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Direct Dark Matter Search with the CRESST Experiment
Cryogenic Rare Event Search with Superconducting Thermometers
Weakly Interacting Massive Particle

CRESST
aims for a WIMP detection via their
elastic scattering off nuclei.

uses scintillating CaWO4 crystals as
target material.
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CRESST Detectors - Schematic
particle interactions in the crystal mainly excite phonons
temperature rise (O(µK )) detected with W thermometers (TES)

→ measurement of deposited energy (few keV)

small fraction of deposited energy → scintillation light
→ add cryogenic light detector → detector module

heat bath

target crystal 

TES

thermal coupling

simultaneous measurement of:
energy E deposited in crystal
scintillation light L

→ active background
discrimination by light yield ( L

E )
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CRESST Detectors - Event-by-Event Discrimination

light yield = light signal
phonon signal

Different event types have a
characteristic light yield.

excellent discrimination between:
e−-recoils: dominant radioactive background
nuclear recoils: potential signal events
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The Previous CRESST Run 32

extensive physics run between June 2009 and April 2011
8 CaWO4 modules used for Dark Matter analysis
total net exposure (after cuts): 730 kg days

67 events observed in WIMP search regions

data analyzed using maximum likelihood
Results from 730 kg days of the CRESST-II Dark
Matter Search Eur. Phys. J. C (2012) 72-1971

The European Physical Journal

EPJ C
RecognizedbyEuropeanPhysicalSociety

Particles and Fields

volume 72 � number 4 � april � 2012

The WIMP parameter space compatible with the presented CRESST results.
Additionally shown are: the exclusion limits from CDMS-II, XENON100, the low-threshold analysis

of XENON10, and EDELWEISS-II; the 90 % confidence regions favored by CoGeNT and DAMA/LIBRA;
the CRESST limit obtained in an earlier run in 2009 and the result of a reanalysis of the 2009 data.

From G. Angloher et al.: Results from 730 kg days of the CRESST-II Dark Matter search
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Result of the likelihood analysis

M1 M2
e/γ-events 8.00± 0.05 8.00± 0.05
α-events 11.5 +2.6

−2.3 11.2 +2.5
−2.3

neutron events 7.5 +6.3
−5.5 9.7 +6.1

−5.1
Pb recoils 15.0+5.2

−5.1 18.7 +4.9
−4.7

signal events 29.4 +8.6
−7.7 24.2 +8.1

−7.2

mχ [GeV] 25.3 11.6
σWN [pb] 1.6 · 10−6 3.7 · 10−5

statistical
significance 4.7 σ 4.2 σ

background only hypothesis
rejected with high statistical
significance

→ additional source of events
needed

WIMPs would be a source
with suitable properties

for final clarification: reduced background level required
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Bck. Induced by 210Po → 206Pb (103 keV) + α (5.3 MeV)

reflective and 
scintillating housing

holding clamps

light detector (with TES)

target crystal (with TES) 

1 decay inside clamp material
2 decay on or slightly below surface of clamp

(a) α hitting clamp → no scintillation light
(b) α hitting foil → additional scintillation light from foil (different pulse-shape)
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Origin of 206Pb Recoil Background

222Rn
<4d

210Pb
22.3y

210Bi
5d

210Po
138d

206Pb

β-

β-

α 5.3MeV

absorption of 222Rn
→ 210Po has to build up first → increasing rate

direct deposition of 210Po (in coating of clamps)
→ decreasing rate
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observation
increasing rate at low energies (<<100keV)
decreasing rate at full recoil energy (∼ 100keV)

→ both origins contribute
→ rate at low energies dominated by 222Rn



Goals for the Current Run

reduction of α-induced backgrounds:
I eliminate low-energy α-background
I significantly reduce 206Pb recoil background

reduce external neutron background by an order of magnitude:
I an additional inner PE-shielding was installed

increase of exposure:
I 18 detector modules were installed: roughly double target mass
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Reduction of 210Po → 206Pb + α Background

two possible stategies:
↙ ↘

conventional detector design
requirements:

radio-pure raw material
avoid exposure of detector
material to radon

fully-scintillating detector design
requirements:

no stress-relaxation events
(events with small phonon but no
associated light signal)
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New CuSn6 Clamps

old clamps
low energy α-background due to contamination in bulk
material
measured 210Pb contamination: (6.9±0.9)Bq/kg
206Pb recoil background due to 210Po or 210Pb deposited
on silver coated surface of clamps

new clamps
ultra pure Sn (<28.2mBq/kg) + low background Cu
careful control of all production steps
Al sputtered coating to avoid Po contamination with
electrically deposited Ag
store in vacuum until assembly to avoid absorption of
radon
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Radon Prevention

Clean room supplied with radon-filtered air from the CUORE experiment was
used to assemble the detectors.
Same air supply was used to create radon-pure atmosphere to mount the
detectors in the cryostat.
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new clean room in CRESST building at Gran Sasso
airtight box surrounding former clean room



Fully-Scintillating Designs
Si beaker as light absorber

target crystal

carrier crystal (with TES)

glue

scintillating 
holding clamps
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Fully-Scintillating Designs

light signal

phonon and

 light signal

no signal

crucial: discrimination between events in carrier and target crystal
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Discrimination of Events in Carrier Crystal

Energy (keV)
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Fully-Scintillating Detector Design III

light detector (with TES)

block-shaped target crystal 

reflective and 
scintillating housing

CaWO4  sticks 
(with holding clamps) 
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Fully-Scintillating Detector Design III

light signal

phonon and

 light signal

no signal
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Reduction of 210Po → 206Pb + α Background

two possible stategies:
↙ ↘

conventional detector design
requirements:

radio-pure raw material
avoid exposure of detector
material to radon

⇓
12 modules in current run

fully-scintillating detector design
requirements:

no stress-relaxation events
(events with small phonon but no
associated light signal)

⇓
2 of each of the 3 designs → 6

modules in current run
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Status

cool-down in May 2013
all 18 detector modules are operational
γ−calibration finished

→ Dark Matter data is taken since August 2013
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Perspectives
>2t days of net exposure after two years of data taking
confirm or reject excess signal (low mass WIMP scenario) with high
confidence
in case excess is rejected: competitive limit for a wide WIMP-mass range
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Experimental setup at Gran Sasso Underground Laboratory
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CRESST Detectors - Schematic

particle interactions in the crystal excite
phonons
detectors are operated at mK
temperatures
temperature rise (O(µK )) detected with
Transition Edge Sensor (TES)

→ measurement of deposited energy
(few keV)
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Parylene Coating of Reflective and Scintillating Foil

Exposure of foil to
radon-contaminated air cannot be
controlled (commercial product).

strategy: cover/seal foil with
Parylene to reset the foils
“Rn-history”
Parylene scintillates (twice as well
as the foil)
clean raw material available
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210Pb Activity of Tin

K. Schäffner, PhD Thesis, 2013

turn a piece of tin into a cryodetector

tin is source and
absorber
count number of
210Po-decays

→ limit:
tin: < 28.2mBq/kg
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Spectral Distribution of Signal Events

energy distribution (only M1) light yield distribution (only M1)
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Spectral Distribution of Signal Events

shape of energy spectra of
γ-leakage and possible WIMP
signal seem compatible

→ underestimation of γ-leakage?

γ-leakage appears at high light
yields
possible WIMP signal at low
light yields

→ γ-leakage ruled out as
explanation for the excess

energy distribution (only M1) light yield distribution (only M1)
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Spectral Distribution of Signal Events

energy spectrum of Pb recoils
incompatible with possible
WIMP signal

The other way round:

Only the Pb recoil background
has similar light yield as the
possible WIMP signal

energy distribution (only M1) light yield distribution (only M1)
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Spectral Distribution of Signal Events
Conclusion:

Simultaneous measurement of phonon and light is crucial to discriminate a
possible WIMP signal from background.
The excess can not be explained with the known backgrounds alone.

energy distribution (only M1) light yield distribution (only M1)
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The Almost Current WIMP Paramater Space
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