

16<sup>th</sup> Lomonosov Conference Moscow, Aug 22-28, 2013

# CP Violation and Rare Decays at LHCb

### Olaf Steinkamp

on behalf of the LHCb collaboration

olafs@physik.uzh.ch



Universität Zürich<sup>™™</sup>

### Indirect Search For New Physics

- most New Physics models predict the existence of <u>new heavy particles</u>
  - these can enter in <u>internal loops</u> and have sizeable effect on observables
  - <u>CP violating phases</u>, <u>rare FCNC decays</u>
- B° and B° systems are an ideal hunting ground
  - rich phenomenology, precise SM predictions
  - confront predictions with precision measurements



 $u^+$ 

O. Steinkamp

- higher mass scales than direct searches for new particles
- the <u>pattern of deviations</u> can hint at the <u>structure of the New Physics</u>

suppression of FCNC  $\rightarrow$  prediction of charm quark

CP violation in  $K^{\circ}\overline{K}^{\circ}$  system  $\rightarrow$  prediction of 3<sup>rd</sup> quark doublet

27.08.2013

HC

Lomonosov 2013 - CPV & Rare Decays @ LHCb (2/40)

### Indirect Search For New Physics

- most New Physics models predict the existence of <u>new heavy particles</u>
  - these can enter in <u>internal loops</u> and have sizeable effect on observables
  - <u>CP violating phases</u>, <u>rare FCNC decays</u>
- B° and B° systems are an ideal hunting ground
  - rich phenomenology, precise SM predictions
  - confront predictions with precision measurements



O. Steinkamp

- higher mass scales than direct searches for new particles
- the <u>pattern of deviations</u> can hint at the <u>structure of the New Physics</u>

suppression of FCNC  $\rightarrow$  prediction of charm quark

CP violation in  $K^{\circ}\overline{K}^{\circ}$  system  $\rightarrow$  prediction of 3<sup>rd</sup> quark doublet

27.08.2013

HC

Lomonosov 2013 - CPV & Rare Decays @ LHCb (3/40)



### Key Requirements



- impact parameter resolution
  - identify secondary vertices
- proper time resolution
  - resolve fast  $B_{s}^{o} \overline{B}_{s}^{o}$  oscillations
- momentum & invariant mass resolution
  - against combinatorial backgrounds
- large numbers of b hadrons (B<sup>0</sup>, B<sup>±</sup>, B<sup>0</sup>, Λ<sub>b</sub>)

- K/ $\pi$  separation
  - against peaking backgrounds
  - flavour tagging
- selective and efficient trigger, also for hadronic final states

 $\sigma(b\overline{b})\approx \text{290 }\mu\text{b} \text{ @ 7 TeV}$  [PLB 694 (2010) 209]

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (4/40)

#### <u>lнcb</u> Гнср

### LHCb Apparatus







### Data Taking

LHCb Integrated Luminosity pp collisions 2010-2012

- 2011: 1.0 fb<sup>-1</sup> at 7 TeV
- 2012: 2 fb<sup>-1</sup> at 8 TeV

- 93 % data taking efficiency
- 99 % working detector channels
- 99 % of data good for analysis



LHCb Efficiency breakdown pp collisions 2010-2012

O. Steinkamp

unless mentioned explicitly, all presented analyses are based on the 2011 data set = 1/3 of collected luminosity



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (7/40)



- Short introduction and motivation
- CP violation
  - CP phase  $\phi_{_{\mathcal{S}}} \mbox{ from } B^{\scriptscriptstyle 0}_{_{\mathcal{S}}} \mbox{ } \rightarrow J/\psi \, \phi$
  - flavour-specific asymmetry in B<sup>o</sup><sub>s</sub> decays
  - CKM phase  $\gamma$  from  $B^{\pm} \rightarrow DK^{\pm}$  tree decays
  - CP violation in charmless B decays
- Rare decays
  - BR and CP violation in  $B^{{\scriptscriptstyle\pm}} \to K^{{\scriptscriptstyle\pm}}\,\mu^{{\scriptscriptstyle+}}\,\mu^{{\scriptscriptstyle-}}$
  - angular distributions in  $B^0 \to K^{\star 0} \, \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$
  - photon polarization in  $B^{\scriptscriptstyle\pm} \longrightarrow K^{\scriptscriptstyle\pm}\,\pi^{\scriptscriptstyle+}\,\pi^{\scriptscriptstyle-}\,\gamma$

### Conclusion and outlook: LHCb upgrade

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (8/40)



- Short introduction and motivation
- CP violation
  - CP phase  $\phi_{_{\mathcal{S}}} \mbox{ from } B^{\scriptscriptstyle 0}_{_{\mathcal{S}}} \mbox{ } \rightarrow J/\psi \, \phi$
  - flavour-specific asymmetry in B<sup>o</sup><sub>s</sub> decays
  - CKM phase  $\gamma$  from  $B^{\pm} \rightarrow DK^{\pm}$  tree decays
  - CP violation in charmless B decays
- Rare decays
  - BR and CP violation in  $B^{{\scriptscriptstyle\pm}} \to K^{{\scriptscriptstyle\pm}}\,\mu^{{\scriptscriptstyle+}}\,\mu^{{\scriptscriptstyle-}}$
  - angular distributions in  $B^{\scriptscriptstyle 0} \to K^{\star_0}\,\mu^{\scriptscriptstyle +}\,\mu^{\scriptscriptstyle -}$
  - photon polarization in  $B^{\scriptscriptstyle\pm}\!\to K^{\scriptscriptstyle\pm}\,\pi^{\scriptscriptstyle+}\,\pi^{\scriptscriptstyle-}\,\gamma$

### Conclusion and outlook: LHCb upgrade

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (9/40)

sorry, no time to discuss interesting LHCb results on CPV and rare decays in the charm sector



- Short introduction and motivation
- CP violation
  - CP phase  $\phi_{_{\mathcal{S}}} \mbox{ from } B^{\scriptscriptstyle 0}_{_{\mathcal{S}}} \mbox{ } \rightarrow J/\psi \, \phi$
  - flavour-specific asymmetry in  $B^{0}_{s}$  decays
  - CKM phase  $\gamma$  from  $B^{\pm} \rightarrow DK^{\pm}$  tree decays
  - CP violation in charmless B decays
- Rare decays
  - BR and CP violation in  $B^{{\scriptscriptstyle\pm}} \to K^{{\scriptscriptstyle\pm}}\,\mu^{{\scriptscriptstyle+}}\,\mu^{{\scriptscriptstyle-}}$
  - angular distributions in  $B^0 \to K^{\star 0} \, \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$
  - photon polarization in  $B^{\scriptscriptstyle\pm}\!\to K^{\scriptscriptstyle\pm}\,\pi^{\scriptscriptstyle+}\,\pi^{\scriptscriptstyle-}\,\gamma$

### • Conclusion and outlook: LHCb upgrade

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (10/40)

O. Steinkamp

see Alexander's talk right after mine for  $B^{0}_{s} \rightarrow \mu^{+} \mu^{-}$  and other leptonic rare decays



- Short introduction and motivation
- CP violation
  - CP phase  $\phi_{s}$  from  $B^{0}_{\phantom{0}s}\!\rightarrow J/\psi\,\phi$
  - flavour-specific asymmetry in B<sup>o</sup><sub>s</sub> decays
  - CKM phase  $\gamma$  from  $B^{\pm} \rightarrow DK^{\pm}$  tree decays
  - CP violation in charmless B decays
- Rare decays
  - BR and CP violation in  $B^{{\scriptscriptstyle\pm}} \to K^{{\scriptscriptstyle\pm}}\,\mu^{{\scriptscriptstyle+}}\,\mu^{{\scriptscriptstyle-}}$
  - angular distributions in  $B^{\scriptscriptstyle 0} \to K^{\star_0}\,\mu^{\scriptscriptstyle +}\,\mu^{\scriptscriptstyle -}$
  - photon polarization in  $B^{\scriptscriptstyle\pm}\!\to K^{\scriptscriptstyle\pm}\,\pi^{\scriptscriptstyle+}\,\pi^{\scriptscriptstyle-}\,\gamma$

### Conclusion and outlook: LHCb upgrade

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (11/40)

rich programme also in production & spectroscopy - some examples in Ivan's and Alexander's talks





### Sources of CP Violation



<u>CPV in decay</u> ("direct CP violation")  $B^0$  $W^+$  $B^0_e$ interference of decay diagrams with different weak and strong phases different decay rates

 $B \rightarrow f vs \overline{B} \rightarrow \overline{f}$ 

beware of strong phases/



- interference between direct decay and decay after mixing
- different decay rates

$$B 
ightarrow f_{CP}$$
 vs  $\overline{B} 
ightarrow f_{CP}$ 

"golden modes"

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (13/40)



## CP violating phase $\phi_s$

 CP violation from interference between mixing and decay

$$\phi_{s} = \phi_{M} - 2\phi_{D}$$

- $B_{s}^{0} \qquad \overline{B}_{s}^{0} \qquad \phi_{D} \qquad f_{CP}$
- predicted to be very small in Standard Model

 $\phi_s = 0.0364 \pm 0.0016 \text{ rad} \qquad [CKMfitter]$ 

- sensitive to New Physics contributions in  $B^{o}_{\ s}\text{-}\overline{B}^{o}_{\ s}$  mixing
- measure time-dependent asymmetry for decays to CP eigenstate  $f_{CP}$

$$\mathbf{A_{CP}}(\mathbf{t}) = \frac{\Gamma(\overline{\mathbf{B}_{s}^{o}}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f_{CP}}) - \Gamma(\mathbf{B_{s}^{o}}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f_{CP}})}{\Gamma(\overline{\mathbf{B}_{s}^{o}}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f_{CP}}) + \Gamma(\mathbf{B_{s}^{o}}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f_{CP}})} = \eta_{f}(\underline{\sin\phi_{s}}) \sin(\Delta m_{s} \mathbf{t})$$

- use opposite-side and same-side tagging algorithms to infer initial flavour of B meson at production
- resolve fast  $B_{s}^{0} \overline{B}_{s}^{0}$  oscillations



O. Steinkamp

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (14/40)



# $\phi_{s}$ from $B^{0}_{s} \rightarrow J/\psi \phi$

- final state is mix of CP even and odd
  - 3 polarisation amplitudes, plus contribution from S-wave K<sup>+</sup>K<sup>-</sup>
  - time-dependent angular analysis to disentangle these and determine  $\phi_{i}$
- also determine lifetime difference  $\Delta \Gamma_{c}$  between the two CP eigenstates

$$\begin{split} \varphi_{s} &= 0.07 \pm 0.09(\text{stat}) \pm 0.01(\text{syst}) \text{ rad} \\ \Delta \Gamma_{s} &= 0.100 \pm 0.016(\text{stat}) \pm 0.003(\text{syst}) \text{ ps}^{-1} \end{split}$$

• from combined analysis with  $B^{o}_{r} \rightarrow J/\psi \pi^{+} \pi^{-}$ :

 $\phi_{s} = 0.01 \pm 0.07 (stat) \pm 0.01 (syst) rad$ 



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (15/40)



27.08.2013

### Flavour-Specific Asymmetry

flavour-specific asymmetry

$$\mathbf{a_{sl}^{s}} = \frac{\Gamma(\overline{\mathbf{B}_{s}^{0}}(\mathbf{t}) \rightarrow \mathbf{f}) - \Gamma(\mathbf{B_{s}^{0}}(\mathbf{t}) \rightarrow \overline{\mathbf{f}})}{\Gamma(\overline{\mathbf{B}_{s}^{0}}(\mathbf{t}) \rightarrow \mathbf{f}) + \Gamma(\mathbf{B_{s}^{0}}(\mathbf{t}) \rightarrow \overline{\mathbf{f}})}$$

• non-zero if CP violated in  $B_s^0 - \overline{B}_s^0$  mixing

$$\mathsf{Prob} \ \big(\mathsf{B}^{\mathsf{O}}_{\mathsf{s}} \! \! \to \! \overline{\mathsf{B}}^{\mathsf{O}}_{\mathsf{s}} \big) \ \neq \ \mathsf{Prob} \ \big(\overline{\mathsf{B}}^{\mathsf{O}}_{\mathsf{s}} \! \to \! \mathsf{B}^{\mathsf{O}}_{\mathsf{s}} \big)$$

predicted to be very small in Standard Model

$$a_{sl}^{s} = (1.9 \pm 0.3) \times 10^{-5}$$
 [A.Lenz, arXiv:1205.1444]

- sensitive to possible New Physics contributions in  $B_s^0 \overline{B}_s^0$  mixing
- LHCb analyis uses  $f = D_s^- \mu^+ X$  to measure time-integrated asymmetry
- production asymmetry  $a_p \le few \%$ , washed out by rapid  $B_s^0 \overline{B}_s^0$  oscillations

$$\mathbf{A}_{raw} = \frac{\mathbf{N}(\mathbf{D}_{s}^{-}\boldsymbol{\mu}^{+}) - \mathbf{N}(\mathbf{D}_{s}^{+}\boldsymbol{\mu}^{-})}{\mathbf{N}(\mathbf{D}_{s}^{-}\boldsymbol{\mu}^{+}) + \mathbf{N}(\mathbf{D}_{s}^{+}\boldsymbol{\mu}^{-})} = \frac{\mathbf{a}_{sl}^{s}}{2} + \left[\mathbf{a}_{P} - \frac{\mathbf{a}_{sl}^{s}}{2}\right] \times \frac{\int e^{-\Gamma_{s}^{+}} \cos(\Delta m_{s}^{+}t) \epsilon(t) dt}{\int e^{-\Gamma_{s}^{+}} \cosh(\Delta \Gamma_{s}^{-}t/2) \epsilon(t) dt}$$

=2 $\times 10^{-3}$  for LHCb acceptance  $\epsilon(\textbf{t})$ 

Lomonosov 2013 - CPV & Rare Decays @ LHCb (16/40)







### Flavour-Specific Asymmetry



- detection asymmetries: measured from data using various control channels
- separately analyse two magnet polarities

$$\int_{2^{\infty}}^{10^{0}} \frac{1}{10^{0}} \frac{1}{10^{0$$

$$a_{sl}^{s} = (-0.06 \pm 0.50 (stat) \pm 0.36 (syst))\%$$
[arxiv:1308.1048]

- most precise measurement to date
  - main systematic: residual track reconstruction asymmetry
- excellent agreement with Standard Model
- no confirmation of DO same-sign dilepton anomaly

 $z^{0}$  0.02 -0.02 -0.04 -0.04 -0.04 -0.04 -0.04 -0.02 -0.04 -0.02 -0.04 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.04 -0.02 -0.02 -0.04 -0.02 -0.02 -0.04 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02-0.02

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (17/40)

# CKM Angle $\gamma$ from Tree Decays

- consistency of CKM fits establish
   Standard Model as dominant source
   of CP violation in quark sector
- need more precise measurements to test for possible subdominant contributions from New Physics



- angle  $\gamma$  still the least well constrained CKM parameter

- theoretically "clean" determination from tree-level  $B^{\pm} \rightarrow D K^{\pm} \rightarrow f_{[D]} K^{\pm}$  decays to final states  $f_{[D]}$  accessible to D<sup>0</sup> and  $\overline{D}^{0}$
- no loops → largely unaffected by possible effects from New Physics



27.08.2013

HCh

Lomonosov 2013 - CPV & Rare Decays @ LHCb (18/40)

## CKM Angle $\gamma$ from Tree Decays

- CP eigenstates  $K^+K^-, \pi^+\pi^-$  ("GLW" [PLB 253 (1991) 483] [PLB 265 (1991) 172])
- quasi flavour-specific states  $K^{\pm}\pi^{\mp}, K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$  ("ADS" [PRL 78 (1997) 3257] [PRD 63 (2001) 036005] )
  - observables: ratios and asymmetries of  $B^{\scriptscriptstyle +}$  and  $B^{\scriptscriptstyle -}$  decay rates



• 3-body final states  $K_{s}^{0}\pi^{+}\pi^{-}$ ,  $K_{s}^{0}K^{+}K^{-}$  ("GGSZ" [PRD 68 (2003) 054018] [PRD 70 (2004) 072003])

• compare interference patterns in Dalitz plots from B<sup>+</sup> and B<sup>-</sup> decays [PLB 718 (2012) 43]  $\leftarrow$  1 fb<sup>-1</sup> | 3 fb<sup>-1</sup>  $\rightarrow$  [LHCb-CONF-2013-006]

27.08.2013

HCK

Lomonosov 2013 - CPV & Rare Decays @ LHCb (19/40)

### CKM Angle $\gamma$ from Tree Decays

- · preliminary  $\gamma$  measurement from combination of GLW/ADS and 3 fb<sup>-1</sup> GGSZ
  - using input from CLEO-c to constrain strong phases in D decays



HC

[LHCb-CONF-2013-006] PRELIMINARY

- published  $\gamma$  measurement using GLW/ADS and 1 fb^-1 GGSZ result
  - includes also  $B^{\pm} \rightarrow f_{IDI} \pi^{\pm}$  (less sensitivity due to smaller interference)
  - takes  $D^o \overline{D}^o$  mixing into account (small but not negligible in  $B^{\pm} \rightarrow f_{D1}\pi^{\pm}$ )

$$\int_{0}^{1} \int_{0}^{1} \int_{0$$

# CPV in 2-Body Charmless B decays

- direct CP violation from interference
   of b → u tree diagrams
   and b → s(d) penguin diagrams
- measures γ in Standard Model but sensitive to possible New Physics contribution in penguin loops
- exploit U-spin symmetry between B<sup>0</sup> and B<sup>0</sup><sub>s</sub> decays to extract strong decay phases
   [Fleischer, EPJC 52 (2007) 267]
- $W^{+}$   $\overline{u}$   $\pi^{-}$   $B^{0}$   $\overline{u}, \overline{c}, \overline{t}$   $\overline{u}, \overline{c}, \overline{t}$

 $\pi^{+}, K^{+}$ 

O. Steinkamp

 $\overline{s}, \overline{d}$ 

 $K^{+}.\pi^{+}$ 

- two approaches:
  - time-dependent CP asymmetry in  $B^{o} \to \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$  and  $B^{o}_{\phantom{o}s} \to K^{\scriptscriptstyle +} K^{\scriptscriptstyle -}$
  - time-integrated CP asymmetry in  $B^{o} \to K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$  and  $B^{o}_{\phantom{o}s} \to \pi^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (21/40)

# CPV in 2-Body Charmless B decays



[LHCb-PAPER 2013-040] PRELIMINARY

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (22/40)

# CPV in 2-Body Charmless B decays



also: test of U-spin symmetry

 $B^{0} \to K^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -}$ 

$$A_{cP} = -0.080 \pm 0.007(\text{stat}) \pm 0.003(\text{syst})$$

most precise measurement to date

$$B^{0}_{s} \rightarrow K^{-} \pi^{+}$$

 $A_{cP} = 0.27 \pm 0.04 \text{ (stat)} \pm 0.01 \text{ (syst)}$ 

first observation of CPV in B<sup>o</sup><sub>s</sub>
 decays, significance 6.5 σ

[PRL 110 (2013) 221601]

$$\Delta = \frac{A_{CP} \left( \mathsf{B}^{\mathsf{O}} \rightarrow \mathsf{K}^{+} \pi^{-} \right)}{A_{CP} \left( \mathsf{B}^{\mathsf{O}}_{\mathsf{s}} \rightarrow \mathsf{K}^{-} \pi^{+} \right)} + \frac{\mathsf{BF} \left( \mathsf{B}^{\mathsf{O}}_{\mathsf{s}} \rightarrow \mathsf{K}^{-} \pi^{+} \right)}{\mathsf{BF} \left( \mathsf{B}^{\mathsf{O}} \rightarrow \mathsf{K}^{+} \pi^{-} \right)} \cdot \frac{\tau_{\mathsf{d}}}{\tau_{\mathsf{s}}} = \mathbf{0} \quad \text{[Lipkin, PLB 621 (2005) 126]}$$

• using LHCb measurements of BFs and world averages for lifetimes  $\tau$ :

 $\Delta = -0.02 \pm 0.05 \,(\text{stat}) \pm 0.04 \,(\text{syst})$ 

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (23/40)



### Flavour Changing Neutral Currents

- b  $\rightarrow$  s(d) transitions can only proceed through loops in Standard Model
- ideal hunting ground for possible contributions from New Physics
- Operator Product Expansion: describe decay by an effective Hamiltonian

$$\mathbf{H}_{eff} = -\frac{4G_{F}}{\sqrt{2}} \cdot \mathbf{V}_{tb} \mathbf{V}_{ts}^{*} \cdot \frac{\mathbf{e}^{2}}{16\pi^{2}} \cdot \sum \left( \mathbf{C}_{i} \mathbf{O}_{i} + \mathbf{C}_{i}^{'} \mathbf{O}_{i}^{'} \right) + \text{h.c.}$$

• New Physics can add new operators  $O_i^{(')}$  or change Wilson coefficients  $C_i^{(')}$ 



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (25/40)

## Flavour Changing Neutral Currents

- b  $\rightarrow$  s(d) transitions can only proceed through loops in Standard Model
- ideal hunting ground for possible contributions from New Physics
- Operator Product Expansion: describe decay by an effective Hamiltonian

$$\mathbf{H}_{eff} = -\frac{\mathbf{4G}_{F}}{\sqrt{2}} \cdot \mathbf{V}_{tb} \mathbf{V}_{ts}^{*} \cdot \frac{\mathbf{e}^{2}}{\mathbf{16}\pi^{2}} \cdot \sum \left(\mathbf{C}_{i} \mathbf{O}_{i} + \mathbf{C}_{i}^{'} \mathbf{O}_{i}^{'}\right) + \text{h.c.}$$

• New Physics can add new operators  $O_i^{(')}$  or change Wilson coefficients  $C_i^{(')}$ 



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (26/40)



• decay fully described by  $q^2 = m^2(\mu^+ \mu^-)$  and angle  $\theta_1$  between  $\mu^+$  and  $K^+$ 

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_{|} d q^2} = \frac{3}{4} \left( 1 - \left( \mathbf{F}_{H} \right) \cdot \left( 1 - \cos^2 \theta_{|} \right) + \frac{1}{2} \left( \mathbf{F}_{H} \right) + \left( \mathbf{A}_{FB} \right) \cdot \cos \theta_{|}$$

- measure  $d\Gamma/dq^2$ ,  $A_{FB}$  and  $F_{H}$  as a function of  $q^2$
- exclude regions around  $J/\psi$  and  $\psi(2s)$  resonances



results in good agreement with Standard Model predictions



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (27/40)







#### 4200 3800 4000 4400 4600 $m_{\mu^+\mu^-}$ [MeV/*c*<sup>2</sup>]

### Measurement of the CP asymmetry

 $A_{CP} = 0.000 \pm 0.033(\text{stat}) \pm 0.005(\text{syst}) \pm 0.07(J/\psi K^{\pm})$ 

- in agreement with SM prediction
- factor four improvement of current WA [arxiv:1308:1340]

Observation of a 
$$\mu^+ \mu^-$$
 resonance

mass = 
$$4191_{-8}^{+9} \text{ MeV/c}^2$$
 ; width =  $65_{-16}^{+22} \text{ MeV/c}^2$ 

- compatible with known  $\psi(4160)$
- 20 % of  $K^{\pm} \mu^{+} \mu^{-}$  signal at low recoil •

#### [arxiv:1307:7595]

O. Steinkamp

 could effect angular distributions around  $q^2 \sim 16 \text{ GeV}^2$ 

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (28/40)









### Measurement of the CP asymmetry

 $A_{cP} = 0.000 \pm 0.033(stat) \pm 0.005(syst) \pm 0.07(J/\psi K^{\pm})$ 

- in agreement with SM prediction
- factor four improvement of current WA [arxiv:1308:1340]

Observation of a 
$$\mu^+ \mu^-$$
 resonance

mass = 
$$4191_{-8}^{+9} \text{ MeV/c}^2$$
 ; width =  $65_{-16}^{+22} \text{ MeV/c}^2$ 

- compatible with known  $\psi(4160)$
- + 20 % of  $K^{\pm}\,\mu^{+}\,\mu^{-}$  signal at low recoil

#### [arxiv:1307:7595]

O. Steinkamp

 could effect angular distributions around q<sup>2</sup> ~ 16 GeV<sup>2</sup>

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (29/40)

#### 

• four final state particles  $\rightarrow$  three angles, eight angular observables

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \left[ \frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right]$$
$$- F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi$$
$$+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$$
$$+ S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$$
$$+ S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right]$$

- F<sub>L</sub> (q<sup>2</sup>) and S<sub>j</sub> (q<sup>2</sup>) are functions of the underlying Wilson coefficients
  clever combinations of F<sub>L</sub> and S<sub>j</sub> less sensitive
  - to uncertainties from hadronic form factors



O. Steinkamp

 "folding technique": exploit symmetries of sin and cos functions to extract subsets of the observables

e.g. substitute  $\phi \rightarrow \phi + \pi$  for  $\phi < 0 \Rightarrow$  terms for  $S_4$ ,  $S_5$ ,  $S_7$ ,  $S_8$  cancel

Lomonosov 2013 - CPV & Rare Decays @ LHCb (30/40)

27.08.2013

## $\frac{LHCb}{MCp}$ Angular Observables in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

#### results in good agreement with Standard Model predictions



[Bobeth et al., JHEP 07 (2011) 067]

O. Steinkamp

[arxiv:1304:6325]

Lomonosov 2013 - CPV & Rare Decays @ LHCb (31/40)

27.08.2013

#### 

- different angular foldings  $\rightarrow$  extract remaining four observables
- observe 3.7  $\sigma$  discrepancy in one bin of the observable P<sub>5</sub>'
  - probability for such a deviation in one out of 24 analysed bins is 0.5 %



27.08.2013

## Hep Angular Observables in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Descotes-Genon et al. interpret discrepancy as possible sign for New Physics contribution in Wilson coefficient  $C_9$  [arxiv:1307.5683]
- gives slight improvement also in other observables (e.g.  $P_2 = -\frac{1}{2}A_T^{Re}$ )





- Altmannshofer et al. combine LHCb results with other experiments [arxiv:1308.1501]
- best fit indicates New Physics contribution in Wilson coefficients C<sub>9</sub> and C<sub>9</sub>' or C<sub>10</sub>'
- looking forward to interesting discussions with theory community and to results from 2012 data



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (33/40)



### Radiative Decays $b \rightarrow s \gamma$

- another type of loop-mediated FCNC decays sensitive to New Physics
- in Standard Model, expect emitted photon to be close to 100 % left-handed polarized
- significant right-handed component possible in popular New Physics models
- photon polarization can in principle be extracted  $\vec{n} = \vec{p}_{1X} \vec{p}_{2}$ from angular distributions  $\int \vec{p} \cdot \vec{p}$ in  $B^{\pm} \rightarrow K_{res} \gamma \rightarrow K^{\pm} \pi^{+} \pi^{-} \gamma$
- first measurement of up/down asymmetry "Wu's experiment with photons"
- using 2012 data set (2 fb<sup>-1</sup>)
- 4.6  $\sigma$  evidence for non-zero polarization
- CP asymmetry consistent with zero 27.08.2013 Lomonosov 2013 - CPV & Rare Decays @ LHCb (34/40)





[LHCb-CONF-2013-009] PRELIMINARY

# Conclusion and Outlool LHCb Upgrade



## Outlook: LHCb Upgrade

- LHC and LHCb are a spectacular success
- so is the Standard Model ... still
- current precision of measurements in flavour sector still leaves room for subdominant contributions from New Physics
- almost all LHCb results are completely dominated by statistical uncertainties
- leading systematic uncertainties will also decrease with increasing statistics



| 2010 | 0.037 fb <sup>-1</sup> @ 7 TeV |  |  |  |  |  |
|------|--------------------------------|--|--|--|--|--|
| 2011 | 1 fb <sup>-1</sup> @ 7 TeV     |  |  |  |  |  |
| 2012 | 2 fb <sup>-1</sup> @ 8 TeV     |  |  |  |  |  |
| 2013 |                                |  |  |  |  |  |
| 2014 |                                |  |  |  |  |  |
| 2015 |                                |  |  |  |  |  |
| 2016 | 5 fb <sup>-1</sup> @ 13 TeV    |  |  |  |  |  |
| 2017 |                                |  |  |  |  |  |
| 2018 | LHC LS2,<br>LHCb upgrade       |  |  |  |  |  |
| 2019 |                                |  |  |  |  |  |
| 2020 |                                |  |  |  |  |  |
| 2021 | 5 fb <sup>-1</sup> per year    |  |  |  |  |  |
| 2022 |                                |  |  |  |  |  |

[☆ all results except three presented just now used 2011 data set of 1.0 fb<sup>-1</sup>]

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (36/40)



### LHCb Upgrade

#### • goal: reach measurement precision that matches theory uncertainties

#### [CERN-LHCC-2012-007]

| Type                     | Observable                                                                      | Current                      | LHCb                  | Upgrade               | Theory                      |
|--------------------------|---------------------------------------------------------------------------------|------------------------------|-----------------------|-----------------------|-----------------------------|
|                          |                                                                                 | precision                    | 2018                  | $(50  {\rm fb}^{-1})$ | uncertainty                 |
| $B_s^0$ mixing           | $2\beta_s \ (B^0_s \to J/\psi \ \phi)$                                          | 0.10 [9]                     | 0.025                 | 0.008                 | $\sim 0.003$                |
|                          | $2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$                                      | 0.17  [10]                   | 0.045                 | 0.014                 | $\sim 0.01$                 |
|                          | $A_{ m fs}(B^0_s)$                                                              | $6.4 \times 10^{-3} \ [18]$  | $0.6 \times 10^{-3}$  | $0.2 \times 10^{-3}$  | $0.03 \times 10^{-3}$       |
| Gluonic                  | $2\beta_s^{ m eff}(B^0_s	o \phi\phi)$                                           | —                            | 0.17                  | 0.03                  | 0.02                        |
| $\operatorname{penguin}$ | $2\beta_s^{\rm eff}(B_s^0 \to K^{*0}\bar{K}^{*0})$                              | _                            | 0.13                  | 0.02                  | < 0.02                      |
|                          | $2\beta^{\rm eff}(B^0 	o \phi K^0_S)$                                           | 0.17  [18]                   | 0.30                  | 0.05                  | 0.02                        |
| Right-handed             | $2\beta_s^{\text{eff}}(B_s^0 	o \phi \gamma)$                                   | _                            | 0.09                  | 0.02                  | < 0.01                      |
| currents                 | $	au^{\mathrm{eff}}(B^0_s 	o \phi \gamma) / 	au_{B^0_s}$                        |                              | 5~%                   | 1~%                   | 0.2%                        |
| Electroweak              | $S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$                   | 0.08  [14]                   | 0.025                 | 0.008                 | 0.02                        |
| $\operatorname{penguin}$ | $s_0 A_{\rm FB} (B^0 \to K^{*0} \mu^+ \mu^-)$                                   | 25~%~[14]                    | 6~%                   | 2~%                   | 7~%                         |
|                          | $A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV^2/c^4})$                            | 0.25  [15]                   | 0.08                  | 0.025                 | $\sim 0.02$                 |
|                          | $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$ | 25~%~[16]                    | 8%                    | 2.5%                  | $\sim 10 \%$                |
| Higgs                    | $\mathcal{B}(B^0_s 	o \mu^+ \mu^-)$                                             | $1.5 \times 10^{-9} \ [2]$   | $0.5 \times 10^{-9}$  | $0.15 \times 10^{-9}$ | $0.3 \times 10^{-9}$        |
| penguin                  | $\mathcal{B}(B^0 	o \mu^+ \mu^-) / \mathcal{B}(B^0_s 	o \mu^+ \mu^-)$           | _                            | $\sim 100 \%$         | $\sim 35\%$           | $\sim 5 \%$                 |
| Unitarity                | $\gamma \ (B \to D^{(*)} K^{(*)})$                                              | $\sim 1012^{\circ} [19, 20]$ | $4^{\circ}$           | $0.9^{\circ}$         | negligible                  |
| ${ m triangle}$          | $\gamma \ (B_s^0 \to D_s K)$                                                    | _                            | $11^{\circ}$          | $2.0^{\circ}$         | negligible                  |
| angles                   | $\beta \ (B^0 \to J/\psi \ K^0_S)$                                              | $0.8^{\circ} \ [18]$         | $0.6^{\circ}$         | $0.2^{\circ}$         | $\operatorname{negligible}$ |
| Charm                    | $A_{\Gamma}$                                                                    | $2.3 \times 10^{-3} [18]$    | $0.40 \times 10^{-3}$ | $0.07 \times 10^{-3}$ | _                           |
| CP violation             | $\Delta A_{CP}$                                                                 | $2.1 \times 10^{-3} \ [5]$   | $0.65 \times 10^{-3}$ | $0.12 \times 10^{-3}$ | _                           |

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (37/40)



- two lines of attack
  - increase trigger efficiencies for hadronic final states
    - read out the full detector at the LHC bunch-crossing frequency
  - operate the detector at up to  $\times$  5 higher luminosity
    - new main tracker to cope with increase in particle densities

expected increase in yearly rate (compared to 2011): x 10 for channels involving final-state muons x 20 for channels to fully hadronic final states

- details are described in
  - Letter of Intent [CERN-LHCC-2011-001]
  - Framework TDR [CERN-LHCC-2012-007]
- endorsed by the LHCC



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (38/40)



### LHCb Upgrade



- 2013: technology choices, preparation of sub-system TDRs
- 2014: funding, procurements
- 2015-2019: construction and installation

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (39/40)

- CP violating phases and rare FCNC decays provide a sensitive probe for New Physics – up to higher mass scales than direct searches
- LHC and LHCb are a spectacular success
  number of submitted papers approaching 150 already 59 in 2013
- results are in excellent agreement with Standard Model predictions
  severe constraints on New Physics models
- ... except for an intriguing deviation in angular distribution of  $B^o \to K^{\star o} \, \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$ 
  - looking forward to stimulating discussions with theorists and to results from analysis of 2012 data
- LHCb upgrade is on its way for 2018/19
  - factor 20 compared to 2011 in rate for hadronic final states

### Stay tuned ... exciting times are ahead.





## Flavour Tagging



- opposite-side flavour tagging: imply  $B_s^0$  flavour at production from decay properties of the associated b hadron produced
  - neural net algorithm using charge of lepton, kaon, inclusive vertex
- calibrated on flavour-specific decays such as  $B^{\scriptscriptstyle\pm} \to J/\psi~K^{\scriptscriptstyle\pm}$
- effective tagging power:

$$\epsilon_{\text{tag}} \times (1 - 2\,\overline{\omega}_{\text{tag}})^2 = (2.35 \pm 0.06(\text{stat})) \% \qquad \begin{array}{c} \text{[LHCb-CONF-2012-026]} \\ \text{preliminary} \end{array}$$

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (42/40)

# Angular Analysis in $B^0_{\ s} \rightarrow J/\psi \phi$

- time-dependent angular fit using transversity angles  $\Omega = (\theta = \theta_u, \phi = \phi_u, \psi = \theta_k)$
- full fit function:

LHCh

$$\frac{\mathrm{d}^4 \Gamma(B_s^0 \to J/\psi \,\phi)}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$



 $h_k(t) = N_k e^{-Gt} \left[ a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$ 

| k              | $f_k(	heta_\mu,	heta_K,\phi_h)$                                    | $N_k$                            | $a_k$                                        | $b_k$                                      | $c_k$                                     | $d_k$                                        |
|----------------|--------------------------------------------------------------------|----------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------------|
| 1              | $2\cos^2	heta_K\sin^2	heta_\mu$                                    | $ A_0(0) ^2$                     | 1                                            | D                                          | C                                         | -S                                           |
| <b>2</b>       | $\sin^2 	heta_K \left( 1 - \sin^2 	heta_\mu \cos^2 \phi_h \right)$ | $ A_{\parallel}(0) ^2$           | 1                                            | D                                          | C                                         | -S                                           |
| 3              | $\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \sin^2 \phi_h\right)$ | $ A_{\perp}(0) ^2$               | 1                                            | -D                                         | C                                         | S                                            |
| 4              | $\sin^2\theta_K \sin^2\theta_\mu \sin 2\phi_h$                     | $ A_{\parallel}(0)A_{\perp}(0) $ | $C\sin(\delta_{\perp} - \delta_{\parallel})$ | $S\cos(\delta_{\perp}-\delta_{\parallel})$ | $\sin(\delta_{\perp}-\delta_{\parallel})$ | $D\cos(\delta_{\perp} - \delta_{\parallel})$ |
| 5              | $\frac{1}{2}\sqrt{2}\sin 2\theta_K\sin 2\theta_\mu\cos\phi_h$      | $ A_0(0)A_{\parallel}(0) $       | $\cos(\delta_{\parallel}-\delta_{0})$        | $D\cos(\delta_{\parallel}-\delta_{0})$     | $C\cos(\delta_{\parallel}-\delta_{0})$    | $-S\cos(\delta_{\parallel}-\delta_{0})$      |
| 6              | $-\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \sin \phi_h$  | $ A_0(0)A_{\perp}(0) $           | $C\sin(\delta_{\perp}-\delta_0)$             | $S\cos(\delta_{\perp}-\delta_0)$           | $\sin(\delta_{\perp}-\delta_0)$           | $D\cos(\delta_{\perp}-\delta_0)$             |
| $\overline{7}$ | $\frac{2}{3}\sin^2\theta_{\mu}$                                    | $ A_s(0) ^2$                     | 1                                            | -D                                         | C                                         | S                                            |
| 8              | $\frac{1}{3}\sqrt{6}\sin\ddot{\theta}_K\sin 2\theta_\mu\cos\phi_h$ | $ A_s(0)A_{\parallel}(0) $       | $C\cos(\delta_{\parallel} - \delta_S)$       | $S\sin(\delta_{\parallel}-\delta_{S})$     | $\cos(\delta_{\parallel}-\delta_{S})$     | $D\sin(\delta_{\parallel} - \delta_S)$       |
| 9              | $-\frac{1}{3}\sqrt{6}\sin\theta_K\sin 2\theta_\mu\sin\phi_h$       | $ A_s(0)A_{\perp}(0) $           | $\sin(\delta_{\perp} - \delta_S)$            | $-D\sin(\delta_{\perp}-\delta_{S})$        | $C\sin(\delta_{\perp} - \delta_S)$        | $S\sin(\delta_{\perp}-\delta_S)$             |
| 10             | $\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$                  | $ A_s(0)A_0(0) $                 | $C\cos(\delta_0 - \delta_S)$                 | $S\sin(\delta_0 - \delta_S)$               | $\cos(\delta_0 - \delta_S)$               | $D\sin(\delta_0 - \delta_S)$                 |

#### • physics parameters:

$$\delta \approx \overline{-\sin\phi_s}; \ \mathsf{D} \approx \overline{-\cos\phi_s}; \ \Delta m_s; \ \Delta \Gamma_s; \ |\mathbf{A}_{\perp}|; \ |\mathbf{A}_{\parallel}|; \ |\mathbf{A}_{0}|; \ \delta_{\perp}; \ \delta_{\parallel}; \ \delta_{0};$$

• two-fold ambiguity in solution: fit function invariant under transformation

$$(\phi_{s}, \Delta\Gamma_{s}, \delta_{\parallel}, \delta_{\perp}) \leftrightarrow (\pi - \phi_{s}, -\Delta\Gamma_{s}, 2\pi - \delta_{\parallel}, -\delta_{\perp})$$

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (43/40)



# Sign of $\Delta \Gamma_{\rm s}$

• two-fold ambiguity of fit function

$$\begin{array}{c} (\varphi_{s}, \Delta\Gamma_{s}, \delta_{\parallel}, \delta_{\perp}) & \longleftrightarrow & (\pi - \varphi_{s}, -\Delta\Gamma_{s}, 2\pi - \delta_{\parallel}, -\delta_{\perp}) \\ \text{("solution I")} & \text{("solution II")} \end{array}$$

- resolve this by looking at the strong phase difference  $\delta_{s\perp} = \delta_s \delta_{\perp}$  between  $K^+K^-$  P-wave and S-wave amplitudes as a function of m( $K^+K^-$ ) around the  $\phi(1020)$
- method explained in [PRL 108 (2012) 241801]
  - P-wave: going through  $\phi(1020)$  resonance  $\rightarrow$  expect rapid positive phase shift
  - S-wave: non-resonant + tail from  $f_0(980)$  $\rightarrow$  expect no significant variation of phase
- determine  $\boldsymbol{\delta}_{_{\boldsymbol{s}\boldsymbol{\perp}}}$  in six  $K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$  mass bins

solution corresponding to  $\Delta\Gamma_{\rm s}$  > 0

(blue points) matches expectation



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (44/40)

### CPV in 3-Body Charmless B decays

#### study time-integrated CP asymmetry in bins of the Dalitz plot



 $B^{\pm} \to K^{\pm} K^{+} K^{-}$ 

- large local asymmetry, not aligned with a resonance
- integrated over Dalitz plot:

 $A_{CP} = -0.043 \pm 0.009 (\text{stat}) \pm 0.003 (\text{syst}) \pm 0.07 (J/\psi K^{\pm})$ 

 $B^{\pm} \to K^{\pm} \, \pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -}$ 

- large local asymmetry at  $\rho^{\text{o}}$  resonance
- integrated over Dalitz plot:

 $A_{CP} = 0.032 \pm 0.008 (stat) \pm 0.004 (syst) \pm 0.07 (J/\psi K^{\pm})$ 

#### [arxiv:1306:1246]

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (45/40)

# Conter 3-Body Charmless B decays



large local asymmetries, not aligned with resonances [LHCb-CONF-2012-028]

PRELIMINARY



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (46/40)

#### HCh Other 2-Body Charmless B decays



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (47/40)



### P5' in 1-6 $GeV^2/c^4$



27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (48/40)

### Other $b \rightarrow s \mu^+ \mu^-$ Decays

 $B^{0}_{c} \rightarrow \phi \mu^{+} \mu^{-}$  differential BF and angular observables [JHEP 07 (2013) 084]

angular observables in good agreement with Standard Model prediction

LHCb

[0.00-2.00] GeV<sup>2</sup>/c<sup>4</sup>

BF smaller than predicted, shape as function of  $q^2$  agrees with prediction



- $\Lambda_{_{\text{b}}} \,{\rightarrow}\, \Lambda \, \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$  differential BF
- agreement with SM prediction but uncertainties still large

[arxiv:1306:2577]



Lomonosov 2013 - CPV & Rare Decays @ LHCb (49/40)

5.8 5.4

 $M(\Lambda \mu^+ \mu^-)$  [GeV/ $c^2$ ]

O. Steinkamp

15

 $q^2 [GeV^2/c^4]$ 

10

5

27.08.2013

HC

# Reminder: Current LHCb Trigger



### Hardware level (LO):

- maximum output rate 1 MHz
- typical thresholds 2012:
   E<sub>τ</sub>(e/γ) > 2.7 GeV
  - $E_{\tau}(h) > 3.6 \, GeV$
  - p<sub>T</sub>(μ) > 1.4 GeV



~ 30000 tasks in parallel on ~ 1500 nodes

### Combined efficiency (LO+HLT):

- ~ 90 % for di-muon channels
- ~ 30 % for multi-body hadronic final states

### Offline processing:

~ 10<sup>10</sup> events, 700 TB recorded per year

27.08.2013

Lomonosov 2013 - CPV & Rare Decays @ LHCb (50/40)