Two-Photon Exchange in Electron Proton Scattering -Status of OLYMPUS Experiment at DESY

Uwe Schneekloth, DESY for the OLYMPUS Collaboration

28.08.2013 Lomonosov Conference

Outline

- Introduction and Motivation
- Overview of the Experiment
- Schedule
- Data Taking Periods
- Performance
- Status of Analysis
- Conclusions

Elastic e N Scattering/Form Factors

Nucleon elastic form factors: electric G_E and magnetic G_M

- Fundamental observables describing distribution of charge and magnetism in proton and neutron
- Described by quark structure of proton
- Will be calculable in lattice QCD
- For ~ 50 years unpolarized cross section measurements have determined G^p_E and G^p_M using the Rosenbluth separation

$$\frac{d\sigma/d\Omega}{(d\sigma/d\Omega)_{Mott}} = \frac{\sigma}{\sigma_0} = A(Q^2) + B(Q^2)\tan^2\frac{\theta}{2} \qquad \sigma_{red} = \frac{d\sigma}{d\Omega}\frac{\varepsilon(1+\tau)}{\sigma_{Mott}} = \tau G_M^2 + \varepsilon G_E^2$$
$$= \frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1+\tau} + 2\tau G_M^2(Q^2)\tan^2\frac{\theta}{2} \qquad \tau = Q^2/4M_p^2 \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\theta/2\right]^{-1}$$

(ε transverse virtual photon polarization)

Form Factors Rosenbluth Method

Reduced cross section $\sigma_{red} = \epsilon G_{E}^{2} + \tau G_{M}^{2}$

Determine $|\mathbf{G}_{\mathbf{E}}|$, $|\mathbf{G}_{\mathbf{M}}|$, $|\mathbf{G}_{\mathbf{E}}/\mathbf{G}_{\mathbf{M}}|$

Motivation of OLYMPUS Experiment

Proton Form Factor Ratio Qattan (Jlab 2005) Friedrich+Walcher 2003 Christy (Jlab 2004) — — Kelly 2004 1.8 Andivahis (SLAC 1994) Walker (SLAC 1994) 1.6 Borkowski (Mainz 1975) Bartel (DESY 1973) 4 Berger (Bonn 1971) 1.4 - ○ Litt (SLAC 1970) Bartel (DESY 1967) _ M M Janssens (SLAC 1966) 1.2 പ് ⊐° Puckett (Jlab 2010) 0.8 Paolone (Jiab 2010) Ron (Jlab 2007) Crawford (Bates 2007) 0.6 Hu (Jiab 2006) Jones (Jlab 2006) MacLachian (Jiab 2006) Punjabi (Jlab 2000/2005) 0.4 Strauch (Jlab 2003) Gayou (Jiab 2002) Dieterich (Mainz 2001) 0.2 Pospischil (Mainz 2001) Gayou (Jiab 2001) Milbrath (Bates 1993) ٥ 10⁻¹ 10 $Q^2 / (GeV/c^2)$

- All Rosenbluth data in agreement
- Dramatic discrepancy between Rosenbluth and recoil polarization technique
 - Jefferson Lab data(>800 citations) polarized beams and target
- Interpreted as evidence for two photon exchange

U.Schneekloth

Two Photon Exchange

- Large theoretical (model) uncertainties
- Only experiment can definitively resolve the contributions beyond single photon exchange
- → Measure ratio of positron proton/ electron proton rates

$$\sigma(\text{electron-proton}) = (1\gamma)^2 \alpha^2 - (1\gamma)(2\gamma)\alpha^3 + ..$$

$$\sigma(\text{positron-proton}) = (1\gamma)^2 \alpha^2 + (1\gamma)(2\gamma) \alpha^3 + \dots$$

OLYMPUS Experiment at DORIS

Elastic $e^+(e^-)$ p scattering at

- 2 GeV beam energy
- Measure ratio of e⁺p/e⁻p rates with 1% precision
- DORIS 100mA e⁺(e⁻) beam
- Unpolarized internal hydrogen target, density 3 x 10¹⁵ at/cm²
- Daily change of beam (e⁺ or e⁻) to minimize systematic error
- Redundant measurement of luminosity
- Using former BLAST detector from MIT/Bates. Ideally suited.

Comparison data and theory

Schedule and Progress

- 2008/2009
 - Proposal in PRC, technical review, final approval of DESY directorate
- **2010**
 - Blast detector shipped from MIT to DESY, assembled in parking position
- **2011**
 - Winter shut-down: interaction region modified
 - Feb.: one week of 2 GeV operation, test experiment
 - Summer shut-down: detector moved into beam position
 - Service weeks: some beam time (detector commissioning)
- **2012**
 - February: first data taking period
 - Fall: second data taking period (22.10. 2.01.2013)
- 2013
 - One month cosmic run
 - Optical survey and extensive magnet field measurements
 - Concentrating on reconstruction and analysis

Target System

- Windowless internal gas target
- 60 cm long storage cell
- Elliptical cross section (27 mm x 9 mm)
- 100 μ m thick aluminum wall
- Cryo cooled (43.5±1 K)
- $\mathcal{O}(10^{15}) \, \mathrm{atoms/cm^2}$
- Hydrogen generator (electrolysis)

INFN Ferrara, MIT

OLYMPUS Vacuum System

- Hydrogen flow: 0.8 instead of 0.4 sccm (factor 2 higher than proposed)
- Pressure outside experiment: 2 10^{-10} mbar no flow, 7 10^{-8} mbar with H₂
- Beam life time: \approx 6 h no flow, \approx 20 or 45 min with H₂

Toroidal Magnet

- 8 air coils from BLAST
- Operating at reduced field
- Positive and negative positive polarity
- Maximum field 0.28 T

Wire Chambers

- Two chambers, trapezoidal shape
- Jet-style drift cells
- 5000 wires each
- Tracks with 18 hits
- 10° stereo angle

Time-of-Flight Counters

- Scintillation counters from BLAST
- Trigger
 - Top/bottom coincidence
 - Kinematic constraint
 - + 2nd level wire chamber
- Time-of-flight for particle ID

12° Luminosity Monitor

- Two independent tracking systems
- 3 GEM and 3 MWPC detectors each side
- Scintillator trigger counters with SiPM readout

Moller/Bhabha Luminosity Monitor

- Measure symmetric Moller/Bhabha events
- 3x3 PbF₂ crystals at 1.3° each side
- High rate, no dead time
- Independent luminosity determination

Detector before Roll-in July 2011

Detector in Beam Position

DORIS Operation – February Run

Very stable operation

OLYMPUS Detector

February Run

Run Summary

In principle, very good performance

- All four settings (beam, mag. field)
- Very stable operation
- Target density however reduced due to internal hydrogen leak

Improvements/modifications for fall run

- Gas inlet to target cell improved -> much higher H₂ density possible
- 2nd level track trigger to allow for higher trigger rate
- DORIS operation in top-up injection mode

DORIS Operation - Top-Up Injection

DORIS beam current vs. time

Beam current almost constant

Fall Run

OLYMPUS Luminosity

Run Summary

- Full hydrogen flow
- DORIS top-up mode
- Excellent performance
- Exceeded integrated luminosity:
 - Design 3.6fb⁻¹, achieved 4.45fb⁻¹
- Daily switch of beam species, good balance
- Only positive toroid polarity due to background
- Negative field for systematics checks

Lumi MWPC Performance

Phi angle correlation proton (WC) lepton (MWPC)

Lumi GEM Performance

Symmetric Moller/Bhabha Lumi Monitor

 Independent luminosity measurement at 1.3°

 In addition, can detect lepton from e p scattering

 Cross check energy calibration and rate estimate

 Rates to be corrected for beam positions and slopes

Beam Energy Reconstruction

Kinematics is overconstrained

February data, few days with old tracking version

Conclusions

- Study of two photon exchange important for understanding proton form factor ratio disagreement
 - Two other experiments in progress at Novosibirsk and JLab
- Former BLAST detector moved from MIT/Bates to DORIS accelerator at DESY and reassembled
- Very successful data taking in 2012
- Data reconstruction and analysis now in progress
- Large effort to understand systematic uncertainties to achieve ratio measurement at 1% level
- Preliminary results available next year

OLYMPUS Collaboration

OLYMPUS Collaboration:

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN, Bari, Italy
- INFN, Ferrara, Italy
- INFN, Rome, Italy
- Massachusetts Institute of Technology, Cambridge, USA
- Petersburg Nuclear Physics Institute, Russia
- Universität Bonn, Germany
- University of Glasgow, UK
- Universität Mainz, Germany
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia

50 physicists from 13 institutes