MINOS Oscillation Results

I 6th Lomonosov Conference Moscow, Russia August 22, 2015

Stanford University on behalf of MINOS Collaboration

tanle

The current neutrino program is very much based on Pontecorvo's seminal ideas

Stanley Wojcicki

The current neutrino program is very much based on Pontecorvo's seminal ideas

Stanley Wojcicki

16th Lomanosov Conference

Some Key Ideas

Solar neutrinos, 1948
 ³⁷Cl (v,e⁻) ³⁷Ar

Bruno Pontecorvo (1913-1993)

The current neutrino program is very much based on Pontecorvo's seminal ideas

Stanley Wojcicki

- Solar neutrinos, 1948
 ³⁷Cl (v,e⁻) ³⁷Ar
- Different v flavors, 1957
 Neutrino oscillations

The current neutrino program is very much based on Pontecorvo's seminal ideas

Stanley Wojcicki

Some Key Ideas

- Solar neutrinos, 1948
 ³⁷Cl (v,e⁻) ³⁷Ar
- Different V flavors, 1957
 Neutrino oscillations
- Accelerator produced v beams, 1959 $\pi \rightarrow \mu + \nu, K \rightarrow \mu + \nu$

The current neutrino program is very much based on Pontecorvo's seminal ideas

- Few Experimental Details
- History
- Results from Initial Analyses
 - * v_{μ} and $\overline{v_{\mu}}$ disappearance
 - \star V_e appearance
- New Analyses
 - Neutral Currents (4v, sterile v)
 - * Combined 3-flavor Analysis
- Other Physics Topics (briefly)
- Future Plans

MINOS Geography

MINOS Geography

MINOS Geography

NuMI Beam

NuMI Beam

Proton Source: Fermilab Main Injector, 120 GeV p's 2.2s rep rate 10µs pulse length up to 320 kW delivered on target

NuMI Beam

Proton Source: Fermilab Main Injector, 120 GeV p's 2.2s rep rate 10µs pulse length up to 320 kW delivered on target

Target to first horn separation is variable Allows different V spectra Allows tuning of hadron production spectra

- As similar as possible functionally
- Alternating layers of steel (2.5 cm thick) and scintillator
- Alternating scintillator planes at 90 deg, 4.1 cm strips
- Light collection by wavelength shifting fibers
- Readout by 64 ch(ND) or 16 ch(FD) multi-anode PMT's
- Magnetized, average B field I.3 T

- As similar as possible functionally
- Alternating layers of steel (2.5 cm thick) and scintillator
- Alternating scintillator planes at 90 deg, 4.1 cm strips
- Light collection by wavelength shifting fibers
- Readout by 64 ch(ND) or 16 ch(FD) multi-anode PMT's
- Magnetized, average B field I.3 T

Measurements in ND are used to predict flux in FD

 ν_{μ} -CC event

 ν_e -CC event

NC event

- Early Discussions, EOI's
- Ist Collaboration Meeting
- Formal Proposal

Spring 1994

August 12,13/1994

February/1995

- Early Discussions, EOI's
- Ist Collaboration Meeting
- Formal Proposal

Spring 1994

August 12,13/1994

February/1995

Neutrino '98, Takayama June/1998

Discovery That Neutrino Has Mass Reverberates In Physics

- Early Discussions, EOI's
- Ist Collaboration Meeting
- Formal Proposal

Spring 1994

August 12,13/1994

February/1995

Neutrino '98, Takayama June/1998

• Approval for Construction

Discovery That Neutrino Has Mass Reverberates In Physics

June 05, 1998 | By New York Times News Service.

November/1998

- Early Discussions, EOI's
- Ist Collaboration Meeting
- Formal Proposal

Spring 1994

August 12,13/1994

February/1995

Neutrino '98, Takayama June/1998

• Approval for Construction

Discovery That Neutrino Has Mass Reverberates In Physics

June 05, 1998 | By New York Times News Service.

November/1998

- Early Discussions, EOI's
- Ist Collaboration Meeting
- Formal Proposal

Spring 1994

August 12,13/1994

February/1995

Neutrino '98, Takayama June/1998

- Approval for Construction
- Beneficial Occupancy of Cavern Jul

Discovery That Neutrino Has Mass Reverberates In Physics

June 05, 1998 | By New York Times News Service.

November/1998

July/2000

- Early Discussions, EOI's
- Ist Collaboration Meeting
- Formal Proposal

Spring 1994

August 12,13/1994

February/1995

Neutrino '98, Takayama June/1998

- Approval for Construction November/1998
- Beneficial Occupancy of Cavern July/2000
- Ist Half of Far Detector Finished June/2002

Discovery That Neutrino Has Mass Reverberates In Physics

- Early Discussions, EOI's
- Ist Collaboration Meeting
- Formal Proposal

Spring 1994

August 12,13/1994

February/1995

Discovery That Neutrino Has Mass

Reverberates In Physics

Neutrino '98, Takayama June/1998

- Approval for Construction N
- Beneficial Occupancy of Cavern July/2000
- Ist Half of Far Detector Finished June/2002
- Far Detector Finished July/2003

luly/2000

- Early Discussions, EOI's
- Ist Collaboration Meeting
- Formal Proposal

Spring 1994

August 12,13/1994

February/1995

Neutrino '98, Takayama June/1998

- Approval for Construction
- Beneficial Occupancy of Cavern July/2000
- Ist Half of Far Detector Finished June/2002
- Far Detector Finished
- First Beam Delivered

November/1998 July/2000

July/2003

February/2005

Discovery That Neutrino Has Mass

Reverberates In Physics

- Early Discussions, EOI's
- **Ist Collaboration Meeting**
- **Formal Proposal**

Spring 1994

August 12,13/1994

February/1995

Neutrino '98, Takayama June/1998

- **Approval for Construction**
- July/2000 Beneficial Occupancy of Cavern
- Ist Half of Far Detector Finished June/2002
- Far Detector Finished
- First Beam Delivered
- End of Data Taking

November/1998

Discovery That Neutrino Has Mass

Reverberates In Physics

June 05, 1998 | By New York Times News Service.

June/2012

July/2003

Data Taking History

Data Taking History

Data Taking History

In addition MINOS has obtained 37.88 kt yrs of atmospheric v data

Stanley Wojcicki

16th Lomanosov Conference

Detector performance, stability

Detector performance, stability

Detector performance, stability

Use light injection, through-going muons and stopping muons for calibration and monitoring

$$|
u_{lpha}\rangle = \sum_{i} U^{*}_{lpha i} |
u_{i}\rangle$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 Δm^{2}_{31}

 Δm^{2}_{21} Irrelevant here

Disappearance experiment: $V_{\mu} \rightarrow V_{x}$

Disappearance experiment: $V_{\mu} \rightarrow V_{x}$ Appearance experiment: $V_{\mu} \rightarrow V_{e}$

Disappearance experiment: $V_{\mu} \rightarrow V_{x}$ Appearance experiment: $V_{\mu} \rightarrow V_{e}$ CPT, Anomalous interactions: $\overline{V_{\mu}} \rightarrow V_{x}$

Disappearance experiment: $V_{\mu} \rightarrow V_{x}$ Appearance experiment: $V_{\mu} \rightarrow V_{e}$ CPT, Anomalous interactions: $\overline{V_{\mu}} \rightarrow V_{x}$ Search for a 4th, sterile neutrino: $V_{\mu} \rightarrow V_{s}$

Stanley Wojcicki

16th Lomanosov Conference

Stanley Wojcicki

16th Lomanosov Conference

<u>Combined Atmospheric and</u> <u>Beam Disappearance Analysis</u>

Stanley Wojcicki

16th Lomanosov Conference

<u>v</u> oscillation parameters

 $\sin^2(2\overline{\theta}) = 0.97^{+0.03}_{-0.08}$ $\Delta \overline{m}^2 = 2.50^{+0.23}_{-0.25} \times 10^{-3} eV^2$ $\sin^2(2\overline{\theta}) > 0.83 \ (90\% C.L.)$

 $\frac{\text{V oscillation parameters}}{\sin^2(2\theta) = 0.95^{+0.035}_{-0.036}}$ $|\Delta m^2| = 2.41^{+0.09}_{-0.10} \times 10^{-3} eV^2$ $\sin^2(2\theta) > 0.89 \ (90\% C.L.)$

3.0

|∆m²| / (10⁻³ eV²) 5^{.2}

2.0

2.0

MINOS v_{μ} disappearance

37.88 kt-yr Atmospheric

10.71 $\times 10^{20}$ POT ν_{μ} mode

3.36 ×10²⁰ POT ⊽, mode

 $|\Delta m^2| = |\Delta \overline{m}^2|$

2.5 $|\Delta \overline{m}^2| / (10^{-3} \text{ eV}^2)$

V oscillation parameters

-68% C.L.

-90% C.L

Best fit

<u>v</u> oscillation parameters

 $\begin{aligned} \sin^2(2\overline{\theta}) &= 0.97^{+0.03}_{-0.08} & \sin^2(2\theta) = 0.95^{+0.035}_{-0.036} \\ \Delta \overline{m}^2 &= 2.50^{+0.23}_{-0.25} \times 10^{-3} eV^2 & |\Delta m^2| = 2.41^{+0.09}_{-0.10} \times 10^{-3} eV^2 \\ \sin^2(2\overline{\theta}) &> 0.83 \ (90\% C.L.) & \sin^2(2\theta) > 0.89 \ (90\% C.L.) \end{aligned}$ Clearly there is good agreement in oscillation parameters

3.0

Results from Combined 2-

flavor Analysis

Results from Combined 2-

flavor Analysis

Results from Combined 2-

flavor Analysis

 $\begin{aligned} \left| \Delta m^2 \right| &= 2.41^{+0.09}_{-0.10} \times 10^{-3} \text{eV}^3 \\ \sin^2(2\theta) &= 0.950^{+0.035}_{-0.036} \\ \sin^2(2\theta) &> 0.890 \ (90\% \text{ C.L.}) \end{aligned}$

Stanley Wojcicki

Results from Combined 2flavor Analysis

MINOS Final 2 flavor Results

$$\begin{aligned} \left| \Delta m^2 \right| &= 2.41^{+0.09}_{-0.10} \times 10^{-3} eV^2 \\ \sin^2(2\theta) &= 0.950^{+0.035}_{-0.036} \\ \sin^2(2\theta) &> 0.890 \ (90\% \, C.L.) \end{aligned}$$

MINOS, SuperK and T2K contours superimposed

Stanley Wojcicki

MINOS granularity makes v_e/NC separation difficult

- MINOS granularity makes v_e/NC separation difficult
- The technique used compares candidate events to an MC library of events - Library Event Matching (LEM)

- MINOS granularity makes v_e/NC separation difficult
- The technique used compares candidate events to an MC library of events - Library Event Matching (LEM)
- Subsequently a discriminant variable is calculated based on likely events

- MINOS granularity makes v_e/NC separation difficult
- The technique used compares candidate events to an MC library of events - Library Event Matching (LEM)
- Subsequently a discriminant variable is calculated based on likely events
- Analysis is background dominated; Near Detector measurement is used to predict the background in the Far Detector

- MINOS granularity makes v_e/NC separation difficult
- The technique used compares candidate events to an MC library of events - Library Event Matching (LEM)
- Subsequently a discriminant variable is calculated based on likely events
- Analysis is background dominated; Near Detector measurement is used to predict the background in the Far Detector

- MINOS granularity makes v_e/NC separation difficult
- The technique used compares candidate events to an MC library of events - Library Event Matching (LEM)
- Subsequently a discriminant variable is calculated based on likely events
- Analysis is background dominated; Near Detector measurement is used to predict the background in the Far Detector

Stanley Wojcicki

ve Contour Plots

ve Contour Plots

Stanley Wojcicki

R

ve Contour Plots

v_e and $\overline{v_e}$ combined

At
$$\delta_{CP} = 0$$
 and $\theta_{23} < \pi/4$,

- Assuming normal hierarchy: $2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.051^{+0.038}_{-0.030}$ $0.01 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.12$ (90% C.L.)
- Assuming inverted hierarchy:

 $2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.093^{+0.054}_{-0.049}$ $0.03 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.18$ (90% C.L.)

NEW Analyses

Stanley Wojcicki

16th Lomanosov Conference

August 22, 2013 17

<u>4v? Sterile Neutrinos?</u>

<u>4v? Sterile Neutrinos?</u>

• There is now some evidence (not all consistent) for a sterile neutrino with Δm^2_{34} ~ .1 - 1 eV²

<u>**4v? Sterile Neutrinos?</u></u></u>**

- There is now some evidence (not all consistent) for a sterile neutrino with Δm²₃₄
 ~.I - I eV²
- A 4 by 4 matrix would then be necessary to describe oscillations, with 1 new mass, 3 new angles (small) and 3 additional phases

<u>**4v? Sterile Neutrinos?</u></u></u>**

- There is now some evidence (not all consistent) for a sterile neutrino with Δm²₃₄
 ~.I - I eV²
- A 4 by 4 matrix would then be necessary to describe oscillations, with 1 new mass, 3 new angles (small) and 3 additional phases
- In MINOS both CC and NC channels could show disappearance effects due to this fourth neutrino

<u>**4v? Sterile Neutrinos?</u></u></u>**

- There is now some evidence (not all consistent) for a sterile neutrino with Δm²₃₄
 ~.I - I eV²
- A 4 by 4 matrix would then be necessary to describe oscillations, with 1 new mass, 3 new angles (small) and 3 additional phases
- In MINOS both CC and NC channels could show disappearance effects due to this fourth neutrino

Sterile Neutrinos

Sterile Neutrinos

Sterile Neutrinos

Comparison with standard 3-flavor prediction (Model independent)

$$R = \frac{Data - CC_{Bkgd}}{NC_{Pred}}$$

0-200 GeV: $R = 1.049 \pm 0.076$
0-3 GeV: $R = 1.093 \pm 0.097$
3-200 GeV: $R = 1.009 \pm 0.095$

Compare with Current Status

(Within the framework of the 3+Imodel)

Compare with Current Status 7

(Within the framework of the 3+Imodel)

Oue to a small overall excess observed in data, we obtain stronger limits than our sensitivity

♦ At
$$\Delta m^2_{43} = 0.5 \text{ eV}^2$$
:

♦ MINOS only: $\sin^2(2\theta_{\mu e}^{\otimes}) < 7.1 \times 10^{-3}$ at 90% C.L.

> MINOS + Bugey:
$$\sin^2(2\theta_{\mu e}^{\oslash}) < 7.7 \times 10^{-5}$$
 at 90% C.L.

The full relevant phase space for Δm^2_{43} is currently being explored

Slide from J.L.B.Coelho

Combined 3-flavor Analysis (Disappearance and Appearance)

- Data used
 - * 10.71×10^{21} POT v_{μ} mode
 - * 3.36 x 10^{21} POT $\overline{\nu_{\mu}}$ mode
 - * 37.88 kt-yr atmospheric neutrinos

Combined 3-flavor Analysis (Disappearance and Appearance)

- Data used
 - * 10.71×10^{21} POT v_{μ} mode
 - * 3.36 x 10²¹ POT $\overline{\nu_{\mu}}$ mode
 - * 37.88 kt-yr atmospheric neutrinos
- Method employed (4 parameters)
 - * 3 free parameters (no constraint): $\sin^2\theta_{23}$, Δm^2_{32} , δ_{CP}
 - * External constraint on $sin^2\theta_{13} = 0.0242 \pm 0.0025$, from reactor experiments
 - * Fogli et al. global analysis, arXiv:1205.5254, used for fixed Δm^2_{21} = 7.54 x10⁻⁵ eV² and sin² θ_{12} = 0.307
 - Maximum likelihood surface (4D) obtained for each mass hierarchy

Profiles as function of δ_{CP}

Other Physics Topics

- Neutrino TOF
 ND FD Baseline for v=c : 2,449,316.3±2.3 ns
 MINOS Result: =(-2.4 ± 0.1_{stat} ± 2.6_{syst}) ns
- Neutrino cross sections
- Quasielastic scattering
- Cosmic ray muon charge ratio at ~I TeV
- Multi-muons in cosmic rays
- Muon seasonal variation
- Searches for anomalous neutrino interactions
- Tests of Lorentz invariance

What Next?

Stanley Wojcicki

16th Lomanosov Conference

August 22, 2013 26

• A natural followup to the MINOS experiment

- A natural followup to the MINOS experiment
- Uses same MINOS detector

- A natural followup to the MINOS experiment
- Uses same MINOS detector
- Modified NuMI beam

- A natural followup to the MINOS experiment
- Uses same MINOS detector
- Modified NuMI beam
 - * New target and first horn

- A natural followup to the MINOS experiment
- Uses same MINOS detector
- Modified NuMI beam
 - * New target and first horn
 - * Beam set up for medium energy

- A natural followup to the MINOS experiment
- Uses same MINOS detector
- Modified NuMI beam
 - * New target and first horn
 - * Beam set up for medium energy
 - * 1.33s rep rate

- A natural followup to the MINOS experiment
- Uses same MINOS detector
- Modified NuMI beam
 - * New target and first horn
 - * Beam set up for medium energy
 - * 1.33s rep rate
 - * 500->700 kW beam power

- A natural followup to the MINOS experiment
- Uses same MINOS detector
- Modified NuMI beam
 - * New target and first horn
 - * Beam set up for medium energy
 - * 1.33s rep rate
 - * 500->700 kW beam power
- Runs concurrently with NOvA

- A natural followup to the MINOS experiment
- Uses same MINOS detector
- Modified NuMI beam
 - * New target and first horn
 - * Beam set up for medium energy
 - * 1.33s rep rate
 - * 500->700 kW beam power
- Runs concurrently with NOvA

MINOS+ Physics Goals

- Parameters
 - * 3 years of running
 - * 3000 ν_{μ} CC events per year
- Physics Goals
 - ★ Precision measurements
 - * Emphasis on higher energy
 - * Search for sterile neutrinos
 - * Search for non-standard interactions

Final Remarks

 After a productive 19-year long life MINOS is coming to an end

Final Remarks

- After a productive 19-year long life MINOS is coming to an end
- It is being succeeded by its two progenies:
 - * MINOS+ (MINOS detector, on-axis)
 - emphasizes precision measurements in the atmospheric sector, 4-10 GeV
 - has a high intensity neutrino flux
 - * NOvA (new detector, off-axis)
 - emphasizes mass hierarchy determination, ~2 GeV

Final Remarks

- After a productive 19-year long life MINOS is coming to an end
- It is being succeeded by its two progenies:
 - * MINOS+ (MINOS detector, on-axis)
 - emphasizes precision measurements in the atmospheric sector, 4-10 GeV
 - has a high intensity neutrino flux
 - * NOvA (new detector, off-axis)
 - emphasizes mass hierarchy determination, ~2 GeV
- Let us wish them luck

The MINOS Collaboration

Stanley Wojcicki

16th Lomanosov Conference