"Cosmogenic neutrinos detection"

P. Spillantini, INFN and University, Firenze

Round Table discussion

"Exciting neutrino: from Pauli, Fermi and Pontecorvo to nowadays prospect" 16°th Lomonov conference on Elementary Particle Physics, Moscow 22-28 August, 2013

Sergio Bottai, INFN, Firenze, Italy Piero Mazzinghi, INOA, Firenze, Italy Piero Spillantini, University and INFN, Firenze, Italy

11th Lomonosov Conference on Elementary Particle Physics Moscow, August 21-27, 2003

From the 'Extreme Universe Space Observatory' (EUSO) to the 'Extreme Energy Neutrino Observatory'

Cosmogenic neutrinos component

Protons coming from distances >20-50 Mpc interact with the CMB (GKZ effect) producing pions, and finally neutrinos.

Protons with E>10²⁰eV interact several times before degrading under the GKZ cut-off producing many v_e and v_u neutrinos.

The energy of produced neutrinos is $\approx 10^{18}$ eV or more

This is the "less unprobable" neutrino component expected at the extreme energies.

It is not "model dependent" (i.e. it only depends from UHECR E_{max} and the proton source distribution)

9/8/2013

EUSO Approach

BUSO : Extreme Universe Space Observatory

Fig. 2.1 – Artist view of the **EUSO** concept. The shower development occurs in the atmosphere layers below 30-40 km a.s.l.; the isotopic fluorescence emission is proportional at any depth to the number of ocharged particles (mainly electrons) present in the shower front: $N_e \approx E_{eV} / (1.4 \times 10^9)$. The UV yield is \approx 4 photons per meter of electron track, almost independent from air pressure and temperature.

The most complete work was (@<2004)

"Ultra-High Energy Neutrino Fluxes and Their Constraints"

(Kalashek, Kuzmin, Semokov, Sigl)

[arXiv:hep-ph/0205050 v3 13 Dec 2002]

[Model consistent with gamma's and UHECR data (Fly'sEye, Haverah Park, Yakytsk, AGASA)]

APS Neutrino Study:

Report of the Neutrino Astrophysics and Cosmology Working Group

(29 October 2004)

• We strongly recommend the development of experimental techniques that focus on the detection of astrophysical neutrinos, especially in the energy range above 10^{16} eV.

The technical goal of the next generation detector should be to increase the sensitivity by factor of 10, which may be adequate to measure the energy spectrum of the expected GZK (Greisen-Zatsepin-Kuzmin) neutrinos, produced by the interactions of ultra-high energy cosmic ray protons with the cosmic microwave background.

Is it possible to increase the number of detected neutrino events?

(EUSO-like from ISS)

Decrease the energy threshold (5 x 10¹⁹eV → 10¹⁸eV)
by improving the sensor efficiency (0.20 → 0.50) x 1.5
by improving the light collection (pupil Ø 2m → 6m) x 9
(what implies reflective systems and modularity)

-Increase the target volume

.

-by increasing the FOV ($60^\circ \rightarrow 140.8^\circ$) (x 90) but limited to $\cong 90^\circ$ by attenuation by air and by distance x 3

One optical system

	<u>(EUSO li</u>	<u>ke)</u>		<u>Multi-mirror</u>			
H (km)	400)	400				
Total FoV (°)	60> 90						
Radius on ground (km)	235		400				
Area on ground (10 ³ km ²)	173	}	503				
Target volume (km ³)	1730)	5030				
Pixel on ground (km * km)	0.8 x 0.8		0.8x0.8				
number of pixels) (.8x.8 km2)	270k		786k				
Pupil diameter (m)	2.0	2.0	-≯ 4.0	6.0	10.0		
Photo detection efficiency	20%	50%	50%	50%	50%		
E threshold (EeV)	50	30	8	3	1.2		
Proton events/year,							
GKZ + uniform source distrib.	1200	4000	35k	300k	2000k		
with E _p >100 EeV)	100	100	290	290	290		
Neutrino events per year (≈ min)	0.2	0.4	1.5	4.5	10		
Neutrino events per year (≈ Max)	4	6	12	14	18		

After 2004: new data:

- GZK confirmed + (?) primary UHECR heavier than p (?)
- Fermi-LAT

Ahlers et al. bestfit, consistent with HiRes spectrum and Fermi-LAT diffuse gamma's <u>'GZK neutrinos after Fermi-LAT diffuse photon flux measurement'</u> M.Ahlers et al., Astropart. Phys. 34, 106 (2010)

Ahlers and Halsen updates of lower limits (normalization to Auger data) <u>'Minimal Cosmogenic Neutrinos'</u> arXiv:1208.4181v1, 21 Aug 2012

One optical system

<u>)</u>	USO like)	<u>SO like)</u> <u>Multi-mirror</u>				
H (km)	400		400		800	1200
Total FoV (°)	60		90		90	90
Radius on ground (km)	235		400		≅ 800	≅ 1200
Area on ground (10 ³ km ²)	173		503		≅ 2000	≅ 4500
Target volume (w.e. km ³)	1730		5030		≅ 20000	≅ 45000
Pixel on ground (km x km) number of pixels) (.8x.8 km²)	0.8 x 0.8 270k		0.8x0.8 786k		0.8x0.8 ≅ 3000k	0.8x0.8 ≅ 7000k
Pupil diameter (m)	2.0	4.0	6.0	10.0	12	18
Photo detection efficiency	50%	50%	50%	50%	50%	50%
E threshold (EeV)	30	8	3	1.2	3	3
Proton events/year,						
GKZ + uniform source distrib.	4000	35k	300k	2000k	1200K	2700k
with E _p >100 EeV)	100	290	290	290	1180	2600
Neutrino events per year (≈ min)	0.4	1.5	4.5	10	18	40
Neutrino events per year (≈ Max)	6	12	14	18	56	126
Noutring quants par year (bastfit)	0.05	0.2		25	Λ	0
Neutrino events per year (bestilt)	0.05	0.5	1	2.5	4	9
Neutrino events per year (px100%)	0.002	0.035	0.15	0.5	0.0	1.3
Neutrino events per year (px10%)	-	0.0025	0.015	0.08	0.06	0.13
Neutrino events per year (px1%)	-	0.0002	0.003	0.025	0.012	0.027

integral of detected events in EUSO-like on ISS in 1 year

Conclusions:

Cosmogenic neutrino detection is crucial for the neutrino entering the scene as a new instrument for Astrophysics, Cosmology and Particle Physics

New data have diminished their foreseen flux by at least 2 orders of magnitude

If the p component in UHECR is abundant, complex large optical systems can observe cosmogenic neutrinos from space, but high altitude orbits could be necessary

If the heavy nuclei component prevails its 'daugter' cosmogenic neutrino flux is out of reach for any system.

(also because the neutrino energy becomes too small for detection by radio-systems)

In next few years the increase of UHECR statistics and the definition of their charge should help in clarifying the situation.

Could you follow me?

Thank you!

Rejection > 10^{-4}

Resolution of 5 m EDP reflecting system

9/8/2013

27

Active thin mirror concept

The optical surface is coupled to a structure of light rigid supports by a matrix of actuators, adjusted on the measurements of the wave front

