

News from the Double Chooz experiment

V. Sinev, INR RAS On behalf of DC Collaboration

16-th Lomonosov Conference MSU 22-28 August, 2013

Plan

- Neutrino oscillations
- Method of two identical detectors to minimize systematics
- Status of Double Chooz experiment
- Experimental site
- Detectors
- Backgrounds
- $\theta_{\rm 13}$ measurement results
- Conclusion and outlook

Neutrino oscillations

$$< v_{\alpha} \models \sum_{i} U_{i\alpha} \mid v_{i} > \alpha - e, \mu, \tau; i - 1, 2, 3$$

 $\begin{array}{cccc} \text{Atmospheric } \nu & \text{Reactor } \nu & \text{Solar } \nu \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \cdot \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{+i\delta} & 0 & c_{13} \end{bmatrix} \cdot \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$ Super-K, MINOS, T2K etc. Double Chooz. Daya Bay, Homestake, KamLAND, SNO RENO $P_{\nu_l \to \nu_l} \approx 1 - \sin^2 2\theta_{lx} \sin^2 \left(\frac{1.267 \cdot \Delta m^2 L}{E_{\nu_l}} \right)$ 16-th Lomonosov Conference MSU,

Moscow, August 2013

Chooz experiment (1995-1998)

$R = 1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (syst.)

Disappearance experiment P=8.4GW. L=1.05 km. M=5 t @300 m.w.e.

@∆m²₁₃ = 2*10⁻³ eV² sin²(2θ₁₃) < 0.2 (90% C.L)

New concept of the reactor experiment: how to improve the results of CHOOZ

L.A.Mikaelyan and V.VSinev arXiv:hep-ex/9908047v1 11-Aug-1999 Talk given at the International Conference on Non-Accelerator New Physics, NANP-99, Dubna, (28/06-03/07)-1999.

The White Paper «A new reactor neutrino experiment to measure θ_{13} » hep-ex/0402041 (2002)

Double CHOOZ Proposal hep-ex/0606025 v2 20-June-2006

Probability of surviving

Kr2Det - probing U_{e3} with reactor v_e

Collaboration Double Chooz

Spokesperson: H. de Kerret (IN2P3) Project Manager: Ch. Veyssière (CEA-Saclay)

Web Site: www.doublechooz.org/

Detector design

Outer Veto : plastic scintillator strips

 ν -Target: 10.3 m³ liquid scintillator doped with 1g/l of Gd in an acrylic vessel (8 mm)

Gamma-catcher: 22.6 m³ liquid scintillator in an acrylic vessel (12 mm)

Buffer: 110 m³ of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs (10 inches)

Inner Veto: 90 m³ liquid scintillator in a steel vessel (10 mm) equipped with 78 PMTs (8 inches) + steel shielding

View inside the detector with opened lid

Far detector laboratory with outer veto carpet on the top

Neutrino signal

Inverse beta-decay on free proton $v_a + p \rightarrow n + e^+$ X(A, Z) $N_{v}^{\exp}(E,t) = \frac{\varepsilon N_{p}}{4\pi I^{2}} \times \frac{P_{th}(t)}{\langle E \rangle} \times \langle \sigma_{f} \rangle$

Delayed coincidence

Prompt: photons from e^+ ionization and two annihilation gammas capture (2 * 511 keV) $E_{vis} = E_n - 0.78 \text{ MeV} + O(E_e/m_n)$

Delayed: photons from ncapture on dedicated nuclei (Gd) $\Delta t \sim 30 \ \mu s < E > \sim 8 \ MeV$

Number of detected antineutrinos. Cross section anchored on Bugey measurement.

Selection of neutrino candidates

- Prompt signal Evis = [0.7, 12.2] MeV
- Delayed signal Evis = [6.0, 12.0] MeV
- Delayed Coincidence $\Delta t = [2, 100] \mu sec$
- Time to nearest muon before $\Delta t_{\mu} > 1$ msec
- PMT light noise rejection cuts
 - PMT hits approx. homogeneous
 - PMT hits approx. coincident in time
- Multiplicity conditions:
 - No extra events around signal
- Background rejection:
 - No coincident signal in OV
 - Require Δt_{μ} > 500 msec if E_µ > 600 MeV

Measured neutrino Rate

Backgrounds are not subtracted. Blue line – predicted rate in accordance with reactors power.

Detector Calibration

⁶⁰Co in center

Energy Calibration

PMT and electronics gain non-linearity calibration

- LED light injection system
- Correct for position dependence
 - Spallation neutron H captures
- Correct for time stability
- Spallation neutron Gd captures Energy scale
 - Radioactive sources deployed into v-target and γ-catcher

Neutron Detection Efficiency

Energy & time window, Gd fraction, spill in/out effects

• 252 Cf source deployed into v-target and γ -catcher

Backgrounds

Only 2 cores gave the possibility to explore in details detector backgrounds during periods when both reactors were OFF

- Accidentals
- Cosmogenic isotopes ⁹Li/⁸He
- Fast neutrons and stopped muons

Accidentals

Accidental coincidences of two uncorrelated single events.

0.261 ± 0.002 ev/day

It was measured through multiple off-time windows

Cosmogenic isotopes ⁹Li/⁸He

Correlated background due to spallation reactions on 12 C caused by muon passing through the target. As a result isotopes of 9 Li/ 8 He produced which are β -n emitters.

1.25 ± 0.54 ev/day

It was measured by tagging to muons through going the target. They looked for IBD pair after muon.

Moscow, August 2013

Fast neutrons and stopped muons

Correlated background fast neutrons produced by muon passing out of the target or muons stopped in the target and after giving Michel electrons.

 $0.67 \pm 0.20 \text{ ev/day}$

It was measured by tagging to muons bypassing the target.

2 Analyses

n-Gd capture	n-H capture
 High efficiency of neutron detecting Well known volume and proton number in the target Neutron capture time ~30 μs Delayed signal energy ~8 MeV Low statistics (8249) 	 Low efficiency of neutron detecting 3 times larger volume but not so well known Neutron capture time ~180 μs Delayed signal energy ~2 MeV High statistics (36284)

Rate uncertainties

	n-Gd	n-H
Statistics	1.06%	1.1%
Flux	1.7%	1.7%
Efficiency	1.0%	1.6%
Background	1.6%	1.7%
Total	2.7%	3.1%

Measured neutrino spectra

DC-II(Gd): $\sin^2 2\theta_{13} = 0.109 \pm 0.039 [0.030^{\text{stat}} \pm 0.025^{\text{syst}}]$ **DC-II(H):** $\sin^2 2\theta_{13} = 0.097 \pm 0.048 [0.034^{\text{stat}} \pm 0.034^{\text{syst}}]$

Off-Off data

There were two periods "off-off" 0.84 d (Oct., 2011) and 6 d (June, 2012)

Totally 8 events $(1.2 \pm 0.4 \text{ ev./d})$,expected $2.2 \pm 0.6 \text{ ev./d}$

Spectra measured at off-off

Phys. Rev. D 87, 011102 (2013)

Reactor rate modulation

Gd-Analysis 8249 neutrino events. 227.93 days. $sin^2 2\theta_{13} = 0.10 \pm 0.04$

H-Analysis 36284 neutrino events. 240.06 days $\sin^2 2\theta_{13} = 0.13 \pm 0.07$

Same results as Rate + Shape

Progress in measurement $\theta_{\rm 13}$ by DC

Near detector laboratory start data taking at 2014

Distance 415 m, overburden 115 m.w.e.

Conclusion and outlook

- Till 2014 Double Chooz woks in phase I (only far detector)
- First observation of effect from θ_{13}
- $\sin^2 2\theta_{13} = 0.109 \pm 0.030 \text{ (stat.)} \pm 0.025 \text{ (syst.)}$
- $sin^2 2\theta_{13} = 0.097 \pm 0.034$ (stat.) ± 0.034 (syst.)
- Careful measurement of backgrounds due to the periods when both reactors were OFF
- From 2014 phase II (far + near detectors).
 Decrease of uncertainty at least factor 3.