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Neutrino masses and loop calculations of electromagnetic
properties

Neutrino masses and lepton mixing are confirmed evidence of physics beyond the
Standard Model (SM), pioneering work by Pontecorvo; Gribov and Pontecorvo; Maki,
Nakagawa, Sakata on searches for these.

Neutrino oscillations discovered in solar and atmospheric ν experiments (Davis
Homestake exp., Kamiokande, IMB, SAGE, GALLEX, SuperKamiokande, SNO) further
studies via accelerator exps. (K2K, MINOS, MiniBooNE, OPERA, T2K, NOvA...) and
reactor exps. (KamLAND, Double Chooz, Daya Bay, RENO...); great progress in
gaining knowledge of ν masses and lepton mixing, with intensive current and future
exp. programs; many talks at this conf.

One extends the SM to include neutrino masses via addition of electroweak-singlet νi,R
fields, and hence Dirac and Majorana mass terms with interesting connection to
possible UV completions of SM.

Via seesaw mechanism, very small ν masses are plausibly related to very high mass
scales of new physics beyond SM.



Questions still to be answered include mass hierarchy, leptonic CP violation, possibility
of light, primarily electroweak-singlet (sterile) neutrinos (LSND,..)

In addition to ν oscillations, ν masses and lepton mixing lead to decays such as
µ → eγ, µ → eeē (in mν-extended SM, Bilenky, Petcov, and Pontecorvo, Marciano
and Sanda, Lee, Pakvasa, Shrock, Sugawara (1977)) However, leptonic GIM mechanism
produces extremely small branching ratio.

Even with zero electric charge, neutrinos have induced diagonal and off-diagonal
interactions with photons via one-loop diagrams.

These can mediate one-loop induced decays (e.g., Shrock (1974); 1977 papers...)

Dirac neutrino has a magnetic dipole moment (Fujikawa and Shrock, 1980; from
general one-loop formulas)

µν =
3eGFmν

8π2
√

2
= (3.2 × 10−19)

( mν

1 eV

)

µB

where µB = e/(2me). ν can also have CPV electric dipole moment. Majorana ν has
transition dipole moments (diagonal ones vanish).



Detailed studies of effects on neutrino scattering - Studenikin, Voloshin,...

Limits from reactor ν̄e exps (Savannah River, Krasnoyarsk, Rovno, MUNU, TEXONO,
GEMMA..): µν < (3 × 10−11)µB; also limits from LSND, SuperK, Borexino...
Astrophysical limit from cooling of red giants: µν < (3 × 10−12)µB.

Recent review of neutrino EM ν properties: Broggini, Giunti, Studenikin,
arXiv:1207.3980.

Searches for ν masses from nuclear beta decay exps (LANL, Tokyo, Zurich, Mainz,

Moscow-Troitsk) continue to reduce limits on [
∑

i |Uei|2m(νi)
2]1/2 to <∼ 2 eV

(future, KATRIN...). Stringent cosmological upper limit on
∑

im(νi).

Also useful to search for emission of heavier neutrinos via mixing (Shrock, Phys. Lett.
B96, 159 (1980); Kobzarev, Martemyanov, Okun, Shchepkin, Yad. Fiz. 32, 1590
(1980) [Sov. J. Nucl. Phys. 32, 823 (1980)] via kink in Kurie plot, correlated upper
limits on |Uei|2 from many searches; e.g., recent Troitsk limits in Belesev et al., JETP
Letts. 97, 67 (2013) [arXiv:1211.7193], Belesev et al., arXiv:1307.5687.

Neutrino masses, mixing, and electromagnetic properties of neutrinos continue to be
important areas of theoretical and experimental study, especially since they probe new
physics beyond the SM.



The rest of this talk includes material from the following papers, and some new results:

• Ryttov and Shrock, “Higher-Loop Corrections to the Infrared Evolution of a Gauge
Theory with Fermions”, Phys. Rev. D 83, 056011 (2011), arXiv:1011.4542

• Ryttov and Shrock, “Scheme Transformations in the Vicinity of an Infrared Fixed
Point”, Phys. Rev. D 86, 065032 (2012), arXiv:1206.2366; “An Analysis of Scheme
Transformations in the Vicinity of an Infrared Fixed Point”, Phys. Rev. D 86,
085005 (2012), arXiv:1206.6895

• Shrock, “Higher-Loop Structural Properties of the β Function in Asymptotically
Free Vectorial Gauge Theories”, Phys. Rev. D 87, 105005 (2013), arXiv:1301.3209

• Shrock, “Higher-Loop Calculations of the Ultraviolet to Infrared Evolution of a
Vectorial Gauge Theory in the Limit Nc → ∞, Nf → ∞ with Nf/Nc Fixed”,
Phys. Rev. D 87, 116007 (2013), arXiv:1302.5434

• Shrock, ‘Study of Scheme Transformations to Remove Higher-Loop Terms in the β
Function of a Gauge Theory”, Phys. Rev. D 88, 036003 (2013), arXiv:1305.6524.



RG Flow from UV to IR; Types of IR Behavior and Role
of IR Fixed Point

Consider an asymptotically free, vectorial gauge theory with gauge group G and Nf

massless fermions in representation R of G.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV). The
quark-parton picture is applicable here and leads to scaling behavior in deep inelastic
scattering, and quark-counting rules for dσ/dt and F (t) (Matveev, Muradyan, and
Takhelidze; Brodsky and Farrar).

The question of how an asymptotically free gauge theory flows from large µ in the UV
to small µ in the infrared (IR) depends on Nf and is of fundamental field-theoretic
interest.

In QCD with Nf = 2 or Nf = 3 light quarks, the β function has no perturbative IR
zero. We focus on a theory with larger Nf and hence different properties, where there
may be an exact or approximate IR fixed point (zero of β).



Denote running gauge coupling at scale µ as g = g(µ), and let
α(µ) = g(µ)2/(4π) and a(µ) = g(µ)2/(16π2) = α(µ)/(4π).

The dependence of α(µ) on µ is described by the renormalization group (Stueckelberg
and Peterman, Gell-Mann and Low, Bogoliubov, Shirkov, Callan, Symanzik, Wilson).
The β function is

βα ≡ dα

dt
= −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓα
ℓ ,

where t = lnµ, ℓ = loop order of the coeff. bℓ, and b̄ℓ = bℓ/(4π)ℓ.

Coefficients b1 and b2 in β are independent of regularization/renormalization scheme,
while bℓ for ℓ ≥ 3 are scheme-dependent.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0.

As the scale µ decreases from large values, α(µ) increases. Denote αcr as minimum
value for formation of bilinear fermion condensates and resultant spontaneous chiral
symmetry breaking (SχSB).



Two generic possibilities for β and resultant UV to IR flow:

• β has no IR zero, so as µ decreases, α(µ) increases, eventually beyond the
perturbatively calculable region. This is the case for QCD.

• β has a IR zero, αIR, so as µ decreases, α → αIR. In this class of theories, there
are two further generic possibilities: αIR < αcr or αIR > αcr.

If αIR < αcr, the zero of β at αIR is an exact IR fixed point (IRFP) of the renorm.
group (RG); as µ → 0 and α → αIR, β → β(αIR) = 0, and the theory becomes
exactly scale-invariant with nontrivial anomalous dimensions.

If β has no IR zero, or an IR zero at αIR > αcr, then as µ decreases through a scale
Λ, α(µ) exceeds αcr and SχSB occurs, so fermions gain dynamical masses ∼ Λ.

If SχSB occurs, then in low-energy effective field theory applicable for µ < Λ, one
integrates these fermions out, and β fn. becomes that of a pure gauge theory, with no
IR zero. Hence, if β has a zero at αIR > αcr, this is only an approx. IRFP of RG.



If αIR is only slightly greater than αcr, then, as α(µ) approaches αIR, since
β = dα/dt → 0, α(µ) varies very slowly as a function of the scale µ, i.e., there is
approximately scale-invariant (= dilatation-invariant) behavior.

SχSB at Λ also breaks the approx. dilatation symmetry, might lead to a resultant
approx. NGB, the dilaton. This is not massless, since β(αcr) is nonzero.

Denote the n-loop β fn. as βnℓ and the IR zero of βnℓ as αIR,nℓ.

At the n = 2 loop level,

αIR,2ℓ = −4πb1

b2

which is physical for b2 < 0. One-loop coefficient b1 is (Gross and Wilczek, Politzer)

b1 =
1

3
(11CA − 4NfTf)

where CA ≡ C2(G) is quadratic Casimir invariant, Tf ≡ T (R) is trace invariant.
Focus here on G = SU(Nc).



Asymp. freedom requires Nf < Nf,b1z, where

Nf,b1z =
11CA

4Tf

e.g., for R = fundamental rep., Nf < (11/2)Nc.

Two-loop coeff. b2 is (with Cf ≡ C2(R)) (Caswell, Jones)

b2 =
1

3

[

34C2
A − 4(5CA + 3Cf)Nf Tf

]

For small Nf , b2 > 0; b2 decreases as fn. of Nf and vanishes with sign reversal at
Nf = Nf,b2z, where

Nf,b2z =
34C2

A

4Tf(5CA + 3Cf)

For arbitrary G and R, Nf,b2z < Nf,b1z, so there is always an interval in Nf for
which β has an IR zero, namely

I : Nf,b2z < Nf < Nf,b1z



• for SU(2), I: 5.55 < Nf < 11

• for SU(3), I: 8.05 < Nf < 16.5

• As Nc → ∞, I: 2.62Nc < Nf < 5.5Nc.

(expressions evaluated for Nf ∈ R, but it is understood that physical values of Nf are
nonnegative integers.)

As Nf decreases from the upper to lower end of interval I, αIR increases. Denote

Nf = Nf,cr at αIR = αcr

Value of Nf,cr is of fundamental importance, since it separates the (zero-temp.)
chirally symmetric and broken IR phases.

Intensive current lattice studies of SU(Nc) gauge theories with Nf copies of fermions
in various representations R; progress toward determining Nf,cr for various Nc and R.



Higher-Loop Corrections to UV → IR Evolution of Gauge
Theories

Because of this strong-coupling physics, one should calculate the IR zero in β, αIR,
and resultant value of γ evaluated at αIR to higher-loop order (Ryttov and Shrock,
PRD 83, 056011 (2011), arXiv:1011.4542 and Pica and Sannino, PRD 83, 035013
(2011), arXiv:1011.5917; related work by Gardi, Grunberg, Karliner).

Although coeffs. in β at ℓ ≥ 3 loop order are scheme-dependent, results give a
measure of accuracy of the 2-loop calc. of the IR zero of β, and similarly with γ
evaluated at this IR zero.

We make use of calculation of β and γ up to 4-loops in MS scheme by Vermaseren,
Larin, and van Ritbergen.

The value of higher-loop calculations has been amply shown in comparison of QCD
predictions with experimental data, e.g., in MS scheme. Many contributions by
authors originally and/or currently at INR, MSU, JINR: Chetyrkin, Gorishny, Kataev,
Larin, Surguladze, Tkachov, Tarasov, Vladimirov, Zharkov...



3-loop coefficient in β function (in MS scheme) (Tarasov, Vladimirov, Zharkov; Larin
and Vermaseren)

b3 =
2857

54
C3
A + TfNf

[

2C2
f − 205

9
CACf − 1415

27
C2
A

]

+(TfNf)
2

[

44

9
Cf +

158

27
CA

]

b3 < 0 for Nf ∈ I. Since β3ℓ = −[α2/(2π)](b1 + b2a+ b3a
2), β3ℓ = 0 away

from α = 0 at two values:

α =
2π

b3

(

− b2 ±
√

b2
2 − 4b1b3

)

Since b2 < 0 and b3 < 0, can rewrite as

α =
2π

|b3|
(

− |b2| ∓
√

b2
2 + 4b1|b3|

)

Soln. with − sqrt is negative, hence unphysical; soln. with + sqrt is αIR,3ℓ.



We showed that with this b3 < 0, the value of the IR zero decreases when calculated
at the 3-loop level, i.e.,

αIR,3ℓ < αIR,2ℓ

Proof:

αIR,2ℓ − αIR,3ℓ =
4πb1

|b2|
− 2π

|b3|
(

− |b2| +
√

b2
2 + 4b1|b3|

)

=
2π

|b2b3|

[

2b1|b3| + b2
2 − |b2|

√

b2
2 + 4b1|b3|

]

The expression in square brackets is positive if and only if

(2b1|b3| + b2
2)

2 − b2
2(b

2
2 + 4b1|b3|) > 0

This difference is equal to the positive-definite quantity 4b2
1b

2
3, which proves the

inequality.



In RS, Phys. Rev. D 87, 105005 (2013), arXiv:1301.3209 we have generalized this.

If a scheme had b3 > 0 in I, then, since b2 → 0 at lower end of I, b2
2 − 4b1b3 < 0

in sqrt, so this scheme would not have a physical αIR,3ℓ in this region.

Since the existence of the IR zero in β at 2-loop level is scheme-independent, one may
require that a scheme should maintain this property to higher-loop order, and hence
that b3 < 0 for Nf ∈ I.

So the inequality αIR,3ℓ < αIR,2ℓ holds in all such schemes, not just in MS.

The 4-loop β function is β = −[α2/(2π)](b1 + b2a+ b3a
2 + b4a

3), so β4ℓ has
three zeros away from α = 0; smallest (real positive) one as αIR,4ℓ.

We give an analysis of the zeros of β4ℓ in a general scheme in Phys. Rev. D 87,
105005 (2013). With MS, from 3- to 4-loop level, slight increase: αIR,4ℓ >∼ αIR,3ℓ;
small change, so overall, αIR,4ℓ < αIR,2ℓ.

Our result of smaller fractional change in value of IR zero of β at higher-loop order
agrees with expectation that calc. to higher loop order should give more stable result.



Numerical values of αIR,nℓ at the n = 2, 3, 4 loop level for SU(2), SU(3) and
fermions in fund. rep.

Nc Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ
2 6 11.42 1.645 2.395
2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398

(Perturbative calc. not applicable if αIR,nℓ too large.) We have performed the
corresponding higher-loop calculations for SU(Nc) gauge theories with Nf fermions in
the adjoint, symmetric and antisymmetric rank-2 tensor representations.



We prove a general result on the shift of an IR zero of β when calculated at next higher
order: assume fermion content is such that b2 < 0, so theory has a 2-loop IR zero.

Consider a scheme in which the bℓ with ℓ = 3, ..., n+ 1 have values that preserve the
existence of the scheme-independent 2-loop IR zero of β at higher-loop level
(motivated physically).

Use fact that theory is asymptotically free, so β < 0 for 0 < α < αIR, and hence
dβnℓ/dα > 0 for α ≃ αIR,nℓ.

Expand βnℓ in Taylor series around α = αIR,nℓ:

βnℓ = β′
IR,nℓ (α− αIR,nℓ) + O

(

(α− αIR,nℓ)
2
)

Now calculate β to the next-higher-loop order, i.e., β(n+1)ℓ, and solve for αIR,(n+1)ℓ.
To determine whether αIR,(n+1)ℓ is larger or smaller than αIR,nℓ, consider

β(n+1)ℓ − βnℓ = −2b̄n+1α
n+2



In a scheme where bn+1 > 0, this difference, evaluated at α = αIR,nℓ, is negative,
so, given that dβnℓ/dα|αIR,nℓ > 0, to compensate for this, the zero shifts to the
right, whereas if bn+1 < 0, the difference is positive, so the zero shifts to the left.

If bn+1 > 0 , then αIR,(n+1)ℓ > αIR,nℓ

If bn+1 < 0 , then αIR,(n+1)ℓ < αIR,nℓ

This general result is evident in our MS calculations.

b3 < 0, =⇒ αIR,3ℓ < αIR,2ℓ

b4 > 0, =⇒ αIR,4ℓ > αIR,3ℓ



It is of interest to calculate the anomalous dimension γm ≡ γ for the fermion bilinear,
with series expansion

γ =
∞
∑

ℓ=1

cℓa
ℓ =

∞
∑

ℓ=1

c̄ℓα
ℓ

where c̄ℓ = cℓ/(4π)ℓ is the ℓ-loop coefficient. The one-loop coeff. c1 = 6Cf is
scheme-independent, the cℓ with ℓ ≥ 2 are scheme-dependent and have been
calculated up to 4-loop level in MS scheme, as noted above.

Denote γ calculated to n-loop (nℓ) level as γnℓ and, evaluated at the n-loop value of
the IR zero of β, as

γIR,nℓ ≡ γnℓ(α = αIR,nℓ)

In the IR chirally symmetric phase, an all-order calculation of γ evaluated at an
all-order calculation of αIR would be an exact property of the theory.

In the χ bk. phase, just as the IR zero of β is only an approx. IRFP, so also, the γ is
only approx., describing the running of ψ̄ψ and the dynamically generated running
fermion mass near the zero of β having large-momentum behavior
Σ(k) ∼ Λ(Λ/k)2−γ. In both phases, γ is bounded above as γ < 2.



Illustrative numerical values of γIR,nℓ for SU(2) and SU(3) at the n = 2, 3, 4 loop
level and fermions in the fundamental representation:

Nc Nf γIR,2ℓ γIR,3ℓ γIR,4ℓ
2 7 (2.67) 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259

Plots of γ as fn. of Nf for SU(2) and SU(3):



Figure 1: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(2) with Nf fermions in fund. rep. (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



Figure 2: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(3) with Nf fermions in fund. rep: (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



A necessary condition for a perturbative calculation to be reliable is that higher-order
contributions do not modify the result too much. We find that the 3-loop and 4-loop
results are closer to each other for a larger range of Nf than the 2-loop and 3-loop
results.

We have also done higher-loop calcs. for a supersymmetric gauge theory in Ryttov and
Shrock, Phys. Rev. D 85, 076009 (2012) (arXiv:1202.1297) - not discussed here.

So our higher-loop calcs. of αIR and γ allow us to probe the theory reliably down to
smaller values of Nf and thus stronger couplings, closer to Nf,cr. Of course,
perturbative calculations are not applicable when α is too large.

We have also performed these higher-loop calculations for larger fermion reps. R. In
general, we find that, for a given Nc, R, and Nf , the values of γIR,nℓ calculated to
3-loop and 4-loop order are smaller than the 2-loop value.



Example of a Comparison with Lattice Measurements

For SU(3) with Nf = 12, we calculate

γIR,2ℓ = 0.77, γIR,3ℓ = 0.31, γIR,4ℓ = 0.25

some lattice results (N.B.: error estimates do not include all systematic uncertainties)

γ = 0.414 ± 0.016 (Appelquist et al., PRD 84, 054501 (2011), IR χ-sym.)

γ ∼ 0.35 (DeGrand, PRD 84, 116901 (2011), IR χ-sym.)

0.2 <∼ γ <∼ 0.4 (Kuti et al. (method-dep.) arXiv:1205.1878, arXiv:1211.3548,
1211.6164, PTP, finding SχSB)

γ = 0.4 − 0.5 (Y. Aoki et al., (LatKMI) PRD 86, 054506 (2012))

γ = 0.27(3) (Hasenfratz et al., arXiv:1207.7162; γ = 0.32(3), arXiv:1301.1355, IR
χ-sym.)

So here the 2-loop value is larger than, and the 3-loop and 4-loop values closer to,
these lattice measurements. Thus, our higher-loop calculations of γ yield better
agreement with these lattice measurements than two-loop calculations.



Further Higher-Loop Structural Properties of β

In addition to αIR,nℓ, further interesting structural properties of the n-loop beta fn.
βnℓ include

• the derivative β′
IR,nℓ ≡ dβnℓ

dα
evaluated at αIR,nℓ.

• the magnitude and location of the minimum in βnℓ

In quasi-scale-invariant case where αIR >∼ αcr, dilaton mass relevant in dynamical
EWSB models depends on how small β is for α near to αIR and hence, at n-loop
order, on β′

IR,nℓ, via the series expansion of βnℓ around αIR,nℓ,

βnℓ(α) = β′
IR,nℓ (α− αIR,nℓ) + O

(

(α− αIR,nℓ)
2
)

We have calculated these structural properties analytically and numerically (RS, PRD
87, 105005 (2013), arXiv:1301.3209.



Derivative of 2-loop β function at αIR,2ℓ:

β′
IR,2ℓ = −2b2

1

b2

=
2b2

1

|b2|
=

2(11CA − 4TfNf)
2

3[4(5CA + 3Cf)TfNf − 34C2
A]

At 3-loop level:

β′
IR,3ℓ =

1

|b3|2
[

− 4|b2|(b2
2 + b1|b3|) + (b2

2 + 2b1|b3|)
√

b2
2 + 4b1|b3|

]

We prove a general inequality: for a given gauge group G, fermion rep. R, and
Nf ∈ I (in a scheme with b3 < 0, which thus preserves the existence of the 2-loop IR
zero in β at 3-loop level),

β′
IR,3ℓ < β′

IR,2ℓ

We carry out a similar analysis of the derivative of the 4-loop β function evaluated at
αIR,4ℓ, denoted β′

IR,4ℓ, and find a similar decrease from 3-loop to 4-loop order. Some
numerical values:



Nc Nf β′
IR,2ℓ β′

IR,3ℓ β′
IR,4ℓ

2 7 1.20 0.728 0.677
2 8 0.400 0.318 0.300
2 9 0.126 0.115 0.110
2 10 0.0245 0.0239 0.0235

3 10 1.52 0.872 0.853
3 11 0.720 0.517 0.498
3 12 0.360 0.2955 0.282
3 13 0.174 0.156 0.149
3 14 0.0737 0.0699 0.0678
3 15 0.0227 0.0223 0.0220
3 16 0.00221 0.00220 0.00220

Illustrative figures for SU(2) with Nf = 8 fermions and SU(3) with Nf = 12
fermions:
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Figure 3: βnℓ for SU(2), Nf = 8, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.
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Figure 4: βnℓ for SU(3), Nf = 12, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.



Interesting property: for R = fund. rep., αIR,nℓNc, γIR,nℓ, and other structural
properties of βnℓ are similar in theories with different values of Nc and Nf if they have
equal or similar values of r = Nf/Nc.

This motivates a study of the UV to IR evolution of an SU(Nc) gauge theory with Nf

fermions in the fundamental rep. in the ’t Hooft-Veneziano limit Nc → ∞,
Nf → ∞ with

r ≡ Nf

Nc

fixed, α(µ)Nc ≡ ξ(µ) indep. of Nc

Denote this as the LNN (large Nc, large Nf) limit. Asymptotic freedom requires
r < 11/2. βξ,2ℓ has IR zero for 34/13 < r < 11/2, i.e., 2.62 < r < 5.5.

We have carried out this study in RS, PRD 87, 116007 (2013), arXiv:1302.5434. Our
results provide a unified quantitative understanding of the similarities in UV to IR
evolution of SU(Nc) theories with different Nc and Nf but similar r.

With ξ = αNc and x = aNc = ξ/(4π), define a rescaled beta function that is
finite in the LNN limit:

βξ ≡ dξ

dt
= lim

LNN
βαNc



Denote the IR zero of n-loop βξ as ξIR,nℓ. By same type of analysis as before, we find

ξIR,3ℓ ≤ ξIR,2ℓ

ξIR,4ℓ < ξIR,3ℓ if 2.615 < r < 3.119

ξIR,4ℓ > ξIR,3ℓ if 3.119 < r < 5.500

Numerical values given in next table. The magnitude of the fractional difference

|ξIR,4ℓ − ξIR,3ℓ|
ξIR,4ℓ

is reasonably small.



r ξIR,2ℓ ξIR,3ℓ ξIR,4ℓ
2.8 28.274 3.573 3.323
3.0 12.566 2.938 2.868
3.2 7.606 2.458 2.494
3.4 5.174 2.076 2.168
3.6 3.731 1.759 1.873
3.8 2.774 1.489 1.601
4.0 2.095 1.252 1.349
4.2 1.586 1.041 1.115
4.4 1.192 0.8490 0.9003
4.6 0.8767 0.6725 0.7038
4.8 0.6195 0.5083 0.5244
5.0 0.4054 0.3538 0.3603
5.2 0.2244 0.2074 0.2089
5.4 0.06943 0.06769 0.06775



We also study the anomalous dimension γm ≡ γ of ψ̄ψ in this LNN limit.

Denote the n-loop γ evaluated at n-loop IR zero of βξ as γ
IR,nℓ

.

e.g., at 2-loop level,

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

with similar results for higher-loop order.



Numerical values:

r γ
IR,2ℓ

γ
IR,3ℓ

γ
IR,4ℓ

3.6 1.853 0.5201 0.3083
3.8 1.178 0.4197 0.3061
4.0 0.7847 0.3414 0.2877
4.2 0.5366 0.2771 0.2664
4.4 0.3707 0.2221 0.2173
4.6 0.2543 0.1735 0.1745
4.8 0.1696 0.1294 0.1313
5.0 0.1057 0.08886 0.08999
5.2 0.05620 0.05123 0.05156
5.4 0.01682 0.01637 0.01638

General inequalities as before: γ
IR,3ℓ

< γ
IR,2ℓ

, γ
IR,4ℓ

< γ
IR,2ℓ



We have studied the approach to the LNN limit and find that this is quite rapid, with
leading correction terms suppressed by 1/N 2

c . For example,

αIR,2ℓNc =
4π(11 − 2r)

13r − 34
+

12πr(11 − 2r)

(34 − 13r)2N 2
c

+ O
( 1

N 4
c

)

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

+
(11 − 2r)(18836 − 5331r + 648r2 − 140r3)

(13r − 34)3N 2
c

+ O
( 1

N 4
c

)

This explains the approximate universality that is exhibited in calculations of these
quantities for different (finite) values of Nc and Nf with similar or identical values of r.



Study of Scheme Dependence in Calculation of IR Fixed
Point

Since coeffs. bn in βnℓ, and hence also αIR,nℓ, are scheme-dependent for n ≥ 3, it is
important to assess the effects of this scheme dependence.

Extensive studies of scheme dependence in QCD, relevant for high-energy quark-parton
processes where αs(µ) is small, governed by the UV fixed point (Brodsky, Lepage,
MacKenzie; Celmaster and Gonsalves; Stevenson; Garkusha, Gorishny, Kataev, Larin,
Surguladze; Gracey; Brodsky, Mojaza, Wu...)

Here we focus not on theories such as QCD near the UV fixed point but on scheme
dependence in calculation of an approx. or exact infrared fixed point of an
asymptotically free theory: results in Ryttov and Shrock, PRD 86, 065032 (2012),
arXiv:1206.2366; PRD 86, 085005 (2012), arXiv:1206.6895; and Shrock, PRD 88,
036003 (2013), arXiv:1305.6524.



A scheme transformation (ST) is a map between α and α′ or equivalently, a and a′,
where a = α/(4π) of the form

a = a′f(a′)

with f(0) = 1 to keep UV properties unchanged. Write

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s ,

where k̄s = ks/(4π)s, and smax may be finite or infinite.

The Jacobian J = da/da′ = dα/dα′ = 1 +
∑smax

s=1 (s+ 1)ks(a
′)s, satisfying

J = 1 at a = a′ = 0.

After scheme transformation is applied, beta function in new scheme is

βα′ ≡ dα′

dt
=
dα′

dα

dα

dt
= J−1 βα .

βα′ = −2α′
∞
∑

ℓ=1

b′
ℓ(a

′)ℓ = −2α′
∞
∑

ℓ=1

b̄′
ℓ(α

′)ℓ ,

where b̄′
ℓ = b′

ℓ/(4π)ℓ.



We calculate the b′
ℓ as functions of the bℓ and ks. At 1-loop and 2-loop, this yields the

well-known results
b′

1 = b1 , b′
2 = b2

We find
b′

3 = b3 + k1b2 + (k2
1 − k2)b1 ,

b′
4 = b4 + 2k1b3 + k2

1b2 + (−2k3
1 + 4k1k2 − 2k3)b1

b′
5 = b5 + 3k1b4 + (2k2

1 + k2)b3 + (−k3
1 + 3k1k2 − k3)b2

+(4k4
1 − 11k2

1k2 + 6k1k3 + 4k2
2 − 3k4)b1

etc. at higher-loop order.



A physically acceptable ST must satisfy several conditions:

C1: the ST must map a (real positive) α to a real positive α′, since a map taking
α > 0 to α′ = 0 would be singular, and a map taking α > 0 to a negative or
complex α′ would violate the unitarity of the theory.

C2: the ST should not map a moderate value of α, where perturbation theory is
applicable, to a value of α′ so large that pert. theory is inapplicable.

C3: J should not vanish, or else there would be a pole in βα′

C4: Existence of an IR zero of β is a scheme-independent property, so the ST should
satisfy the condition that βα has an IR zero if and only if βα′ has an IR zero.

These conditions can always be satisfied by an ST near the UVFP at α = α′ = 0, but
they are not automatic, and can be quite restrictive at an IRFP.



For example, consider the ST (dependent on a parameter r)

a =
tanh(ra′)

r
with inverse

a′ =
1

2r
ln

(

1 + ra

1 − ra

)

This is acceptable for small a, but if a > 1/r, i.e., α > 4π/r, it maps a real α to a
complex α′ and hence is physically unacceptable. For, say, r = 8π, this pathology can
occur at the moderate value α = 0.5.

We have constructed several STs that are acceptable at an IRFP and have studied
scheme dependence of the IR zero of βnℓ using these. For example,

a =
sinh(ra′)

r
with inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2

]

We find reasonably small scheme-dependence for moderate αIR.



Since the bn with n ≥ 3 are scheme-dependent, one might expect that it would be
possible, at least in the vicinity of the UVFP at α = α′ = 0, to construct a scheme
transformations that would set b′

n = 0 for some range of n ≥ 3, and, indeed a ST
that would do this for all n ≥ 3, so that βα′ would consist only of the 1-loop and
2-loop terms (’t Hooft scheme).

We have constructed an explicit scheme transformation that does this in the vicinity of
the UVFP at α = α′ = 0.

To construct this ST, first, solve eq. b′
3 = 0 for k2, obtaining

k2 =
b3

b1

+
b2

b1

k1 + k2
1

Next, substitute this into expression for b′
4 and solve eq. b′

4 = 0, obtaining

k3 =
b4

2b1

+
3b3

b1

k1 +
5b2

2b1

k2
1 + k3

1

Continue this procedure iteratively.

Our studies give a quantitative assessment of the scheme dependence of an IR zero of
β at loop order n ≥ 3.



Conclusions

• Neutrino masses and lepton mixing are of great significance; neutrino
electromagnetic properties can also be important.

• Understanding the UV to IR evolution of an asymptotically free gauge theory and
the nature of the IR behavior is of fundamental interest and can be relevant to
exploring BSM physics.

• Our higher-loop calculations give information on this UV to IR flow and on
determination of αIR,nℓ and γIR,nℓ, provide comparison with lattice measurements.

• Results on the limit Nc → ∞, Nf → ∞ with Nf/Nc fixed yield understanding
of similarities in UV to IR flows in theories with different Nc and Nf but similar r.

• We have investigated effects of scheme-dependence of IR zero in higher-loop
calculations and have pointed out that scheme transformations are subject to
conditions that are easily satisfied at a UVFP but are a significant constraint at an
IRFP.


