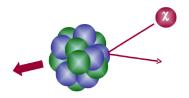
Status Update on the CRESST Dark Matter Search

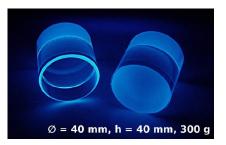
Florian Reindl (MPP Munich) on behalf of the CRESST Collaboration

16th Lomonosov Conference, Moscow

Outline

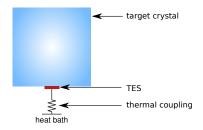

- Pindings of the Previous Run
- 3 The Current Run
- 4 Status and Perspectives

Direct Dark Matter Search with the CRESST Experiment

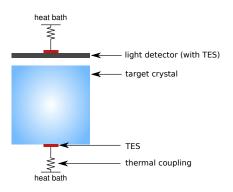

- Cryogenic Rare Event Search with Superconducting Thermometers
- Weakly Interacting Massive Particle

CRESST

• aims for a WIMP detection via their elastic scattering off nuclei.



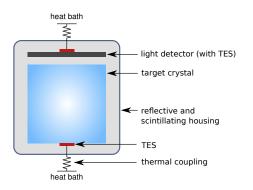
• uses scintillating CaWO₄ crystals as target material.


CRESST Detectors - Schematic

- particle interactions in the crystal mainly excite phonons
- temperature rise ($\mathcal{O}(\mu K)$) detected with W thermometers (TES)
- $\rightarrow\,$ measurement of deposited energy (few keV)

CRESST Detectors - Schematic

- particle interactions in the crystal mainly excite phonons
- temperature rise ($\mathcal{O}(\mu K)$) detected with W thermometers (TES)
- $\rightarrow\,$ measurement of deposited energy (few keV)
- \bullet small fraction of deposited energy \rightarrow scintillation light
- $\rightarrow\,$ add cryogenic light detector $\rightarrow\,$ detector module



simultaneous measurement of:

- energy E deposited in crystal
- scintillation light L
- $\rightarrow\,$ active background discrimination by light yield ($\frac{L}{E})$

CRESST Detectors - Schematic

- particle interactions in the crystal mainly excite phonons
- temperature rise ($\mathcal{O}(\mu K)$) detected with W thermometers (TES)
- $\rightarrow\,$ measurement of deposited energy (few keV)
 - \bullet small fraction of deposited energy \rightarrow scintillation light
- $\rightarrow\,$ add cryogenic light detector $\rightarrow\,$ detector module

simultaneous measurement of:

- energy E deposited in crystal
- scintillation light L
- $\rightarrow\,$ active background discrimination by light yield ($\frac{L}{E})$

reflective bronze holding clamps W thermometer

CaWO₄ target crystal (300g)

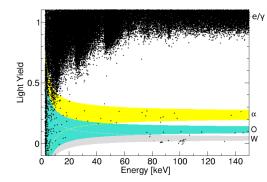
light / absorber

W thermometer

reflective and scintillating foil

light detector

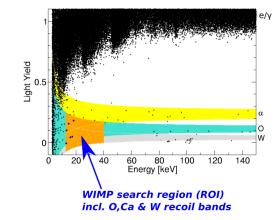
3


2

phonon detector

CRESST Detectors - Event-by-Event Discrimination

$$light yield = \frac{light signal}{phonon signal}$$


Different event types have a **characteristic** light yield.

CRESST Detectors - Event-by-Event Discrimination

$$\mathsf{light yield} = \frac{\mathsf{light signal}}{\mathsf{phonon signal}}$$

Different event types have a **characteristic** light yield.

excellent discrimination between:

- e⁻-recoils: dominant radioactive background
- nuclear recoils: potential signal events

The Previous CRESST Run 32

- extensive physics run between June 2009 and April 2011
- 8 CaWO₄ modules used for Dark Matter analysis
- total net exposure (after cuts): 730 kg days

• 67 events observed in WIMP search regions

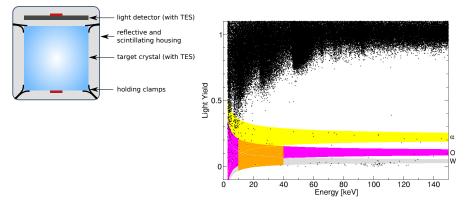
The Previous CRESST Run 32

- extensive physics run between June 2009 and April 2011
- 8 CaWO₄ modules used for Dark Matter analysis
- total net exposure (after cuts): 730 kg days

- 67 events observed in WIMP search regions
- data analyzed using maximum likelihood
- Results from 730 kg days of the CRESST-II Dark Matter Search Eur. Phys. J. C (2012) 72-1971

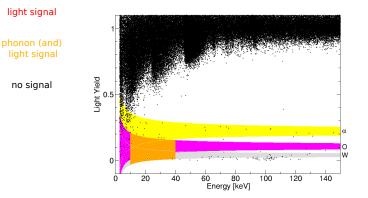
Result of the likelihood analysis

	M1	M2
e/γ -events	8.00 ± 0.05	8.00 ± 0.05
lpha-events	$11.5^{+2.6}_{-2.3}$	$11.2^{+2.5}_{-2.3}$
neutron events	$7.5^{+6.3}_{-5.5}$	$9.7^{+6.1}_{-5.1}$
Pb recoils	$15.0^{+5.2}_{-5.1}$	$18.7^{+4.9}_{-4.7}$
signal events	$29.4^{+8.6}_{-7.7}$	$24.2^{+8.1}_{-7.2}$
m_{χ} [GeV]	25.3	11.6
$\sigma_{\rm WN}$ [pb]	$1.6\cdot10^{-6}$	$3.7\cdot10^{-5}$
statistical		
significance	4.7 σ	4.2 <i>σ</i>

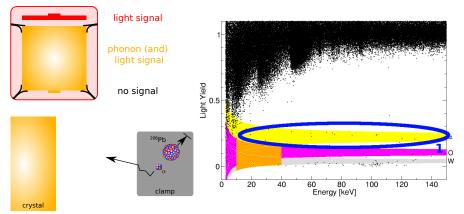

 background only hypothesis rejected with high statistical significance

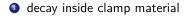
 $\rightarrow\,$ additional source of events needed

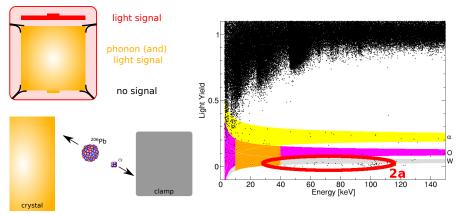
• WIMPs would be a source with suitable properties


for final clarification: reduced background level required

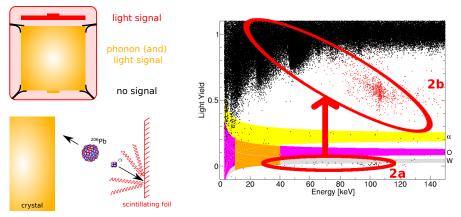
Bck. Induced by ²¹⁰Po \rightarrow ²⁰⁶Pb (103 keV) + α (5.3 MeV)



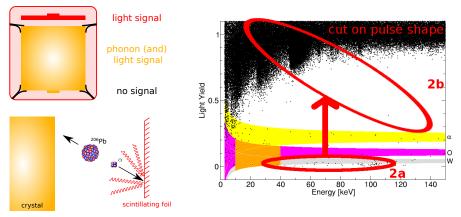

Bck. Induced by 210 Po \rightarrow 206 Pb (103 keV) + α (5.3 MeV)



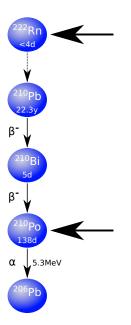
Bck. Induced by ²¹⁰Po \rightarrow ²⁰⁶Pb (103 keV) + α (5.3 MeV)



Bck. Induced by ²¹⁰Po \rightarrow ²⁰⁶Pb (103 keV) + α (5.3 MeV)

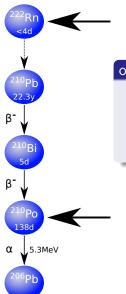

- decay inside clamp material
- e decay on or slightly below surface of clamp
 - (a) α hitting clamp \rightarrow no scintillation light

Bck. Induced by ²¹⁰Po \rightarrow ²⁰⁶Pb (103 keV) + α (5.3 MeV)


- decay inside clamp material
- e decay on or slightly below surface of clamp
 - (a) α hitting clamp \rightarrow **no** scintillation light
 - (b) α hitting foil \rightarrow additional scintillation light from foil (different pulse-shape)

Bck. Induced by ²¹⁰Po \rightarrow ²⁰⁶Pb (103 keV) + α (5.3 MeV)

- decay inside clamp material
- e decay on or slightly below surface of clamp
 - (a) α hitting clamp \rightarrow **no** scintillation light
 - (b) α hitting foil \rightarrow additional scintillation light from foil (different pulse-shape)


Origin of ²⁰⁶Pb Recoil Background

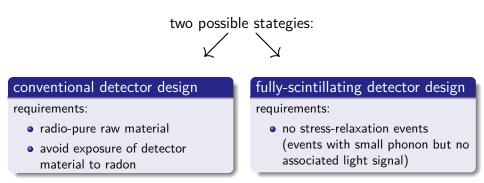
- $\bullet\,$ absorption of ^{222}Rn
- $\rightarrow~^{210}\mathrm{Po}$ has to build up first \rightarrow increasing rate

- direct deposition of 210 Po (in coating of clamps)
- $\rightarrow\,$ decreasing rate

Origin of ²⁰⁶Pb Recoil Background

- absorption of ²²²Rn
- $\rightarrow~^{210}\text{Po}$ has to build up first \rightarrow increasing rate

observation


- increasing rate at low energies (<<100keV)
- \bullet decreasing rate at full recoil energy (\sim 100keV)
- $\rightarrow\,$ both origins contribute
- $\rightarrow\,$ rate at low energies dominated by $^{222}\mathrm{Rn}$

- direct deposition of ²¹⁰Po (in coating of clamps)
- $\rightarrow\,$ decreasing rate

Goals for the Current Run

- $\bullet\,$ reduction of $\alpha\text{-induced}$ backgrounds:
 - eliminate low-energy α -background
 - significantly reduce ²⁰⁶Pb recoil background
- reduce external neutron background by an order of magnitude:
 - an additional inner PE-shielding was installed
- increase of exposure:
 - 18 detector modules were installed: roughly double target mass

Reduction of $^{\rm 210}{\rm Po} \rightarrow {}^{\rm 206}{\rm Pb} + \alpha$ Background

New CuSn₆ Clamps

old clamps

 \bullet low energy $\alpha\text{-background}$ due to contamination in bulk material

measured ^{210}Pb contamination: (6.9 $\pm0.9)\text{Bq/kg}$

 ²⁰⁶Pb recoil background due to ²¹⁰Po or ²¹⁰Pb deposited on silver coated surface of clamps

new clamps

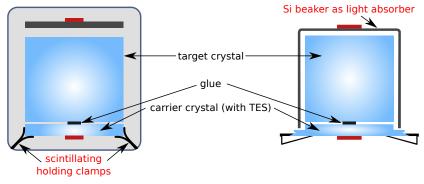
- ultra pure Sn (<28.2mBq/kg) + low background Cu
- careful control of all production steps
- Al sputtered coating to avoid Po contamination with electrically deposited Ag
- store in vacuum until assembly to avoid absorption of radon

Radon Prevention

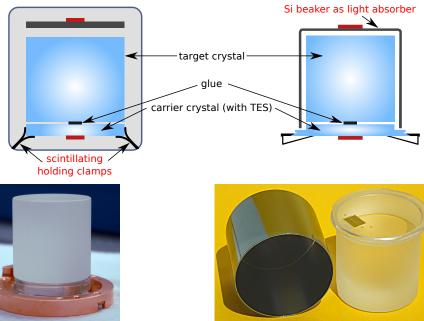
- Clean room supplied with radon-filtered air from the CUORE experiment was used to assemble the detectors.
- Same air supply was used to create radon-pure atmosphere to mount the detectors in the cryostat.

Radon Prevention new clean room in CRESST building at Gran Sasso

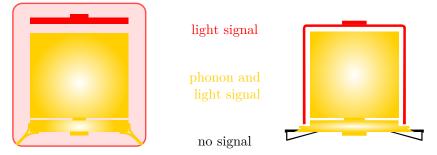
airtight box surrounding former clean room



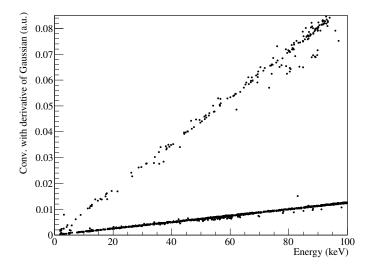
Same a detecta



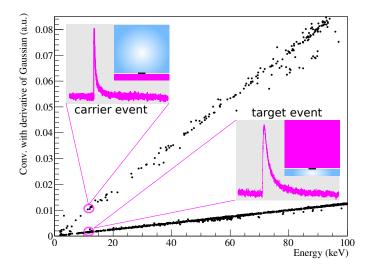
е


Fully-Scintillating Designs

Fully-Scintillating Designs

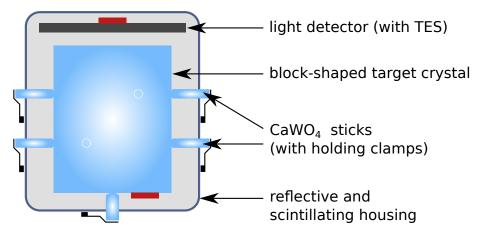


Fully-Scintillating Designs

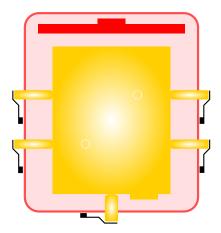


crucial: discrimination between events in carrier and target crystal

Discrimination of Events in Carrier Crystal



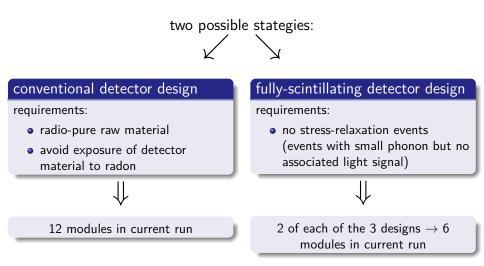
Discrimination of Events in Carrier Crystal



Discrimination proven down to energies of interest.

Fully-Scintillating Detector Design III

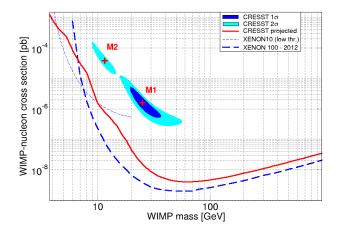

Fully-Scintillating Detector Design III

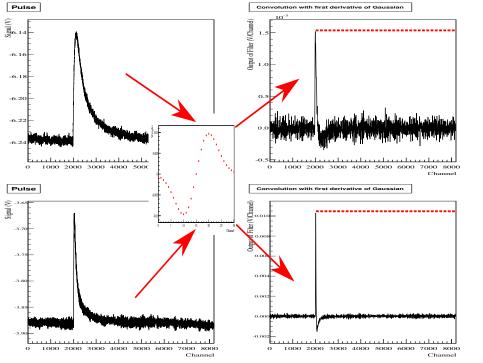

light signal

phonon and light signal

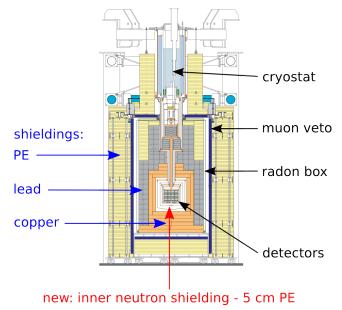
no signal

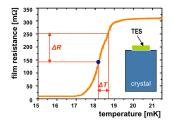
Reduction of ²¹⁰Po \rightarrow ²⁰⁶Pb + α Background


Status

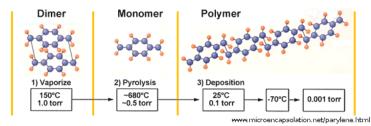

- cool-down in May 2013
- all 18 detector modules are operational
- $\bullet ~\gamma-{\rm calibration}$ finished
- $\rightarrow~$ Dark Matter data is taken since August 2013

Perspectives


- $\bullet \ >\! 2t$ days of net exposure after two years of data taking
- confirm or reject excess signal (low mass WIMP scenario) with high confidence
- in case excess is rejected: competitive limit for a wide WIMP-mass range


Backup

Experimental setup at Gran Sasso Underground Laboratory



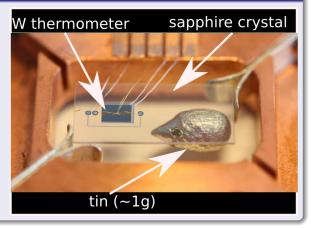
CRESST Detectors - Schematic

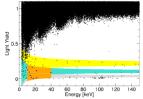
- particle interactions in the crystal excite phonons
- detectors are operated at mK temperatures
- temperature rise $(\mathcal{O}(\mu K))$ detected with Transition Edge Sensor (TES)
- $\rightarrow\,$ measurement of deposited energy (few keV)

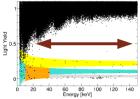
Parylene Coating of Reflective and Scintillating Foil

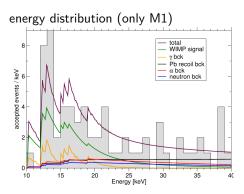
- Exposure of foil to radon-contaminated air cannot be controlled (commercial product).
- strategy: cover/seal foil with Parylene to reset the foils "Rn-history"
- Parylene scintillates (twice as well as the foil)
- clean raw material available

backup slide: 5

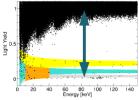


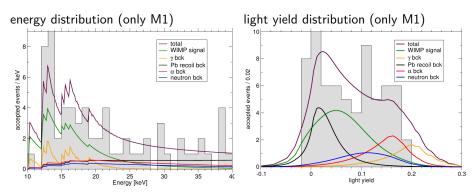

$^{\rm 210}{\rm Pb}$ Activity of Tin

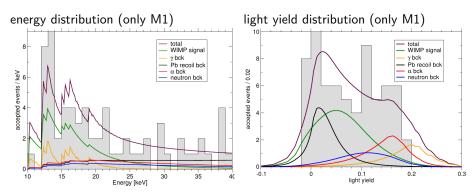

K. Schäffner, PhD Thesis, 2013

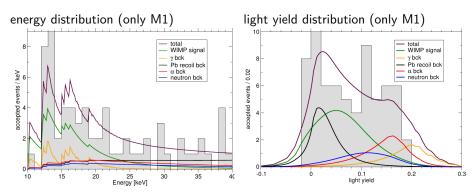

turn a piece of tin into a cryodetector

- tin is source and absorber
- count number of ²¹⁰Po-decays
- ightarrow limit: tin: < 28.2mBq/kg



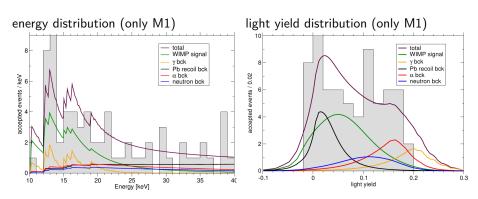



backup slide: 7


backup slide: 7

- shape of energy spectra of γ -leakage and possible WIMP signal seem compatible
- \rightarrow underestimation of γ -leakage?

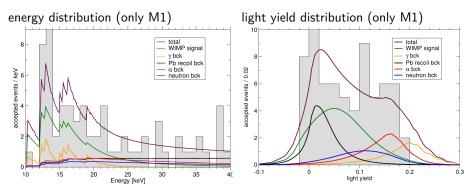
- shape of energy spectra of $\gamma\text{-leakage}$ and possible WIMP signal seem compatible
- \rightarrow underestimation of γ -leakage?


- γ-leakage appears at high light yields
- possible WIMP signal at low light yields
- $ightarrow \ \gamma\mbox{-leakage}$ ruled out as explanation for the excess

but

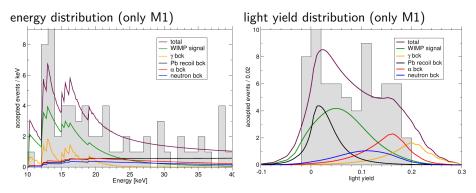
Spectral Distribution of Signal Events The other way round:

 Only the Pb recoil background has similar light yield as the possible WIMP signal

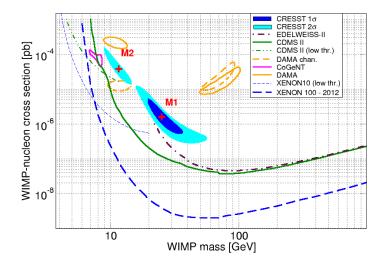


The other way round:

 energy spectrum of Pb recoils incompatible with possible WIMP signal



• Only the Pb recoil background has similar light yield as the possible WIMP signal



Conclusion:

- Simultaneous measurement of phonon and light is crucial to discriminate a possible WIMP signal from background.
- The excess can not be explained with the known backgrounds alone.

The Almost Current WIMP Paramater Space

