.7}_{-0.6}$$
 for $m_H = 125$ GeV

Background subtracted m_{bb} distribution, combining all regions with S/B weighting

Joe Price

 $VH \rightarrow VWW^*$, $H \rightarrow WW^* \rightarrow l\nu l\nu$

- Complementary to the H → WW* channel with ggF and VBF production.
- Search only for leptonic decays of W and Z bosons.
- Two separate channels: $WH \rightarrow WWW^* \rightarrow l\nu l\nu l\nu$ and $ZH \rightarrow ZWW^* \rightarrow III\nu l\nu$.

• 4σ (3.8 σ exp.) excess when combined with $H \rightarrow WW^*$ analysis.

$H \rightarrow Z\gamma, \ Z \rightarrow I\overline{I}$

• $H \rightarrow Z\gamma$ proceeds via electro-weak loops.

• Much smaller BR than $H \rightarrow \gamma \gamma$ but can constrain BSM physics independently.

EVENT SELECTION

- At least 2 isolated high p_T electrons or muons.
- At least 1 high p_T isolated photon.
- $\Delta R(\gamma, I) > 0.3$.
- $m_{II\gamma} > (m_Z 10)$ GeV.
- Use $\Delta m = m_{II\gamma} m_{II}$ as the discriminating variable.

$H \to Z\gamma, \ Z \to I \overline{I}$

- Background determined from data driven method.
- More statistics required before this channel becomes sensitive to SM Higgs boson.

18.2 (13.5 expected) \times SM prediction for $m_H = 125$ GeV at 95% CL

$t\bar{t}H \rightarrow t\bar{t}\gamma\gamma$

• Search includes di-lepton, single lepton and fully hadronic $t\bar{t}$ decays.

GeV

vents / 5

2000

1000

• 2 isolated photons, 1 with $p_T > 40$ GeV, the other with $p_T > 30$ GeV.

Data

SR+CR background fit

SR-only background fit

Signal region

Control region

SM signal (m = 126.8 GeV)

ATLAS preliminar

Leptonic channel

√s = 8 TeV [Ldt = 20.3 fb

m_{rv} [GeV]

- Leptonic:
- At least one electron or muon
- At least one b-tagged jet.
- $E_T^{miss} > 20$ GeV.
- Hadronic:
- 6 jets, at least 2 b-tagged.
- Lepton veto.

5.3 (6.4 expected) \times SM prediction at $m_H = 126.8$ GeV at 95% CL

40

100

Lomonosov

m_{vv} [GeV]

ATLAS preliminar

Hadronic chann

√s = 8 TeV (Ldt = 20.3

SR+CR background fit

SR-only background fit

Signal region

Control region

SM signal (m = 126.8 GeV)

$H \rightarrow \mu \mu$

- Only channel where coupling to second generation can be measured.
- Large dataset required.
- 2 oppositely charged muons, one with $p_T > 25$ GeV another with $p_T > 15$ GeV.
- Divided into 2 categories, |η(μ₁, μ₂)| < 1 and 1 < |η(μ₁, μ₂)| < 2.5 to take advantage of narrower signal width in central region.
- Background modelled by sum of Breit-Wigner and exp.

9.8 (8.2 expected) \times SM prediction for $m_H = 125$ GeV at 95% CL

Joe Price

$ZH \rightarrow II + inv$

- SM Higgs decay to invisible particles via $H \to ZZ^{(*)} \to \nu \bar{\nu} \nu' \bar{\nu'}$ is very small.
- Search for enhancements in the inv. decay fraction due to BSM physics from SM Higgs candidate at $m_H = 125$ GeV and for additional Higgs decaying invisibly.
- Assume SM production rate and 100% BR to invisible particles for additional Higgs.

$ZH \rightarrow II + inv$

• Set limits on $\sigma \times BR$ in range $115 < m_H < 300$ GeV.

- Limit on invisible BR of SM Higgs candidate at m_H = 125 GeV.
- Red lines indicate 68% and 95% CL.

 $BR(H \rightarrow inv) <$ 65% (84% expected) for $m_H = 125$ GeV at 95% CL

- Analysis yet to be updated to full 2012 statistics.
- Search includes di-lepton (τ_{lep}τ_{lep}), single lepton (τ_{lep}τ_{had}) and fully hadronic (τ_{had}τ_{had}) channels.

- Combined 2011 + 2012 data has 1.1σ excess above SM background only expectation.
- The observed upper limit on $\sigma \times BR$ at 95% CL on the $H \rightarrow \tau \tau$ decay is 1.9 × SM prediction, 1.2 expected.

Reminder of BSM Higgs analyses

- 2011 analyses on BSM Higgs searches using 4.7 fb⁻¹ at 7 TeV.
 MSSM:
 - $H \rightarrow \tau \tau$ and $H \rightarrow \mu \mu$ JHEP02 2013 095
- Charged Higgs:
 - $H^+ \rightarrow \tau \nu$ JHEP 2013 076
 - $H^+ \rightarrow c\bar{s}$ Eur.Phys.J C 73 (2013) 2465
- Oubly charged Higgs:
 - $H \to l^{\pm} l^{\pm}$ Eur.Phys.J. C72 (2012) 2244

Conclusions and Outlook

- Searches for SM Higgs in ATLAS in low-rate final states has been presented.
- $VH \rightarrow Vbb$ and $H \rightarrow \tau \tau$ starting to become sensitive to SM Higgs.
 - Still compatible with both background only and signal plus background expectations.
- $VH \rightarrow VWW^*$ channel gives additional sensitivity to $H \rightarrow WW^*$ analysis.
- $H \rightarrow Z + \gamma$, $t\bar{t}H$ and $H \rightarrow \mu\bar{\mu}$ not yet sensitive to SM Higgs signal.
- $ZH \rightarrow II + inv$ sets limit on possible BSM physics in the Higgs sector.
 - No excess seen in final E_T^{miss} distribution.
 - Direct(indirect) limit of $BR(H \rightarrow inv)$ at < 0.65(0.6) at 95%CL.
- $H \rightarrow \tau \tau$ and $ZH \rightarrow I\overline{I} + inv$ still to be updated with full 2012 dataset.

Leptonic $t\bar{t}H \rightarrow t\bar{t}\gamma\gamma$ candidate event

• backups...

$WH \rightarrow WWW^* \rightarrow l\nu l\nu l\nu$

- Exactly 3 isolated leptons, with $p_T > 15$ GeV and total charge ± 1
- One lepton must have $p_T > 25 \text{ GeV}$
- Split into Z-enriched (one SFOS lepton pair) and Z-depleted (no such pair)

Cut	Z-enriched	Z-depleted	
Jet multiplicity	$N_{jet} \leq 1$		
b-veto	$N_{b-tag} = 0$		
E ^{miss} T,Rel	$E_{T,Rel}^{miss}$ > 40 GeV	$E_{T,Rel}^{miss} > 25 \text{ GeV}$	
Dilepton mass cut	$ m_{II}-m_Z <$ 25 GeV and $m_{II}>$ 12 GeV	$m_{II}>12~{ m GeV}$	
Angular cut	$\Delta \phi_{l_0 l_1} < 2.0$		
overlap	Remove events selected by $H o WW^*$		

$ZH \rightarrow ZWW^* \rightarrow I\overline{I}I\nu I\nu$

Cut			
E ^{miss}	$E_T^{miss} > 30 \text{ GeV}$		
p ^I _T	highest p_T lepton: $p_T > 25$ GeV second highest p_T lepton: $p_T > 20$ GeV third highest p_T lepton: $p_T > 15$ GeV fourth highest p_T lepton: $p_T > 10$ GeV		
Jet multiplicity	$N_{jet} \leq 1$		
b-veto	$N_{b-tag} = 0$		
Mass cuts	$egin{array}{l} m_{l_2 l_3} - m_Z < 10 { m GeV} \ 10 < m_{l_0 l_1} < 65 { m GeV} \end{array}$		
Angular cut	$\Delta \phi_{01} < 2.5$		
Channel separation	2SFOS	1SFOS	
<i>p</i> _{T41}	$p_{T4I} > 30 \text{ GeV}$	-	
<i>m</i> ₄₁	$m_{4l} > 130 { m GeV}$	-	
overlap	Remove events selected by $H \rightarrow WW^*$		

$VH \rightarrow Vbb$ selection

Object	0-lepton	1-lepton	2-lepton		
Leptons	0 loose lept	$1 ext{ tight } + 0 ext{ loose lept}$	$1 {\sf med.} + 1$ loose lept		
	2 b - tagged jets				
Jets	$p_T^{jet_1} >$ 45 GeV				
	$p_T^{jet_2} > 20 \text{ GeV}$				
	2 b - tagged jets				
	≤ 1 extra jets				
	$E_{T_{\perp}}^{miss} > 120 { m GeV}$				
E_T^{miss}	$p_T^{miss} > 30 { m GeV}$	$F^{miss} > 25 \text{ GeV}$	$F^{miss} < 60 \text{ GeV}$		
	$\Delta \phi(E_T^{miss}, p_T^{miss}) < \pi/2$	$r_{T} > r_{0}$ dev			
	$\min[\Delta \phi(E_T^{miss}, jet)] > 1.5$				
	$\Delta \phi(E_T^{miss},bb)>2.8$				
Vector boson	-	$m_T^W < 120 { m GeV}$	$83 < m_{II} < 99~{ m GeV}$		