ICARUS Status Report

16th Lomonosov Conference Moscow, 22 August 2013

The ICARUS Collaboration

M. Antonello^a, B. Baibussinov^b, P. Benetti^c, F. Boffelli^c, A. Bubak^k,
E. Calligarich^c, N. Canci^a, S. Centro^b, A. Cesana^f, K. Cieslik^g, D. B. Cline^h,
A.G. Cocco^d, A. Dabrowska^g, D. Dequal^b, A. Dermenevⁱ, R. Dolfini^c, A. Falcone^c,
C. Farnese^b, A. Fava^b, A. Ferrarij, G. Fiorillo^d, D. Gibin^b, S. Gninenkoⁱ,
A. Guglielmi^b, M. Haranczyk^g, J. Holeczek^l, M. Kirsanovⁱ, J. Kisiel^l, I. Kochanek^l,
J. Lagoda^m, S. Mania^l, A. Menegolli^c, G. Meng^b, C. Montanari^c, S. Otwinowski^h,
P. Picchiⁿ, F. Pietropaolo^b, P. Plonski^o, A. Rappoldi^c, G.L. Raselli^c, M. Rossella^c,
C. Rubbia^{a,j,q}, P. Sala^f, A. Scaramelli^f, E. Segreto^a, F. Sergiampietri^p, D. Stefan^a,
R. Sulej^{m,a}, M. Szarska^g, M. Terrani^f, M. Torti^c, F. Varanini^b, S. Ventura^b,
C. Vignoli^a, H. Wang^h, X. Yang^h, A. Zalewska^g, A. Zani^c, K. Zaremba^o.

a Laboratori Nazionali del Gran Sasso dell'INFN, Assergi (AQ), Italy

- b Dipartimento di Fisica e INFN, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
- c Dipartimento di Fisica Nucleare e Teorica e INFN, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
- d Dipartimento di Scienze Fisiche, INFN e Università Federico II, Napoli, Italy
- e Dipartimento di Fisica, Università di L'Aquila, via Vetoio Località Coppito, I-67100 L'Aquila, Italy
- f INFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133 Milano, Italy
- g Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland
- h Department of Physics and Astronomy, University of California, Los Angeles, USA
- i INR RAS, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
- j CERN, CH-1211 Geneve 23, Switzerland
- k Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland
- I Institute of Physics, University of Silesia, 4 Uniwersytecka st., 40-007 Katowice, Poland
- m National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock/Swierk, Poland
- n Laboratori Nazionali di Frascati (INFN), Via Fermi 40, I-00044 Frascati, Italy
- o Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska, 00665 Warsaw, Poland
- p INFN, Sezione di Pisa. Largo B. Pontecorvo, 3, I-56127 Pisa, Italy
- q GSSI, Gran Sasso Science Institute, L'Aquila, Italy

The ICARUS experiment

- ICARUS is the first large volume LAr-TPC (760 tons) installed in Hall B of LNGS underground laboratory. It took data from May 2010 to June 2013 recording interactions from both CNGS v beam and cosmic rays.
- "Electronic bubble chamber": excellent spatial resolution (~mm), homogeneous calorimetry, self-triggering detector.
- Important contributions to sterile neutrino search ($v_{\mu} \rightarrow v_{e}$) and neutrino velocity measurements
- A technological milestone towards future larger LAr-TPCs (tens of kt)

The ICARUS T600 detector

Two identical modules

- 3.6 x 3.9 x 19.6 ≈ 275 m³
 each
- Liquid Ar active mass: ≈ 476 t
- Drift length = 1.5 m (1 ms)
- HV = -75 kV E = 0.5 kV/cm
- v-drift = 1.55 mm/μs

4 wire chambers:

- 2 chambers per module
- 3 readout wire planes/chamber, @ 0,±60°
- ~54000 wires, 3mm pitch,3mm plane spacing
- 20+54 PMTs , 8" Ø, for scintillation light:
 - VUV light (128nm) with wave shifter (TPB)

LAr purification

- Very high LAr purity is a key feature of ICARUS:
 - Highly efficient filters for O_2 and H_2O
 - Ultra High Vacuum techniques
 - Continuous purification by recirculation (gas and liquid phases).
- Free electron lifetime τ_{ele} > 5ms (~60 ppt $[O_2]_{eq}$) obtained in T600 (maximum charge attenuation at 1.5 m: 17%)
- τ_{ele} > 20ms obtained in ICARINO test facility: very promising for future detectors with larger drift length
- New non-immersed motor recirc. pump tested (Apr 2013): τ_{ele} > 7ms

Run with CNGS beam

- Exposed to CNGS v beam from 1/10/2010 to 3/12/2012
- Total collected event statistics : 8.6 10¹⁹ pot with a detector live-time >93%
- Trigger based on PMT signals, in coincidence with proton extraction
- First published physics results
 - Superluminal v searches:
 - 1. Cherenkov-like e^+e^- emission: PL B711 (2012) 270
 - 2. neutrino tof measurement PL B713 (2012), 17
 - 3. neutrino tof precision measurement: JHEP 11 (2012) 049
 - > Search for $v_{\mu} \rightarrow v_{e}$ "LSND/MiniBooNE" anomaly:
 - 1. Eur. Phys. J. C 73 (2013)
 - 2. New improved results: arXiv:1307.4699
- Technical run with cosmics from Dec. 2012 to June 2013

6

T600 decommissioning

- Data taking with cosmic rays stopped on June 27th: emptying started immediately after
- The emptying phase of two Cryostats ended on July 25th: 740 tons of LAr were recovered
- The Warming-up phase is ongoing; the dismantling of the cryogenic systems, read-out electronics and ancillary systems will start in September.
- The TPC chambers will be extracted and transported to CERN for the T600 refurbishing.

LAr-TPC reconstruction performance

• Tracking:

- Automatic vertex and track identification
- Precise (1 mm) 3D track reconstruction
- Muon momentum via multiple scattering
- Measurement of energy deposition dE/dx:
 - Good e/γ separation
 - Particle ID (dE/dx vs. range)
- Total energy reconstruction of events from charge integration:
 - Full sampling, homogeneous calorimetry with excellent accuracy for contained events

3D reconstruction (example of stopping μ)

Simultaneous 3D polygonal fit \rightarrow 2D hit-to-hit associations no longer needed

Adv.High Energy Phys. 2013 (2013) 260820

e/ γ separation and π^0 reconstruction

Muon momentum measurement via multiple scattering

Key tool to measure momentum of non-contained muons: essential for v_{μ} CC

- Measurement of p_{μ} with MS in LAr first proposed by C. Rubbia (1999)
- Muon track is well measured (3 mm sampling) -> it is possible to separate momentum-dependent MS deflections from fake scattering due to measurement error on position.
- Current implementation:
 - Accurate, automatic track cleaning from 8 rays and crossing tracks.
 - Tracks are split into "segments", optimized to enhance MS contribution w.r.t. errors (estimated event-by-event)
 - "χ²(p)" built from angles between consecutive segments permits to estimate muon momentum and errors.

CNGS stopping muons

- Single muons from CNGS neutrino interactions in upstream rock, stopping in the detector
 - Momentum range (0.5ô 4 GeV/c) is perfectly matched to future long and short baseline experiments
- > p_{μ} precisely known from calorimetry (~1% resolution, <1% bias).

-> Direct validation of MS with real data

• 129 muons analyzed (length>2.5m to ensure correct muon identification)

Extension to much more complex/higher energy CNGS $v_{\mu}CC$ events: ongoing evaluation/correction of possible detector effects Preliminary results are encouraging 1

MS vs. calorimetry comparison

- Example of momentum measurement using only first 4 meters of μ track
- Good resolution over the full muon momentum range
- Higher statistics study is ongoing

Muon momentum measurement by MS is possible with a resolution $\approx 10\%$ in the range of interest for future experiments²

The sterile neutrino puzzle

- Significant evidence of $v_{\mu} \rightarrow v_{e}$ transitions from LSND experiment, with L/E~ 1 m/MeV. MiniBoone results do not fully confirm or rule out LSND.
- LSND's most likely interpretation (if confirmed) is the existence of (at least) a 4th neutrino flavor, with ∆m²≈10⁻²÷1 eV²
- In recent years, many hints to (anti-)neutrino oscillations in a similar L/E range

Anomaly	Source	Туре	Channel	Significance
LSND	Short	Decay at rest	-vµ ->ve	3.8 σ
	baseline		СС	
MiniBoone	Short	Neutrino	-vµ –>ve	3.4 σ
	baseline	beam	CC	
MiniBoone	Short	Anti-Neutr.	anti-vµ –>ve	2.8 σ
	baseline	beam	СС	
Gallium	Electron	Source	v disapp.	2.7 σ
	capture			
Reactors	Fission	Beta decay	v disapp.	3.0 σ
Cosmology	Big bang	No of		≈ 2 σ
	WMAP	neutrino		

ICARUS-T600 is addressing the LSND claim for a large fraction of parameter space

LSND effects in ICARUS

- Search for $v_{\mu} \rightarrow v_{e}$ appearance in CNGS beam neutrinos
- CNGS peaked in 10-30 GeV energy range (beam associated $v_e \sim 1\%$):
- Difference w.r.t. LSND experiment:

L/E ≈ 36.5 m/MeV in ICARUS (≈ 1 m/MeV at LSND).

LSND-like short distance oscillation signal averages to:

 $\sin^2(1.27 \Delta m_{new}^2 L/E) \approx \frac{1}{2} \text{ and } \langle P \rangle_{\nu_{\mu}} \rightarrow \nu_{e} \approx \frac{1}{2} \sin^2(2\theta_{new})$

- •In the ICARUS L/E region, contributions from standard neutrino oscillations are not too relevant, unlike other LBL experiments i.e. MINOS, T2K.
- The unique detection capabilities of LAr-TPC technique allows to identify individual v_e events with high efficiency.

New results presented here refer to 1995 v interactions (6.0 10¹⁹ pot statistics). 2

Selection of v_e events

- POSITION AND ENERGY CUTS:
- Primary vertex at > 5 cm from TPC walls (50 cm downstream) for shower identification
- Visible energy <30 GeV (beam extends to higher E_v), only 15% signal events rejected

- ELECTRON SIGNATURE:
- A charged track from primary vertex, m.i.p. on 8 wires, subsequently building up into a shower (very dense sampling: every 0.02 X₀)
- Clear separation (150 mrad) from other ionizina tracks near the vertex in at least one of 2 transverse views
 - Electron efficiency studied with a sophisticated simulation: h=0.74±0.05. (for intrinsic v_e background, η' = 0.65±0.06 due to harder spectrum)

The expected number of e- events from intrinsic ν_e beam, θ_{13} ~9° and ν_{μ} - ν_{τ} oscillations is 6.4±0.9

4 v_e events observed on 1995 neutrinos

Reconstruction:

- (1) $E_{tot} = 11.5 \pm 1.8 \text{ GeV},$ $p_t = 1.8 \pm 0.4 \text{ GeV/c}$ (2) $E_{tot} = 17 \text{ GeV},$ $p_t = 1.3 \pm 0.18 \text{ GeV/c}$
- (3) $E_{tot} = 27 \pm 2.0 \text{ GeV},$ $p_t = 3.5 \pm 0.9 \text{ GeV/c}$ (4) $E_{tot} = 14 \pm 1 \text{ GeV},$ $p_t = 1.2 \pm 0.2 \text{ GeV/c}$

In all events: single electron shower clearly opposite to hadronic component in the transverse plane

Results on LSND-like anomaly

- The first ICARUS result (Eur. 10^2 Phys. J. C 73) based on 1091 v interactions (3.3 10^{19} pot) ruled out most of LSND anomaly parameter region, indicating a 10 narrow region around $(\Delta m^2 sin^2 2\theta) = (0.5 eV^2 - 0.005)$ where all results are compatible.
- New updated analysis with almost doubled statistics
 ⇒ in total 6.0 x 10¹⁹ pot and 1995 n events
- Limits on number of events: 3.7 (90% CL) 8.3 (99% CL)
- Limits on oscillation probability:

 $P_{\nu\mu\to\nu e} \le 3.4 \ 10^{-3} \ (90\% \ CL)$ $P_{\nu\mu\to\nu e} \le 7.6 \ 10^{-3} \ (99\% \ CL)$

Search for antineutrino oscillation

- A test of "LSND-like" antineutrino oscillation can be performed using the anti- v_{μ} contamination in the CNGS beam (2%); search for appearance of anti- v_e (signature is identical to v_e)
- The absence of an anomalous anti-v_e excess gives a limit of 4.2 events @90% C.L.
- Large sin²20 solutions in LSND/MiniBOONE antineutrino parameter space are excluded.

Outlook and conclusions

- ICARUS-T600 just ended 3-year run at LNGS with CNGS v beam
- The successful long-term operation of a large LAr-TPC in an underground lab paved the way for a promising future of this detector technique
- Analysis of the full collected CNGS sample and cosmic data is ongoing; first physics results have been published (LSND anomaly, neutrino velocity)
- Detector decommissioning is ongoing; the T600 will soon be moved to CERN for refurbishing and further R&D activity with test beams
- Partnership with LBNE project ensures a long-term future for LAr-TPC technology

THANK YOU!