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" A
Introduction & Motivation

m Field Theory is a fundamental tool of
Physics

m Provides a Theoretical Framework that is
a starting point across the sub-disciplines
of Physics including Nuclear and Particle
Physics, Phase Transitions, Statistical
Mechanics, Condensed Matter,
Cosmology and Astrophysics.
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Introduction & Motivation

m For most cosmological applications Field Theory in
curved space time is sufficient to explain the
observations. It has a track record of success.

m [hus for example for understanding and quantitatively
addressing issues related to Inflation and Reheating
after Inflation, Field Theory in curved space time is
sufficient (we don’t need to work with quantum gravity).

m The phenomenon of Dark Energy involves energy scales
much lower than those involved in Inflation so we
certainly expect Field Theory in curved space time to be

sufficient to address this issue.



Introduction & Motivation

m Indeed since the energy scales involved in
the physics of Dark Energy is so low one
has to worry about protecting the energy
scales involved. This can be done by
using Pseudo Nambu Goldstone Bosons
and using symmetry to protect the energy
scales involved in Dark Energy.

m Approach we will take is to move from the
familiar terrain into the unfamiliar terrain.
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Plan

m Will quickly describe the fundamentals of Field Theory —
In a form useful across sub-disciplines of Physics for
numerous applications.

m Will describe selected applications:
Reheating after Inflationary Phase Transition

The Cosmological Constant Problem in the light of
modern observations and the Dark Energy Solution

Gravitational Collapse of Dark Energy field
configurations
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Field Theory

Consider field @ in space — time metric:
ds* = dt* — a*(t)dz*
Action and Lagrange density:
S = / d'zL

1(Ve(#,1)” N
T V(@(x,t))J

Hamiltonian

H(t) = /d3:1: {2;_3[(15) - a(;) (VD)2 + a3(t)V(<I>)}



Time Evolution

In general,

~

L 0p .
th—r = [H(t), /)

where, p is the density matrix

Study the time evolution of the mean field:
60) = o [ dr@E ) = o [ ETr a2

where, Q@ is the comoving volume enclosing system

The time evolution of the mean field is then given by:

do(t)
dt
dm(t)

dt

1 | N
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Evolution Equations

Do a split:  ®(x,t) = q;(t) + ¢T(3%t)

Mean Field Fluctuations

For: V(®) = %m2¢2(f,t)+%®4(f,t)

The complete set of evolution equations is given by:
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[d_2 + w%(t)] US) =0 ;  wi(t) =k + M(t)
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W)= [

dt?

M) = V" (6) + 202 (0)) = m® + S6°(1) + S0
The evolution equations can be solved numerically and
will display plots of solutions later for the applications.



Application: Reheating after Inflation

m Inflation solves long standing problems of cosmology
(isotropy of observed Microwave Background Radiation)

m Universe: Cold, Dark Place after Inflation (Rapid
Expansion=—= Energy Densities —0)

m Need to recover Hot Big Bang (in order for example for
Nucleosynthesis to give us the heavier elements
observed in Nature).

m Achieved by dissipational dynamics of fields and particle
production

Reference:
D. Boyanovsky , D. Cormier , H.J. de Vega, R. Holman , A. Singh, M. Srednicki .
Phys.Rev.D56 (1997).




"
Reheating after Inflation

The formalism and evolution equations were described earlier.

For this application also want to keep track of the expectation
value of the particle number operator:

V- | @k Tr |a}(0)ax(0)p(t)]
~ ) @nr Trp(0)
This can be expressed in terms of the mode functions given earlier

Ni(t) = (21F s = 1) Ne(0) + (|1F 20 = 1)
U (1)
wR(0) | U (1)
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Solutions to the Evolution Equations
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From:
D. Boyanovsky , D. Cormier , H.J. de Vega, R. Holman , A. Singh, M. Srednicki .
Phys.Rev.D56 (1997).




Results for Reheating after Inflation

m Instabilities due to parametric resonance and
spinodal instabilities === very short
timescale for particle production ( much shorter
than thermalization timescales ) =—>
preheating.

m [wo stage picture of reheating after inflation:

1. Rapid Particle Production: Preheating

2. Thermalization: Slower process happens on a much longer
timescale.



Cosmological Constant Application

PHYSICAL REVIEW I YOLUME 32, NUMBER 12 15 DECEMBER 1995

Small nonvanishing cosmological constant from vacuum energy:
Physically and observationally desirable

Anupam Singh
Physics Department, Caornegie Mellon Universify, Pittsburgh, Pennsylvania 15213
i Received 2 December 1994)

Increasing improvements in the independent determinations of the Hubble constant and the age
of the universe now seem to indicate that we need a small nonvanishing cosmological constant to
make the two independent observations consistent with each other. The cosmological constant can
be physically interpreted as due to the vacuum energy of quantized felds. To make the cosmological
observations consistent with each other we would need a vacuum energy density g, ~ {1072 ¢V)*
today (in the cosmological units A = ¢ = & = 1} It is argued in this paper that such a vacuum
energy density is natural in the context of phase transitions linked to massive nentrinos. In fact, the
neutrino masses required to provide the right vacuum energy scale to remove the age versus Hubble
constant discrepancy are consistent with those required Lo solve the solar nentrine problem by the
MSW mechanism.

PACS number(s): 88.80.Cq, 12.15.Ff, 14.60.Pq, 0880 Hw
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The Cosmological Constant

m Cosmological Constant was first introduced by
Albert Einstein in his General Theory of
Relativity

m The exact magnitude of the Cosmological
Constant and its Physical Role have been
unclear until recently

m Observations in the mid 1990s shed new light on
the magnitude of the Cosmological Constant
and its Physical Role.
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The Observations

m Hubble Constant: Measures how fast the
Universe is expanding. Was measured in
mid 1990s to be: #, = 80 + 17km s~ ' Mpc™!

m Age of the Universe: Universe has to be at
least as old as its contents. In particular,
universe has to be at least as old as the
globular clusters. Age has now been
measuredtobe: t,= 14 £2 Gyr




"
The Implications

m Einstein’s Equations can be solved for
Cosmological Space Time to obtain the following
relationship:

2 14 QL/2
t, = _H—IQ—I/QI vac
9 0 vac 1 (1 . Qvac>1/2

Where 1, is the age of the Universe, H, is
the Hubble Constant and (2,,. is the Vacuum
Energy Density of the Universe.



"
The Vacuum Energy Density

m From the relationship between the Age of the
Universe, the Hubble Constant and the Vacuum
Energy Density together with the observed values of
the Age and Hubble Constant it can be inferred that

Q’var,c ™~ 07

m In Units of eV the Vacuum Energy Density is then
givenby p, ~ (1073eV)*



Physical Origin of Vacuum Energy

m The Energy Density of quantum fields
propagating in curved space time can be
re-interpreted as the cosmological
constant (vacuum energy).

m [0 compute its value one has to calculate
the Effective Potential from first principles.
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Magnitude of the Effective Potential

m [he detailed expression for the Effective
Potential incorporating non-vanishing neutrino
masses has been calculated by us from first
principles.

m For the current cosmological evolution only the
magnitude of the Effective Potential matters.

m This magnitude of the Effective Potential
calculated by us is exactly right to explain the
modern observations.



Current Status of Dark Energy

Dark Energy and the Accelerating Universe
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Abstract
The discovery ten years ago that the expansion of the Universe is accelerating put in place the
last major building block of the prese i del, in which the Universe is composed

of 4% baryons, 20% dark matter, and 76% dark energv.| At the same time, it posed one of the
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Dark Energy: An invention driven by
necessity (observations

PHYSICAL REVIEW D VOLUME 52, NUMBER 12 15 DECEMBER 1995

Small nonvanishing cosmological constant from vacuum energy:
Physically and observationally desirable

Anupam Singh
Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
(Received 2 December 1994)

Increasing improvements in the independent determinations of the Hubble constant and the age
of the universe now seem to indicate that we need a small nonvanishing cosmological constant to
make the two independent observations consistent with each other. The cosmological constant can
be physically interpreted as due to the vacuum energy of quantized fields. To make the cosmological
observations consistent with each other we would need a vacuum energy density p, ~ (1072 eV)*
today (in the cosmological units i = ¢ = k = 1). It is argued in this paper that such a vacuum
energy density is natural in the context of phase transitions linked to massive neutrinos. In fact, the
neutrino masses required to provide the right vacuum energy scale to remove the age versus Hubble
constant discrepancy are consistent with those required to solve the solar neutrino problem by the
MSW mechanism.
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Introduction and Motivation

m Dark Energy is the dominant component of the
Energy Density of the Universe.

m Most Natural Candidate for Dark Energy is the
Energy Density due to fields in Curved Space-time

m Specific Particle Physics candidates exist which can
be characterized as Pseudo Nambu Goldstone
Bosons with a well-defined potential [Singh, Holman
& Singh, Gupta, Hill, Holman & Kolb]



Introduction & Motivation

m Need to understand the dynamics of these Dark

Energy fields
m For cosmology:

need to understand the gravitational

dynamics of the Dark Energy fields
m Now we will describe the formalism for

understanding t
Dark Energy fie
Dark Energy fie

ne gravitational dynamics of the
ds for any general potential for the

ds.
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Introduction & Motivation

m [he set of evolution equations describing
the time evolution of the Dark Energy
fields coupled with gravity is a set of
coupled Partial Differential Equations.

m [hese equations can be solved
numerically and this has been done by us.

m Our results demonstrate the gravitational
collapse of Dark Energy field
configurations.



Evolution Equations

m [nterested in studying gravitational
dynamics of Dark Energy field
configurations.

m [n addition to the time evolution of the
Field we need to study the time evolution
of space-time which is described by the
metric:

.*f.&.'j — “i’fﬂ = {T“ f).'f.r'g — Ir{f t) [{H’}E -+ Hillj H!'ff_il'fi|



"
Evolution Equations

metric, is of course a generalization of the usual FRW metric used to study cosmological
space-times. Note that the functions U(r,t) and V(r,t) are functions of both space and
time and can capture both homogeneous cosmological expansion as well as inhomoge-
neous gravitational collapse under appropriate circumstances.

We of course also want to study the time evolution of the field for
which we need the Lagrangian for the field.

Lagrangian L given by
1
L =50'09,® —V(P) (2)

where V is the potential for the field ® and is for now a general function. Later, when
we consider the physically motivated PNGB models this potential will take on a specific

functional form.
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Evolution Equations

~ T FITT 7T 12
1if_2[—1+1 —pU—IU+8ﬂGV(E—£—(®))] (3)

2U  4U? 4U 2 2 3U

RN,

" v+y LYV U V(@) 5)
Bl V 2Uu| UV 2U 0

where a dot represents a partial derivative w.r.t. ¢ and a prime represents a partial

derivative w.r.t. r. Further,

1., (®')?
and

1., (9')? ;
P =30 -V(®) + (7)



Evolution Equations

The above equations are true for any general potential V(®). One can of course write
down the corresponding equations for PNGB fields. The simplest potential one can write

down for the physically motivated PNGB fields [6] can be written in the form:

V(®) = m! [I{ — cos{?)] (8)

*The above potential can thus be substituted in the general equations
given on the previous slide to get the full system of evolution equations.

*These are coupled Partial Differential Equations which can be solved
numerically to obtain the results of interest to us.
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Solutions to the Evolution
Equations

m Key issue we want to understand is the
timescale for the gravitational collapse tor
dark energy fields. If this timescale is
larger than the age of the Universe then
this gravitational collapse has no
significance today. On the other hand, if
gravitational collapse occurs on timescales
less than the age of the Universe then the

gravitational collapse of Dark Enerqy fields
must be considered.
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Solution to the Evolution Equations

Guided by the evolution equations given in the previous section we define dimen-

sionless quantitites such that the field is measured in units of f and time and space are

f

7 Field at the initial time
FI! - 7 T T T

measured in units of

0 5 ' 10 15 20
Distance x

Figure 1: Initial Field configuration



Solution to the Evolution Equations

Solution at the final time
8

6+

D(x)

0 5 10 15 20
Distance x

Figure 2: Final Field configuration

Gravitational Collapse of Field Configuration has occurred.



Solution to the Evolution Equation

D(x,t)

Time t 0 o Distance x

Figure 3: Field configuration in space-time

From this it can be clearly seen that field configuration has collapsed and the timescale
for collapse can be seen by studying the figure 3. Since the units of time are given by
/_ we note that gravitational collapse happens on timescales of ~ ”L This timescale is

— 3 T e
i'"z 1=

much shorter than the age of the Universe.
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Time Evolution of the Energy Density
and the Masses of Collapsed Objects

The Energy Density is given by:

(9')
2U

l., e
= .}‘F“ + V(D) +

This can be plotted as a function of space and time and can also
be integrated to obtain the Masses of Collapsed Objects.

Let us first show the time evolution of the energy density to
demonstrate the formation of collapsed objects.
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Time Evolution of the Energy Density
and the Masses of Collapsed Objects

Energy Density at the initial time Energy Density at the final time
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Energy Density moves radially inwards as collapse occurs.



" I
Time Evolution of the Energy Density
and the Masses of Collapsed Objects

Finally, by integrating the Energy Density:

L :o y ()
p=g¥ V@) + 5

We can obtain the Masses of Collapsed Obijects.

This has been done by us for a range of initial radii R and we get
the result that the masses of the collapsed objects is given by

AT R210m2 f
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Summary & Conclusions

m Dark Energy is the dominant component of
the Energy Density of the Universe.

m Most natural candidate for Dark Energy
motivated by Particle Physics is the
Energy Density due to fields in curved
space-time.

m We described the formalism for studying

the gravitational dynamics of Dark Energy
field configurations.
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Summary & Conclusions

m After writing down the complete set of evolution
equations describing the time evolution for the fields
and the metric, we numerically solved these
equations.

m \We demonstrated the gravitational collapse of Dark
Energy fields.

m QOur results show that the timescale for the
gravitational collapse of Dark Energy fields is
smaller than the age of the Universe and so the
gravitational collapse of Dark Enerqy field
conflguratlons must be considered in a
complete picture of our Universe.
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Summary & Conclusions

m We also looked at the time evolution of the Energy
Density of the Field Configurations

m We demonstrated that the Energy Density moves
radially inwards as collapse occurs

m Finally, we integrated the energy density and looked
at the masses of collapsed objects formed.

m The result we obtained was that the masses of
collapsed objects are given by

AT R*10m?f
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Applications to Phase Transitions

PHYSICAL REVIEW D VYOLUME 48, NUMBER 2 15 JULY 1993

Phase transitions out of equilibrium: Domain formation and growth

Daniel Boyanovsky and Da-5hin Lee
Department of Physics end Astronemy, University of Piltsburgh, Pittsburgh, Pennsylvania 15260

Anupam Singh
Department af Physics, Carnegie Mellon University, Pitésburgh, Pennaylvania 15213
{Heceived 18 December 1992}

We study the dynamles of phase transitions out of equilibrivm in weakly coupled scalar field
theories. We consider the case in which there is a rapid supercooling from an initial symmetric
phase in thermal equilibrium at temperature T; > T, to a final state at low temperature Ty = (. In
particular we study the formation and growth of correlated domains out of equilibrium. It is shown
that the dynamics of the process of domain formation and growth {spinodal decomposition} cannot
be studied in perturbation theory, and a nonperturbative self-consistent Hartree approximation is
used to study the long time evolution. We find in weakly coupled theories that the size of domains
grows at long times as £p(t) = 4/ 4£(0). The size of the domains and the amplitude of the fluctuations
grow up to a maximum time t, which in weakly coupled theories is estimated to be

aay [ ()

ts == —£(0) In (m ﬁ_m

with £(0) the zero-temperature correlation length, For very weakly coupled theories, their final size
is several times the zero-temperature correlation length. For strongly coupled theories the final size
of the domains is comparable to the zero-temperature correlation length and the transition proceeds
faster,

PACS number(s): 11.10.Ef, 05.70.Fh, 64.90.+b



Evolution Equations

We are now interested in the growth of the correlation function:

DUP (5. 7) = L [(@(7, (0, 1) — (&(7,0)0(7,0))]

Gm% R

1
3D (3, 7) = / d
(2, 7) 9 ), W

Which can be expressed in terms of the mode functions whose time
evolution is given below:

2

p*  sin(pz) oy
g — U, (1) -1
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Growth of Correlations
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FIG. 5. (a) Scaled correlation functions for 7 = 6, as function of z, D'®")(z, ) (solid line), and D™ (x, ) (dashed line).
A=10"", 7 = 2. (b) Scaled correlation functions for v = 8, as function of z, D™*)(z, 7) (solid line), and D®(z, ) (dashed
line). A =10"'2, £i = 2. (c) Scaled correlation functions for 7 = 10, as function of z, D) (z,7) (solid line), and D'® (z, )
(dashed line). A = 10712, % = 2. (d) Scaled correlation functions for T = 12, as function of z, D'#F)(z, ) (solid line), and

D (z,7) (dashed line). A =10""?, & =2.



Results

m Computed growth of correlations and domain sizes.

m For weakly coupled theories, we got the result that the
size of domains grows as:

Ep(t) = /t£(0)
and the size of domains and the fluctuations grow up to
a maximum time of: (o
ts = ~£(0)In [(%)1 ( - )]
7 -1

m Of course, we obtained results also for strongly coupled
theories and more importantly the formalism we laid
down has subsequently been used by us and numerous
authors to study phase transitions in a number of
different contexts from the early universe and Nuclear
Matter to Condensed Matter Systems.
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Extensions of our work on Phase Transitions
ranging from Early Universe to Nuclear

Matter and Condensed Matter Systems

DYNAMICS OF SYMMETRY BREAKING OUT OF
EQUILIBRIUM: FROM CONDENSED MATTER TO QCD
AND THE EARLY UNIVERSE'

D. Boyanovsky®? and H.J. de Vega*®
(a)Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 USA
{(b) LPTHE! Université Pierre et Marie Curie (Paris V1) et Denis Diderot (Paris VII), Tour 16,
ler. étage, 4, Place Jussieu 75252 Paris, Cedex 05, France
(February 1. 2008)

Abstract

The dynamiecs of symmetry breaking during out of equilibrium phase tran-
sitions is a topic of great importance in many disciplines, from condensed
matter to particle physics and early Universe cosmology with definite experi-
mental impact. In these notes we provide a summary of the relevant aspects
of the dynamics of symmetry breaking in many different fields with empha-
sis on the experimental realizations. In condensed matter we address the
dynamics of phase ordering, the emergence of condensates, coarsening and
dynamical scaling. ITn QCD the possibility of disoriented chiral condensates
of pions emerging during a strongly out of equilibrium phase transition is dis-
cussed. We elaborate on the dynamics of phase ordering in phase transitions
in the Early Universe, in particular the emergence of condensates and scaling
in FRW cosmologies. We mention some experimental efforts in different fields
that study this wide ranging phenomena and offer a quantitative theoretical
description both at the phenomenological level in condensed matter, intro-
ducing the sealing hypothesis as well as at a microscopic level in quantum
field theories. The emergence of semiclassical condensates and a dynamical
length scale is shown in detail, in quantum field theory this length scale is
constrained by causality.



Extensions of our work to Bose Einstein
Condensation

[cond-mat.soft] 19 Oct 2001

Microscopic Evolution of a Weakly Interacting Homogeneous Bose Gas

D. G. Barci'? * | E. S. Fraga® 1, Rudnei O. Ramos?* *

1

Department of Physics, University of Illinois at Urbana- Champaign,

1110W. Green St., Urbana, IL 61801-3080, USA
2 Universidade do Estado do Rio de Janeiro, Instituto de Fisica,
Departamento de Fisica Tedrica,
20550-013 Rio de Janeiro, RJ, Brazil
% Department of Physics, Brookhaven National Laboratory,
Upton, NY 11973-5000, USA
4 Department of Physics and Astronomy, Dartmouth College,
Hanover, New Hampshire 03755-3528, USA

We provide a detailed description of the nonequilibrium
time evolution of an interacting homogeneous Bose-Einstein
condensate, We use a nonperturbative in-medium quantum
field theory approach as a microscopic model for the Bose gas.
The real-time dynamics of the condensate is encoded in a set
of self-consistent equations which corresponds to an infinite
sum of ladder Feynman diagrams. The crucial role played by
the interaction between fluctuations for the instability gener-
ation is thoroughly described.

To appear in Laser Physics (2001),
Special Issue on Bose-Einstein Condensation
of Trapped Atoms

really intends to describe the actual evolution of the con-
densate formation, then finite-density, non-zero temper-
ature, and nonequilibrium dynamics effects will have to
be taken into consideration. This may be accomplished
quite naturally by in-medium nonequilibrivm quantum
field theory methods. This set of characteristics makes
BEC one of the most attractive and promisging systems in
which one can use models and approximations that could
also prove useful in very different environments such as
neutron stars or heavy-ion collisions [4].

Recent experiments with dilute atomic gases [5] were
able to start probing quantities which are relevant to the
understanding of the underlying dynamics of BEC, such
as the time scales for the condensate formation and its
final size. On the theoretical side, the microscopic be-



Extensions of our work to the
Ferromagnetic Phase Transition

PHYSICAL REVIEW B 73, 214437 (2006)
Domain growth in the Heisenberg ferromagnet: Effective vector theory of the S=1/2 model

V. M. Turkowski.* P. D. Sacramento, and V. R. Vieira
CFIF, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
(Received 11 November 2005; revised manuscript received 19 January 2006; published 21 June 2006)

We derive an effective vector theory of the spin §=1/2 Heisenberg ferromagnet in an external magnetic field
using the Majorana representation for the spin operators and decoupling the interaction term via a Hubbard-
Stratonovich transformation. This theory contains both cubic and quartic bosoniclike field terms. We analyze
the problem in the Hartree approximation, similarly to the analysis by Boyanovsky ef al. [Phys. Rev. E 48, 767 |
[1993); Phys. Rev. D 48, 800 (1993 )]|for the scalar case. The time dependence of the radius of the stable phase
domain (bubble) in this bosonic theory is studied in the cases of different dimensionalities and weak magnetic
field H. The role of the cubic terms in the process of domain growth is analyzed. It is shown that the field
components perpendicular to H acquire a larger amplitude than the component parallel to H, at early times. The
domain radius grows as vt for times smaller than the spinodal time or in the case of a very weakly coupled
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Summary & Conclusions

m Field Theory is a Fundamental Tool of Physics

m [tis simultaneously an old subject at the base of much of Physics
and also an active area of Research providing Fundamental insights
at the cutting edge of modern observations.

m Provides a Theoretical Framework that is a starting point across the
sub-disciplines of Physics including Nuclear and Particle Physics,
Phase Transitions, Statistical Mechanics, Condensed Matter,
Cosmology and Astrophysics.

m While | have worked at the cutting edge of Field Theory across
these sub-disciplines of Physics, today | focused on describing the
overall framework and three specific examples.

m This same framework of Field Theory can be used across the sub-
disciplines of Physics and provides a common framework that can
be used across all of Physics.



Reference Material on

PNGBs in Cosmology
and other useful material.




Selected References on Pseudo Nambu Goldstone Boson models
from Particle Physics relevant for Cosmology today.

PHYSICAL REVIEW D VOLUME 47, NUMBER 2 15 JANUARY 1993

Non-Abelian soft boson phase transitions and large-scale structure

Richard Holman and Anupam Singh
Institute for Theoretical Physics, University of California, Santa Barbara, California 93016
and Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
(Received 24 April 1992)

A new class of models with pseudo Nambu-Goldstone bosons is constructed using a non-Abelian sym-
metry in the right-handed Majorana neutrino sector of seesaw neutrino mass models. The phase struc-
ture of these models is examined both at zero and nonzero temperatures, with particular emphasis on
their phase transition characteristics. We find that the vacuum manifold of these models exhibits a rich
structure in terms of possible topological defects, and we argue that these models may have applications
to late-time phase transition theories of structure formation.

PACS number(s): 98.80.Cq, 05.70.Fh, 12.10.Gq



Selected References on Pseudo Nambu Goldstone Boson models
from Particle Physics relevant for Cosmology today.

PHYSICAL REVIEW D VOLUME 52, NUMBER 12 15 DECEMBER 1995

Small nonvanishing cosmological constant from vacuum energy:
Physically and observationally desirable

Anupam Singh
Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
(Received 2 December 1994)

Increasing improvements in the independent determinations of the Hubble constant and the age
of the universe now seem to indicate that we need a small nonvanishing cosmological constant to
make the two independent observations consistent with each other. The cosmological constant can
be physically interpreted as due to the vacuum energy of quantized fields. To make the cosmological
observations consistent with each other we would need a vacuum energy density p, ~ (1072 eV)*
today (in the cosmological units i = ¢ = k = 1). It is argued in this paper that such a vacuum
energy density is natural in the context of phase transitions linked to massive neutrinos. In fact, the
neutrino masses required to provide the right vacuum energy scale to remove the age versus Hubble
constant discrepancy are consistent with those required to solve the solar neutrino problem by the
MSW mechanism.
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Formation of Inhomogeneous Field
Configurations.
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Phase transitions out of equilibrium: Domain formation and growth

Daniel Boyanovsky and Da-Shin Lee
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Anupam Singh
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15218
(Received 18 December 1992)

We study the dynamics of phase transitions out of equilibrium in weakly coupled scalar field
theories. We consider the case in which there is a rapid supercooling from an initial symmetric
phase in thermal equilibrium at temperature 7; > T to a final state at low temperature 7y =~ 0. In
particular we study the formation and growth of correlated domains out of equilibrium. It is shown
that the dynamics of the process of domain formation and growth (spinodal decomposition) cannot
be studied in perturbation theory, and a nonperturbative self-consistent Hartree approximation is
used to study the long time evolution. We find in weakly coupled theories that the size of domains
grows at long times as £p () =~ /t£(0). The size of the domains and the amplitude of the fluctuations
grow up to a maximum time £, which in weakly coupled theories is estimated to be

1 T; 3

= X S8
ts =~ —£(0) In 3;3) —T?;Tc)

(7 — 1]
with £(0) the zero-temperature correlation length. For very weakly coupled theories, their final size
is several times the zero-temperature correlation length. For strongly coupled theories the final size
of the domains is comparable to the zero-temperature correlation length and the transition proceeds
faster.

PACS number(s): 11.10.Ef, 05.70.Fh, 64.90.+b



Structure Formation due to PNGB fields in the see-saw
model of Neutrino Masses.
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Quasar production: Topological defect formation due to a phase transition linked
with massive neutrinos

Anupam Singh
Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
(Received 30 August 1993)

Recent observations of the space distribution of quasars indicate a very notable peak in space density
at a redshift of 2 to 3. It is pointed out in this article that this may be the result of a phase transition
which has a critical temperature of roughly a few meV (in the cosmological units h =c =k =1). It is
further pointed out that such a phase transition is natural in the context of massive neutrinos. In fact,
the neutrino masses required for quasar production and those required to solve the solar neutrino prob-
lem by the Mikheyev-Smirnov-Wolfenstein mechanism are consistent with each other.

PACS number(s): 98.80.Cq, 12.15.Ff, 14.60.Pq, 98.54.Aj



" I
Physical Significance of Quantum
Fields

m Quantum Fields represent the density of
particles.

How real 158 a quantum feld and what 1s 1ts physical sipnificance” To begin to to get
a feeling of it meanmg, let us look at some key properties,  The transformation from
wavelinetion, to operator also extends to more directly observable gquantities, Let us begin
with Born's famons expression for the probability density m first quantization, ple) =
" [z (). By elevating the wavefunetion to the status of a field operator. we obtain

=

plx) = |t'[.r'_]|2 — plz) = tﬁ'-rl:.r'_]a'lf.r:l- (3.11)

which 15 now the operator that represents the fluctuating particle density i the many body
systems, so loosely speaking, the mtensity of the quantum feld represents the density of
particles



» I
Quantum Fields for the Bose-
Einstein Case

m Field theory is used to understand Bose
Einstein condensation experiments with
gases. o -

| 1 . :
L =a" (.rf—f i B —TJ) D -+ I,ru_‘:'k:_': = %{r,-'}*r,.";:ll i (4)

where the complex scalar field ¢(x, t) represents charged
spinless bosons of mass m, and g is the coupling constant
defined above. In (4) we have also explicitly introduced
a chemical potential g that guarantees a constant total
density of particles

lr,':' 4'_'::.- = T . | D )



= S
Magnitude of the Effective Potential

m [he detailed expression for the Effective
Potential has been calculated by us

24
VM) = (Vo- T ) + (2 + T2 0)M
(MZ)Z B -1_1—2—
+ a2 ™ In 2z )

m For the current cosmological evolution only the
magnitude of the Effective Potential matters.
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FIG. 1. Figure 1: Symmetry broken, slow roll, large N, matter dominated evolution of (a) the
zero mode 7)(t) vs. t, (b) the quantum fluctuation operator g¥(t) vs. ¢, (¢) the number of particles
gN(t) vs. t, (d) the particle distribution gN(¢) vs. k at ¢ = 149.1 (dashed line) and ¢t = 398.2
(solid line), and (e) the ratio of the pressure and energy density p(t)/e(t) vs. t for the parameter
values m? = —1, n(to) = 1077, 5(to) =0, g = 10712, H(tp) = 0.1.
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Renormalized Equations

2 )\_R - g 1 3 E 2 - 2
6+ Mo+ 51 () 5 my ] ¢ 2 (O 0)) =0
R R0 4 2 (W0) - (2 O)| U =0




" JEE
Dynamics of Fields in FRW Space-times.
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Scalar field dynamics in Friedmann-Robertson-Walker spacetimes

D. Boyanovsky.[ D. Cormier.” H. J. de ‘L’ega."’ R. Holman’ A Singh.* and M. Srednicki’
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
*Department of Physics, Caregie Mellon University, Pittsburgh, Pennsylvania 15213
3Laboratoire de Physique Théorique et Hautes Energies Université Pierre et Marie Curie (Paris VI), Tour 16, ler. étage,
4, Place Jussieu 75252 Paris, Cedex 03, France
*Department of Physics, University of California, Santa Barbara, California 93106
{Received 14 March 1997)

We study the nonlinear dynamics of quantum fields in matter- and radiation-dominated universes, using the
nonequilibrium field theory approach combined with the nonperturbative Hartree and the large N approxima-
tions. We examine the phenomenon of explosive particle production due to spinodal nstabilities and paramet-
ric amplification in expanding universes with and without symmetry breaking. For a vanety of intial condi-
tions, we compute the evolution of the mflaton its quantum fluctuations. and the equation of state. We find
explosive growth of quanum fiuchmations, although particle production is somewhat sensitive to the expansion
of the universe. In the large N limit for symmetry-breaking scenanios, we defermine generic late time solutions
for any flat Friedmann-Robertson-Walker (FRW) cosmology. We also present a complefe and numernically
implementable renormalization scheme for the equation of motion and the energy momentum tensor in flat
FEW cosmologies. In this scheme the renormalization constants are independent of fime and of the inifial
conditions. [S0556-2821(97)02616-7]

PACS mumber(s): 98.80.Cq



