Vater Purificatio System

Hyper-Kamiokande project

Access Tunnel

(Lining

Masashi Yokoyama

(Department of Physics, Univ. of Tokyo) for Hyper-Kamiokande Working Group

16th Lomonosov Conference on Elementary Particle physics Moscow State University, Aug. 22-28, 2013

V Observation of V_e appearance by T2K

It's time for the next step!!

- Current generation experiments (T2K, NOvA)
 - Can be sensitive for CPV at $\sim 2\sigma$ level
- Next generation experiments necessary for definitive measurement
 - Neutrino experiments always statistics hungry
 → larger detectors
- Such detector will also enable rich physics program, if designed properly
 - Proton decay
 - Astrophysical neutrino observation

Hyper-Kamiokande Detector

Total volume:0.99 MtonInner volume:0.74 MtonOuter volume:0.2 MtonFiducial volume:0.56 Mton(0.056Mton × 10 compartments)x25 of Super-K

LoI by Hyper-K WG, arXiv:1109.3262 [hep-ex]

 99,000 20" PMT for inner-det. (20% coverage)

• 25,000 8" PMT for outr-det.

Water Purificatiom System

Strong and broad science program

• v oscillation

- Accelerator v beam
- Atmospheric V
- Solar v
- Nucleon decay
- Astrophysics
 - Supernova burst v
 - SN relic v
 - Monitoring of Sun
 - WIMP, GRB,
- Geophysics
- Maybe more (unexpected)

Accelerator v beam

- •Extension of T2K:
 - •Same baseline (295km) and beam energy (~0.6GeV)
 - •Off-axis beam + gigantic water Cherenkov detector
- "short" baseline \rightarrow less matter effect
 - •Focus on *CP* measurement (↔ LBNE/LBNO)

Masashi Yokoyama (U.Tokyo) / Hyper-Kamiokande Project

Measurement of CP asymmetry

 $P(\nu_{\mu} \rightarrow \nu_{e}): \nu_{e}$ appearance probability

• Comparison of $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

- Max. ~ $\pm 25\%$ change from $\delta = 0$ case
- Sensitive to exotic (non-MNS) CPV source

Ve candidate reconstructed energy distributions

*Further BG suppression expected with reconstruction improvement

Masashi Yokoyama (U.Tokyo) / Hyper-Kamiokande Project

Masashi Yokoyama (U.Tokyo) / Hyper-Kamiokande Project

Expected uncertainty of δ (I σ)

Atmospheric neutrinos

 ν_e appearance prob. in 3 flavor oscillation / no oscillation

Mass hierarchy determination with atmospheric neutrinos

 3σ determination with <10 year observation (better sensitivity depending on the value of θ_{23})

θ_{23} octant determination

>3 σ discrimination for sin² θ_{23} <0.47(0.45) or sin² θ_{23} >0.53(0.0.56) for normal (inverted) MH

Complementary measurements to accelerator V Combined analysis of acc + atm V will enhance capability

Proton decay sensitivity

Neutrino astrophysics

Supernova burst neutrino

- >50% efficiency with >3 multiplicity for <2Mpc SN (~1/10yrs expected)
- Huge statistics if SN in our Galaxy
 - ~250k events @ 10kpc
- Supernova relic neutrino

- History of heavy element synthesis in the universe
- Precision measurements of solar neutrino
 - Spectrum upturn, day/night asymmetry
- Indirect WIMP Search

Status of project

2011/10/12

R&D of new photo sensor

- High QE 20" PMT (baseline)
- High QE 20" HPD (desired option)
 - 8" HPD prototype under evaluation
 - Long term test in 200ton water tank t: For PD selection

Much area for more contribution

- R&D ongoing in many areas
 - Readout electronics
 - DAQ system
 - Software development
 - Calibration system
 - Water system
 - \rightarrow Verification with a prototype (~1kton) detector

(funded: JFY2013-2017)

- Will be summarized in documents
 - Lol (2011: DONE)
 - CDR (2013-2014: next step)
 - TDR

Masashi Yokoyama (U.Tokyo) / Hyper-Kamiokande Project

International open Hyper-K meetings

Hyper-K is completely open to the international community.

International WG was formed and actively working.

Current members are from Japan, Canada, Korea, Spain, Switzerland, Russia, UK, US Three meetings so far. Aug. 2012, Jan. 2013, Jun. 2013

http://indico.ipmu.jp/indico/conferenceDisplay.py?&confld=23

Next meeting: Jan. 27-28, 2014 @Kavli IPMU, Kashiwa, Japan

Open to anyone interested in HK!

Masashi Yokoyama (U.Tokyo) / Hyper-Kamiokande Project

Target Schedule

Summary

- Hyper-Kamiokande will provide excellent opportunity for wide range of physics topics
 - Neutrino mixing and CP violation
 - Nucleon decays
 - Neutrino astronomy
- Feasible baseline design exists. Further optimization, R&D, prototyping are ongoing.
- International WG is actively working.
- You are welcome to join!

NNN13 workshop Nov.11-13, 2013 http://indico.ipmu.jp/indico/conferenceDisplay.py?confld=17

Hyper-K in Japanese roadmap

- One of two large-scale future projects recommended by HEP future projects committee.
- Next version of KEK roadmap includes Hyper-K
- Cosmic ray physics community also endorses Hyper-K as the next large-scale project
- In 2013-14, the Japanese Master Plan for large scale projects (for all fields of science) is being updated by Science Council of Japan.
 - Hyper-K is one of proposed projects.
 - The Master Plan is expected to be an important input to the Japanese government.