

Mikhail Lomonosov 1711-1765

Geo-Neutrinos

Geo-v as probes for the deep Earth INF Thanks to neutrinos we were able to get closer insights into deep stellar core... Why do not extend this approach to the Earth study? NEUTRINO GEOSCIENCE Outer cone The Earth shines in anti-v ($\Phi_v \sim 10^6$ cm⁻² s⁻¹)

 232 Th \rightarrow 208 Pb + 6 α + 4 e^{-} + 4 $\sqrt{2}$ + 42.8 MeV $^{238}U \rightarrow ^{206}Pb + 8 \alpha + 8 e^{-} + 6 \overline{v_{a}} + 51.7 \text{ MeV}$ ²³⁵U \rightarrow ²⁰⁷Pb + 7 α + 4 e^{-} + 4 \overline{v}_{e} + 46.4 MeV $^{40}K \rightarrow ^{40}Ca + e^{-} + 1\overline{v}_{e} + 1.32 \text{ MeV} (89.3\%)$ 40 K + e \rightarrow 40 Ar + e⁺ + 1 V_e + 1.505 MeV (10.7%)

Released heat and anti-neutrinos flux in a well fixed ratio!

Geo-v as probes for the deep Earth : feasible because of the progresses on understanding neutrino properties and propagation and because of the existence of extremely low background scintillation detector(expected rates ~ few tens events/year, detection reaction: \bar{v}_{e} +p->e^++n), 16th Lomonosov Conf. 2013, Moscow

Talk Outline

✓ The Earth: what we know and what the geo-v could help to undestand:

- Energy budget;
- Composition and Structure;

 Geo-v: the energy spectra, the expected fluxes and the detection techniques...

 ✓ Two experiments measuring geo-v, Borexino and Kamland: new results released in March '13

Combined analysis

Sources of Earth heat: an open issue!!

Pollack et al., 1993 + Davies & Davies 2010

Heat flux: 47 + 2 TW (Davies and Davies 2010)

Understanding of Earth energetics is a key point to define:

 the energy available to drive the plate tectonics;

• the power substaining the geo dynamo, the source of the Earth magnetic field...

Cond. heat flow law: Q=-k dT/dx

Sandra Zavatarelli, INFN Genova Italy

Waterproof Housing

Data Logger

11 Thermistors

INFN

Sources of Earth heat: an open issue!! Necessary energy supply: U = H (heat flow) x t (Earth age)~ 5 10³⁰ J U_{G} ~ GM²/R~ 4 10³² J, U_{chem} ~ 0.1 eV x N_{at}~6 10³¹ J, U_{nucl} ~ 1 MeV x N_{nucl}~ 6 10³⁰ J => All ok!!!!!

- Total heat flow ("measured"):
 47±2 TW (
- Internal heating ? Radiogenic power: 10-30 TW
 (different Earth models..)
 - ~20% escapes to space as geo-v
 - ~80% remains to heat planet

Geo-v fluxes => HPE's abundances => Radiogenic heat

• Other heat sources:

- Residual heat and secular cooling;
- gravitational contraction and extraterrestrial impacts in the past;
- mantle differentiation and recrystallisation...

MPORTANT MARGINS

FOR ALL DIFFERENT MODELS OF THE EARTH HEAT SOURCES

16th Lomonosov Conf. 2013, Moscow

The Earth: Composition

Sismology -> Mechanical layers

Discontinuities in the waves propagation and velocity -> structure & density profile No info about the chemical composition of the Earth

How do we know the Earth composition ??

Direct rock samples

- surface and bore-holes (max. 12 km)
- mantle rocks brought up by tectonics and vulcanism
 BUT: <u>POSSIBLE ALTERATION DURING THE TRANSPORT</u>

The Crust and Upper Mantle composition are quite known but what about the Lower Mantle and Core composition?

INFN

and crust.

10-1

10-2

10-3

10⁻⁵

10-6

10-7

SUN 10-4

16th Lomonosov Conf. 2013, Moscow

elements Sandra Zavatarelli, INFN Genova Italy

Siderophilic

BSE models

Three classes of BSE compositional models:

Cosmochemical (enstatite chondrites, collisional erosion)

- Geochemical (carbonaceous chondrites+terrestrial samples)
- Geodynamical (mantle convection energetics+surface heat loss)

Strong differences on HPE abundances predictions:

Ref. O. Šrámek et al (1)	Cosmochem.	Geochem.	Geodyn.					
A _u (ppb)	12 <u>+</u> 2	20 <u>+</u> 4	35 <u>+</u> 4	7				
A _{Th} (ppb)	43 <u>+</u> 4	80 <u>+</u> 13	140 <u>+</u> 14	factora				
A _K in ppm	146 <u>+</u> 29	280 <u>+</u> 60	350 <u>+</u> 35					
Th/U	3.5	4.0	4.0					
K/U	12000	14000	10000					
Tot. Power (TW)	11 <u>+</u> 2	20+4	33±3	4				
Mantle Urey ratio	0.08 <u>+</u> 0.05	0. <u>3+</u> 0.1	0.7 <u>+</u> 0.1					
Mantle power (TW)	3.3 <u>+</u> 2.0	12 <u>+</u> 4	25 <u>+</u> 3	factor 10!!				
(1) O. Šrámek et al. Earth. Plan. Sci. Letters 361 (2013) 356-366								

16th Lomonosov Conf. 2013, Moscow

Geo-v a unique direct probe of the Earth interior

The geo-v could help to answer to the following open questions:

- What is radiogenic contribution to the Earth energy budget?
- Which models (BSE?) are correct?
- Earth composition: which are the absolute HPE's abundances? How their are distributed?
- Is the Th/U 3.9 like in chondrites?

U, Th and K are refractory-lithophilic elements, so they are concentrated in the crust & mantle

Ref . Y. Huang et al [*]	M 10 ²¹ Kg	U Abundance µg/g	U Mass µg/g
Continental Upper Crust	6.7 <u>+</u> 0.8	2.7 <u>+</u> 0.6	18.2 ^{+4.8} -4.3
Ocean.Crust	6.3 <u>+</u> 2.2	0.07 <u>+</u> 002	0.4 <u>+</u> 0.2
Depleted Mantle	3207	0.008	25.7
Enriched Mantle	704	0.034	24.0

(*) Huang et al., DOI: 10.1002/ggge.20129,2013 16th Lomonosov Conf. 2013, Moscow

Chemical affinity											18								
1	1 H	2											z He						
2	Goldschmidt Classification									10 Ne									
3	11	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	10 S	17 Cl	18 Ar	
4 (19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	28 Mn	20 Fe	27 Co	28 Ni	29 Cu	зо Zn	31 Ga	32 Ge	33 As	34 Se	as Br	38 Kr	
5	Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	40 Pd	47 Ag	48 Cd	49 In	so Sn	51 Sb	52 Te	53 	54 Хе	
6	55 C9	66 Ba		72 Hf	73 Ta	74 W	75 Re	78 Os	77 t	78 Pt	79 Au	so Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	ae Rn	
7	87 Fr	88 Ra		(104) Rf	(105) Db	(108) Sg	(107) Bh	(108) Hs	(109) Mt	(110) Ds	(111) Rg	(112) Cn	(113) Uut	(114) Uuq	(115) Uup	(116) Uuh	(117) Uus	(118) Uuo	
Lanth	anides		67 La	58 C0	se Pr	60 110	eı Pm	ez Sm	es Eu	e4 Gd	es Tb	ee Dy	e7 Ho	es Er	e9 Tm	70 Yb	71 Lu		
Actin	ides		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	(95) Am	(96) Cm	(97) Bk	(98) Cf	(99) Es	(100) Fm	(101) Md	(102) No	(103) Lr		
Legend:																			
ithophilic- "rock-loving"																			

The importance of multi-site measurements:

Geo-v fluxes not homogeneous!! Seismic tomography reveals superplumes at the base of the mantle beneath Africa and the Pacific => evidences for a not homogeneous mantle...

A one site measurement even if very precise cannot say the whole story: join effort!

16th Lomonosov Conf. 2013, Moscow

Experiments measuring geo-v

Borexino Lab. Naz. Gran Sasso (Italy) Continental crust

•DAQ started in 2007;
• Observation at 99.997 C.L.
in 2010 (Bellini et al, PLB 687) in 252.6 ton y:
• 2013: new data release based on a statistics of 3.7 10³¹ prot/year.

Latitude ~ 40° N Longitude: 13.57° E (LNGS) 137.31° E Kamioka

KamLAND Kamioka (Japan) Contin. + oceanic crust

The first excess due to geoneutrinos measured in 2005 (Araki et al. Nature 436);
99.997 C.L. observation in 2011 (Gando et al, Nature Geoscience 1205) in 4132 ton y:
2013: new data release based on a statistics of 4.9 10³² prot/year

16th Lomonosov Conf. 2013, Moscow

KamLAND & Borexino

Borexino:

•originally build to measure solar neutrinos, extreme radiopurity needed and achieved;

- 280 tons of PC+ 1.5 g/l PPO;
- 3600 m.w.e. depht, Φµ~1m⁻²h⁻¹;
- mean reactors distance ~ 1170 km

Kamland:

LS 1 kto

• originally build to measure reactor anti-v;

Chimney

- 1 kton of 80% dodec., 20% PC + 1.4 g/l PPO;
- 2700 m.w.e. depht; Φµ ~ 5.4 m⁻² h⁻¹;
- mean reactors distance ~ 80 km.

INFN

Photomultiplier Tubes

Buffer Oil

Fiducial Volume

(12 m diameter)

Outer Balloon (13 m diameter)

Inner Balloon (3.08 m diameter)

Geo-v detection

Expected rate: Prompt: Scintillator ~ 2 cpy/100 t $v + p -> n + e^+$ E_{thr} =1.8 MeV Prompt signal Minimum det. energy: 2x 511 keV Delayed e signal $E_{prompt} = E_v - 0.784 \text{ MeV}$ $\overline{\nu}_{\mu}$ Delayed (τ~254 μs): 2.2Me $n + p \rightarrow d + \gamma$ Detected energy: 2.2 MeV Geo-v energy spectrum S. Enomoto, PhD Thesis 2005 10¹ Luminosity (s⁻¹ MeV⁻¹) ²³⁸U Series ²³⁵U Series A(Th)/A(U)=3.9²³²Th Series 10¹ ⁴⁰K Reaction S(Th)/S(U) = 0.2710¹⁴) threshold: 1.8 MeV 10¹⁰ 2 2.5 3 3.5 0.5 1 1.5 Antineutrino Energy (MeV)

16th Lomonosov Conf. 2013, Moscow

Geoneutrinos energy spectra INF The probability to detect electron antineutrino : $P_{ee} = P(\overline{\nu}_e \to \overline{\nu}_e) = \cos^4 \theta_{13} \left(1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\delta m^2 L}{4E} \right) \right) + \sin^4 \theta_{13}$ For geoneutrinos we can use average survival probability: Pee (3 flavors) ~ 0.54 (in vacuum) -> 0.55 (matter effect) θ_{13} : 0 ° \rightarrow 10 ° S. Dye, Neutrino 2012 dn/dE_v (10⁻⁴⁴ cm² MeV⁻¹) v _ + e $<\!P_{ee}\!>: 0.58 \rightarrow 0.54$ Cross section (10⁻⁴⁴ cm²) 0 S. Dye, Neutrino 2012 1 10 ⁻¹ 10 10 1 2 0 1.5 2.5 3 0.5 1 2 3.5 Energy (MeV) Antineutrino energy (MeV)

16th Lomonosov Conf. 2013, Moscow

The importance of the local geology

INFN

~50% of the expected signal is coming from R< 500 Km!!

3 D models of the crust composition up to the Moho depht over an area of six $2^{\circ} \times 2^{\circ}$ cells around the detector site => contribution of local crust (LOC)

The most important backgrounds

Reactor antineutrinos

The two collaborations are in contact respectively with with IAEA and EDF (BX) and the the Consortium of Japanese electric power companies to get info about thermal powers, the reactors operation records,, fuel burn-up and exchange and enrichments log: fluxes evaluated with a dedicated code

- -S(reactors)/S(geo) ~ 0.4 at LNGS
 - S(reactors)/S(geo) ~ 5 in geo-v window at Kamioka

INFN

B. Ricci et al., NeuTel 2013 [1 TNU=1 event/ 10³² target protons /year]

Background mimicking the anti-v interactions:

Internal contamination: ¹³C(α ,n)¹⁶O

• α particles are emitted in the U an Th chains • ²¹⁰Po α emitter

(KL ~ 5000 cpd/t, now~250 cpd/t, BX~12 cpd/t)

- ¹³C low abundance: ¹³C/¹²C~1.1 %
- KL: S(α,n)/S(geo)~ 1.5 ; BX: 1%

Random coincidences

- Mostly due to U/Th chains high energy decays and external backgrounds;
- KL: S(rnd)/S(geo)~ 1; BX: S(rnd)/S(geo)~1.5%.

Muon correlated events: fast neutrons & cosmogenic ⁹Li and ⁸He decay via β -n reactions ⁹Li-> 2 α + e⁻ + n + v; ⁸He -> ⁷Li+ n + e⁻ + γ τ ~ 150 ms=> 2 s detector veto after scintillator muons-> negligible!! INFN

Geo-v: the energy spectrum and fit

INFN

	Borexino	KamLAND
Period	Dec 07- Aug 12	Mar 02- Nov 12
Exposure (proton \cdot year)	$(3.69 \pm 0.16) \ 10^{31}$	$(4.9 \pm 0.1) \ 10^{32}$
Geo- ν events	14.3 ± 4.4	$116 \stackrel{+28}{_{-27}}$
Geo- ν signal [TNU]	38.8 ± 12	30 ± 7
Geo- ν flux (oscill.) [$\cdot 10^6 \text{cm}^{-2} \text{s}^{-1}$]	4.4 ± 1.4	3.4 ± 0.8
Geo- ν signal/(anti- ν background)	0.46	0.054
Geo- ν signal/(non anti- ν background)	20.4	0.32

6

8

12

14

Mantle signal (TNU)

10

16

18

0₀

2

Sandra Zavatarelli, INFN Genova Italy

A&McD DM

120 124

1.15 1.20

😈 Gran Sasso 🚽 Hawaii

1.05

1.10

100 104 108 112 116

1.00

Sudbury 🚽 🚽 Kamioka

0.85 0.90

90

0.95

BSE models

Three classes of BSE compositional models:

Cosmochemical (enstatite chondrites, collisional erosion)

- Geochemical (carbonaceous chondrites+terrestrial samples)
- Geodynamical (mantle convection energetics+surface heat loss)

Strong differences on HPE abundances predictions:

Ref. O. Šrámek et al (1)	Cosmochem.	Geochem.	Geodyn.					
A _u (ppb)	12 <u>+</u> 2	20 <u>+</u> 4	35 <u>+</u> 4	7				
A _{Th} (ppb)	43 <u>+</u> 4	80 <u>+</u> 13	140 <u>+</u> 14	factora				
A _K in ppm	146 <u>+</u> 29	280 <u>+</u> 60	350 <u>+</u> 35					
Th/U	3.5	4.0	4.0					
K/U	12000	14000	10000					
Tot. Power (TW)	11 <u>+</u> 2	20+4	33±3	4				
Mantle Urey ratio	0.08 <u>+</u> 0.05	0. <u>3+</u> 0.1	0.7 <u>+</u> 0.1					
Mantle power (TW)	3.3 <u>+</u> 2.0	12 <u>+</u> 4	25 <u>+</u> 3	factor 10!!				
(1) O. Šrámek et al. Earth. Plan. Sci. Letters 361 (2013) 356-366								

16th Lomonosov Conf. 2013, Moscow

Geo-reactor

Herndon et al: Geo-reactor with thermal power < 30 TW in the central part of the core within a radium of about 4 km and a composition ²³⁵U:²³⁸U=0.76:0.23

Unbinned maximal likelihood fit adding the PDF for geo-reactor signal and constraining the power plants reactor signal to the expectation band.

Borexino: Geo-reactor power < 4.5 TW at 95% C.L.

KamLAND: Geo-reactor power < 3.7 TW at 95% C.L.

16th Lomonosov Conf. 2013, Moscow

Summary

- Two independent geo-ν measurements from the Borexino and Kamland experiments have opened to door to a new interdisciplinary field, the Neutrino Geoscience, osservation at 4.5 σ C.L.;
- The combined results from different experimental sites have stronger impact –> multi-site measurements are crucial!
- ✓ The first indication of a geo-neutrino mantle signal has emerged;
 - The first attempts to directly measure the Earth U/Th ratio have been performed, evidence at 2.6 s level for a positive U signal;
- The data seems to prefer the geochemical or cosmochemical models, but probably the geo-dynamical are going to be revised and reconciled with the other ones;
- ✓ New measurements are mandatory: large mass detectors are surely more suited to study the geo-v signal....

Incoming experiments

Large detector masses (~10 Ktons)

Geologically interesting results require .

Suited experimental sites

Many incoming/future projects have geo-v among their scientific goals...

SNO+ at Sudbury, Canada

- Made of 780 tons of CH2 LAB +PPO
- Start of the data taking in 2014-15
- Rate ~20 geo-v/year, geo-v/reactor signal ~ 1.2
- Placed on an old & thick continental crust, mostly made of felsic rocks which are enriched in U/Th: strong LOC signal ~ 19 TNU
 A very detailed study of the local geology is mandatory to allow the measurement of the mantle signal.

DAYA BAY2 (China)

• Aimed to study the neutrino mass hierarchy: 20 kton, 400 geo-v/year, but 40 reactors \underline{v}_{e} events/day and shallow depht -> challenge!!

Future projects

LENA at Phyhasalmi (FL) or Frejus (FR)

- Project for a 50 kton underground liquid scintillator detector (Wurm et al 2011);
- Rate= ~ 1000 geo-v events/ year;
- Overall flux : a few % precision in a couple of years;
- U/Th ratio: 10 % precision in 3 years at Phyhasalmi, 20% at Frejus.

HANOHANO at Hawaii

- Project for a 5-10 kton liquid scintillator detector, movable and placed on a deep ocean floor;
- Geo-v/reactor signal > 10;
- Since Hawaii placed on the U-Th depleted oceanic crust 75% of the signal from the mantle!

<u>Conclusions</u>

New experiments are going to join the geo-v detectors network. Borexino and KamLAND are going on to take data-> milestones towards an Earth tomography!

THANK YOU!!!

Backup slides

March 2013: Release of new results

KamLAND (Gando et al., Phys. Rev. D 88,2013, 033001) Statistics Mar 2002- Nov 2012 3 data-taking periods, different signal/backg. conditions (2002-2007) (2007-2011) (2011-2012)

Borexino (Bellini et al.,Phys. Lett.B ,2013, 295-300) Statistics: May 2007-Aug 2012, 613 ton* year (previous= 252 tons*year) 2010-2012 six purification campaigns

16th Lomonosov Conf. 2013, Moscow

Running and planned experiments Mantle 250 Signal [TNU Crust 200 150 Reactor 100 50 0 to the set of the se Mantovani TAUP 2007

HQL 2012, Prague

Comparison with expectations

INFN

Contour plot for geo-v and reactor antineutrino signal rate: black point = best fit

Geo-v: the background in BX

Geo-v expected signal (BSE) = 2.5 cpy/100 t

Reactor antineutrinos

Overall rate: 5.0 <u>+</u> 0.3 cpy/100 t
 Rate in the GNW: 2.0 <u>+</u>0.1 cpy/100 t

We are in contact with IAEA and EDF:

-Thermal powers for each European reactors are known on a monthly base; -Expected signal @ LNGS evaluated with a dedicated code (sys. uncertainty: 5.4%)

Signal (BSE)/(Reactor background) ~ 1.25 In the GNW

Cosmogenic/enviromental background

- ✓ Overall rate: 0.14 <u>+</u> 0.02 cpy/100 t
- ✓ Rate in the GNW: 0.12 <u>+</u>0.01 cpy/100 t

Muon correlated events

Cosmogenic ⁹Li and ⁸He decay via β -n

- τ~ 150 ms
- 2 s detector veto after scintillator muons
- Residual background: 0.03+0.02 cpy/100 t

Radiogenic ¹³C(α,n)¹⁶O

- ²¹⁰Po a emitter: 12 cpd/100 t
- ¹³C low abundance: ¹³C/¹²C~1.1 %
- Background: 0.014<u>+</u>0.001 cpy/100 t

Random coincidences

Searching for events in a window of 2 ms-2 s: 0.080 <u>+</u>0.001 cpy/100t

Signal(BSE)/(non anti-v Background) ~ 21

HQL 2012, Prague

