

Higgs Boson Physics in ATLAS

Decay observed into particles with same spin and electric charge sum = 0 \rightarrow A new neutral boson has been discovered

Outline*

- LHC and ATLAS
- Update since Discovery
- Properties

Submission to PLB on 31st July 2012

Richard St. Denis, University of Glasgow -On behalf of the ATLAS Collaboration-Sixteenth Lomonosov Conference on Elementary Particle Physics Moscow State University, Moscow, 22-28 August, 2013

*Channels not yet seen by ATLAS in Joe Price's talk

The Large Hadron Collider Excellent LHC performance in 2011 and 2012 Peak luminosities > 7x10³³ cm⁻² s⁻¹ High level of pileup: ~21 interactions / beam crossing on average in 2012 Recorded Luminosity [pb⁻¹/0.1] 180 ATLAS Online Luminosity 160 $\sqrt{s} = 8 \text{ TeV}, \int Ldt = 20.8 \text{ fb}^{-1}, \langle \mu \rangle = 20.7$ 140 $\sqrt{s} = 7 \text{ TeV}, \int Ldt = 5.2 \text{ fb}^{-1}, \langle \mu \rangle = 9.1$ 120 100 80 60

40

20

0^L

5

10

15

20

Steve Meyers PLHC 2012:

Mean Number of Interactions per Crossing

30

35

40

45

25

"The first two years of LHC operation have produced sensational performance: well beyond our wildest expectations. The combination of the performance of the LHC machine, the detectors and the GRID have proven to be a terrific success story in particle physics."

Diameter25 mBarrel toroid length26 mEnd-cap end-wall chamber span 46 mOverall weight7000 TonsChannels working>99%Fraction of Lumi Recorded93.5%

- Energy measurement down to 1° to the beam line
- Independent muon spectrometer (supercond. toroid system)

Axial magnetic field
 (2T) in the central region
 (momentum measurement)

High resolution silicon detectors:

- 6 Mio. channels
 (80 μm x 12 cm)
- 100 Mio. channels
 (50 μm x 400 μm)
 space resolution: ~ 15 μm

The Standard Model at the LHC

Experimental measurements of Standard Model process esand their theoretical predictions are well under control

Higgs Boson Production

...and Decay

SM Branching Ratio H → X M _H =125 GeV				
bb	56.9%	ττ	6.2%	
WW	22.3%	γγ	0.24%	
ZZ	2.8%	μμ	0.022%	

γγ Candidate event

Highly granular LAr electromagnetic calorimeter: cells pointing to the interaction region provides direction measurement: robust to pileup and good isolation to suppress jets faking photons. (15 mm pointing accuracy in z)

Run Number: 204769, Event Number: 24947130

Date: 2012-06-10 08:17:12 UTC

Challenges:

- Signal-to-background ratio 3%
- Smooth irreducible yy background 75⁺³-4%

Search for $H \rightarrow \gamma \gamma$

- 2 isolated photons $P_T > 40$, 30 GeV
- Mass m_{yy} of the Higgs boson reconstructed
- Mass resolution: ~1.7 GeV, m_H ~120 GeV

p₀ value for consistency of data with background-only:
 ~ 10⁻¹³ : 7.4σ observed (4.3σ expected) 7 TeV and 8 TeV Mass

 $m_{H} = 126.8 \pm 0.2 \text{ (stat)} \pm 0.7 \text{ (syst)} \text{ GeV}$

Signal Strength

 $\mu := \sigma / \sigma_{SM} = 1.55 \pm 0.23$ (stat) ± 0.15 (syst) ± 0.15 (theo)

$H \rightarrow \gamma \gamma$ Differential distributions: Dawn of a New Era

Distributions also available for

- · Higgs rapidity,
- cosθ*,
- leading jet p_t,
- azimuthal angle between leading and subleading jet,
- p_t of Higgs and dijet system.

Initial state jet radiation used to constrain production mechanism so that theoretical uncertainties can be reduced. Theoretical work is needed! ... and statistics.

Compatibility of ZZ and yy Channels and Determination of Mass

Consistency between the fitted masses: Likelihood for $\Delta m = 0$ vs best fit value for Δm :

 $\Delta m = 2.3_{-0.7}^{+0.6} \text{ (stat)} \pm 0.6 \text{ (syst)} 2.4\sigma \text{ deviation (Agreement: 1.5\%)}$

Agreement goes to 8% if we take rectangular instead of gaussian shapes for the three principle sources of e/γ energy scale uncertainty: material, pre-sampler energy scale, calibration procedure

 $m_{H} = 125.5 \pm 0.2 \text{ (stat)} + 0.6 \text{ (syst)} \text{ GeV}$

Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

$H \rightarrow WW \rightarrow e\mu vv jj$ VBF Candidate Event

H→WW Production Features

- 2 High Pt ee,eµ,µµ not back to back (as Drell Yan is)
- Spin 0 Higgs correlates spins of leptons: charged leptons (low Δφ_{II}), two neutrinos (High MET) tend to be closely aligned
- Modifies dilepton invariant mass
- Analyze vs N_{jet}: backgrounds, production modes differ

ALLES A

Search for $H \rightarrow WW \rightarrow l_V l_V$ Decay

- tt background (2 jets)
- Z+jets (for ee/μμ pairs)

Jet multiplicity distr. after basic selection requirements

17

Transverse Mass Distributions*

arXiv:1307.1427

*after cuts on $\Delta \phi_{\parallel}$, MET, m

Clear excess above backgrounds for all Njet

Based on 2jet vs 0,1 jet: $\mu_{VBF} = 1.66 \pm 0.79$ $\mu_{agF} = 0.82 \pm 0.36$ 19

arXiv:1307.1427

ATLAS-CONF-2013-030

Is the New Particle the Higgs Boson ?

• Production rates ?

Couplings to bosons and fermions

• Spin, J^P quantum number

Signal Strength in Di-Boson Decay Modes (full data set)

- Data consistent with the Standard Model Higgs boson:
 μ=1.33 ± 0.14 (stat) ± 0.15 (syst)
- Sensitivity to gluon-fusion (ggF + ttH) and (VBF+VH) production fractions, branching ratio factors B/B_{SM}

- Fit for the ratio μ_{VBF+VH} / μ_{ggF+ttH} for the individual channel (model independent)
 - Results can be combined
 - Good agreement with SM expectation for individual channels and the combination

 3.3σ evidence for VBF production

Couplings to Fermions and Bosons

- Assume single narrow resonance in a zero-width approximation: $\sigma \cdot BR(ii \rightarrow H \rightarrow ff) = \sigma_{ii} \cdot \Gamma_{ff} / \Gamma_{H}$
- All SM couplings fixed given m_H. Assume tensor structure unchanged: Higgs is a CP-even 0 scalar. No BSM particles.

• Add scaling κ_i of coupling:

	H	$GF t + H - K_{g} = 1(SM)$
Production	$\sigma_{WH}/(\sigma_{WH})^{SM}=k_W^2$	$\sigma_{ggH}/(\sigma_{ggH})^{SM}=k_g^2=k_g^2(k_b, k_t, m_H)$
Decay	$\Gamma_{WH}/(\Gamma_{WH})^{SM}=k_W^2$	$\sigma_{\gamma\gamma}/(\sigma_{\gamma\gamma})^{SM} = \kappa_{\gamma}^2 = \kappa_{\gamma}^2 (k_b, k_t, k_\tau, k_W, m_H)$

23

• Example: $H \rightarrow \gamma \gamma$

 $(\sigma \cdot BR)(gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa^2}$

Couplings to Fermions and Bosons

- Assume only one scale factor for fermion and vector couplings: $\kappa_V = \kappa_W = \kappa_Z$ $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$
- Sensitivity to relative sign between κ_F and κ_V only from interference term in H → γγ

- Data consistent with the SM expectation
- Two-dimensional consistency: 12%
- 68% CL intervals:
 κ_F : [0.76, 1.18]

 κ_{V}

• κ_V : [1.05, 1.22]

Ratio of Couplings to the W and Z bosons

- Assume only one scale factor for fermions: $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$
- Custodial symmetry requires $\lambda_{WZ} := \kappa_W / \kappa_Z = 1$
- Sensitivity via VBF production and H \rightarrow WW and H \rightarrow ZZ

25

Constraints on Production and Decay Loops

- Test on contributions from other particles contributing to loopinduced processes
- Assume nominal couplings for all SM particles κ_i = 1 and that the new particles do not contribute to the Higgs boson width
- Introduce effective scale factors κ_{q} and κ_{γ}

 Best fit between 1σ and 2σ contours: 2d consistency with SM is 14%

14

15

•
$$\kappa_g = 1.04 \pm 0.$$

• $\kappa_\gamma = 1.20 \pm 0.$

Spin and Parity

- If Standard Model Higgs boson: $J^P = 0^+$
- Strategy: falsify other hypotheses: (0⁻, 1⁻, 1⁺, 2⁻, 2⁺) specific effective models *)
 - Spin 1: disfavoured by H → γγ decays (Landau-Yang theorem)
 - Spin 2: Many parameters, consider graviton-like tensor, equivalent to a Kaluza-Klein graviton
 - Production via gluon fusion and qq annihilation possible;
 - Studies are performed as a function of the qq annihilation fraction f_{qq} (= 4% at LO, however, large uncertainties)
 - Minimal coupling to SM particles: 2⁺_m mode

- Sensitive variables:
 - Masses of the two Z's
 - Production angle $\,\theta^{*}$
 - Four decay angles Φ_1, Φ, θ_1 and θ_2
- Perform multivariate analysis (BDT)
- Compare Data to Log likelihood ratio

Exclude J^P=0⁻ (vs. 0⁺) with 97.8% CL

0.05

0 -15

-10

-5

5

0

10

15

$J^{P} = 1^{+/-} \text{ versus } J^{P} = 0^{+}$

	p ₀ (0 ⁺)	CL (1⁺) Exclusion	p ₀ (0+)	CL (1 ⁻) Exclusion
H → ZZ*	0.55	99.8%	0.15	94%
$H \rightarrow WW^*$	0.70	92%	0.66	98.3%
Combination	0.62	99.97%	0.33	99.7%

$J^{P} = 2^{+} \text{ versus } J^{P} = 0^{+}$

Exclude J^P=2⁺ (produced via gluon fusion, $f_{qq}=0$) (vs. 0⁺) via H $\rightarrow \gamma\gamma$ decays with 99.3% CL

- Combination of $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ channels (complementary behaviour as function of f_{qq})
- Observed exclusion of J^P = 2⁺ exceeds 99.9%, independent of f_{qq} 29

Conclusions

- A milestone discovery made on July 4th 2012
- Signals impressively confirmed with additional data; discovery phase turned into the measurement phase
- ATLAS data are consistent with the expectations for the Standard Model Higgs boson
 - Production rates and coupling strengths
 - Evidence for VBF production
 - Evidence for spin-0
- Exciting times ahead of us to study the Higgs boson with higher precision (> 2015) and look for surprises (deviations? more Higgs bosons?)
- More channels covered in Joe Price's talk:
 VH →Vbb, H →ττ, VH →VWW^(*), H →Zγ,
 ttH →ttγγ, H →μμ, ZH →II+inv

Composition of the yy Background

ATLAS-CONF-2012-168

- Reducible γ-jet and jet-jet background at the level of 25%
- Background extrapolation below the excess from sidebands (4th order polynomial)

Categorisation of H $\rightarrow \gamma\gamma$ Candidate Events

ATLAS-CONF-2013-012

arXiv:1307.1427

- VBF enriched (tag-jet configuration, $\Delta \eta$, m_{ii})
- gluon fusion: 9 categories, exploit different mass resolution for different detector regions, $\gamma\gamma$ conversion status and p_{Tt} 33

$H \rightarrow \gamma \gamma$ Differential Distributions

ATLAS-CONF-2013-029

34

4l Invariant Mass Spectra

ATUS E

Full dataset

Mass range 120 – 130 GeV	Expected signal	Background	Data
\sqrt{s} = 7 TeV	2.2	2.3	5
\sqrt{s} = 8 TeV	13.7	8.8	27

 $m_{4\ell} > 160 \text{ GeV}$:376events observed 348 ± 26 expected from $\sqrt{s} = 7 + 8 \text{ TeV}$ background (mainly ZZ)

arXiv:1307.1427

Background Estimates

- Irreducible ZZ* background taken from Monte Carlo simulation
- Reducible Z+jets and tt background: measured using various background-enriched control regions and transferred to signal region using Monte Carlo simulation

Time Evolution of the $H \rightarrow ZZ \rightarrow 4l$ Signal

Time Evolution of the $H \rightarrow ZZ \rightarrow 4l$ Signal

Mass and Signal Strength for $H \rightarrow ZZ^*$

ATLAS-CONF-2013-013

Mass: $m_H = 124.3 \pm 0.6 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ GeV}$ Signal strength: $\mu = 1.7 \pm 0.5$

Couplings to quarks and leptons ?

• Search for $H \rightarrow \tau\tau$ and $H \rightarrow$ bb decays

 $J^{P} = 1^{+/-}$ versus $J^{P}=0^{+}$ using $H \rightarrow ZZ^{*}$ and $H \rightarrow WW^{*}$ events

- $H \rightarrow ZZ^*$, as before: BDT separation based on masses and angles
- $H \rightarrow WW^*$: $m_{\parallel}, \Delta \phi_{\parallel} \dots$ carry information on spin Combine variables using BDT analysis

	p ₀ (0+)	CL (1 ⁺) p ₀ (0 ⁺) Exclusion		CL (1 ⁻) Exclusion	
H → ZZ*	0.55	99.8%	0.1	94%	
H → WW*	0.70	92%	0.66	98%	
Combination	0.62	99.97%	0.33	99.7%	

$J^{P} = 2^{+}$ versus $J^{P}=0^{+}$ using $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^{*}$, and $H \rightarrow WW^{*}$ events

 θ_{ℓ} (, ϕ_{ℓ}

• $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ as before (BDT separation)

$J^{P} = 2^{+}$ Exclusion as Function of f_{qq}

arXiv:1307.1432

• Combination of $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ channels

43

$Z \rightarrow \mu^+ \mu^-$ with 20 superimposed events

Higgs Boson Decays

Useful decays at a hadron collider:

- Final states with leptons via WW and ZZ decays
- γγ final states (despite small branching ratio)
- $\tau\tau$ final states (more difficult)
- In addition: H → bb decays via associated lepton signatures (VBF, VH or ttH production)

Search for VH Production with H \rightarrow bb decays

- Exploit three leptonic vector boson decay modes
 → split analysis in 0, 1, and 2-lepton categories
- Require 2 b-tagged jets (working point for 70% efficiency)
- Major background: W/Z bb, W+jets, tt
- Signal-to-background ratio improves for "boosted Higgs boson", split analysis in bins of p_T(V)

in total: 15 categories (0,1,2 jets $\times p_T$ bins)

Results on the Search for $H \rightarrow bb$ decays

95% C.L. limit on σ/σ_{SM}

3

2

0

110

Di-boson signal established

(important "calibration" signal)

ATLAS-CONF-2012-161

VH(bb), combined

 $\sqrt{s} = 7 \text{ TeV}, \text{ Ldt} = 4.7 \text{ fb}^{-1}$

 $\sqrt{s} = 8 \text{ TeV}, \int Ldt = 13.0 \text{ fb}^{-1}$

125

130

m_µ [GeV]

m _H = 125 GeV:	
Observed 95% CL:	1.8 σ _{SM}
Expected	1.9 σ _{SM}

120

ATLAS Preliminary

± 1σ

± **2**σ

- Observed (CLs)

115

Expected (CLs)

 $\mu_{\rm H}$ = -0.4 ± 0.7 (stat) ± 0.8 (syst)

 $\mu_{WZ+WW} = 1.09 \pm 0.20 \text{ (stat)} \pm 0.22 \text{ (syst)}$

Updated analysis, including the full data sample expected soon

Results on the Search for ttH, $H \rightarrow bb$ b **g** Η 95% CL Limit on σ/σ_{SM} 00000 g 50 ATLAS Preliminary W-- Observed (CLs) ----- Expected (CLs) $t\bar{t}H (H \rightarrow b\bar{b})$ 40 ± 1σ b ± 2σ Events / 20 GeV ATLAS Preliminary $e+\mu \ge 6$ jets, ≥ 4 b tags 30 14 $L dt = 4.7 \text{ fb}^{-1}$ - Data ($\sqrt{s} = 7 \text{ TeV}$) tīH (125) 12 tī 20 tīV W+jets 10 Z+jets Diboson 10 Single top 8 Multijet Tot bkg unc. 0 110 115 120 125 130 2 m_H = 125 GeV: Data / MC 1.5 13.1 σ_{SM} Observed 95% CL: 0.5 Expected 10.5 σ_{SM} 100 150 200 250 50 300 350 400 Ō m_{bb} [GeV]

ATLAS-CONF-2012-135

Results on the Search for $H \rightarrow \mu\mu$

Observed 95% CL:	9.8 σ_{SM}
Expected	8.2 σ_{SM}

Electroweak Symmetry Breaking -a cornerstone of the Standard Model-

Complex scalar (spin 0) field ϕ with potential: $V(\phi) = \mu^2 (\phi * \phi) + \lambda (\phi * \phi)^2$ $\lambda > 0, \mu^2 < 0$:

- \rightarrow vacuum expectation value v = 246 GeV
- Coupling proportional to mass of Standard Model particles

 $-i\frac{g}{2}\frac{m_f}{m_w}$

- Higgs boson, $m_H < \sim 1 \text{ TeV}$
- "Ultraviolet regulator"

F. Englert and R. Brout. Phys. Rev. Lett. 13 (1964) 321;
P.W. Higgs, Phys. Lett. 12 (1964) 132, Phys. Rev. Lett. 13 (1964) 508;
G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble. Phys. Rev. Lett. 13 (1964) 585.

Statistical Treatment

All results are based on profile likelihood method

 μ = parameter(s) of interest θ = nuisance parameters

Unconditional maximum likelihood estimate (μ and θ adjusted to maximise L)

Conditional maximum likelihood estimate: $L(\mu,\hat{\hat{A}}(\mu))$ (a specific μ value (fixed), θ adjusted to maximise L for this μ)

- -2 ln $\Lambda(\mu)$ follows a χ^2 distribution with n d.o.f. ($\mu_{1,\dots,n}$)
- Nuisance parameters θ are constraint by probability density functions • (Gaussian constraints, log-normal distributions, Poisson,... also explored: "rectangular" pdfs for some specific systematic uncertainties)

Categorisation of H $\rightarrow \gamma\gamma$ Candidate Events, $\sqrt{s} = 8$ TeV

\sqrt{s}		8 TeV			
Category	$\sigma_{CB}(\text{GeV})$	Observed	N_S	NB	N_S/N_B
Unconv. central, low p_{Tt}	1.50	911	46.6	881	0.05
Unconv. central, high p_{Tt}	1.40	49	7.1	44	0.16
Unconv. rest, low p_{Tt}	1.74	4611	97.1	4347	0.02
Unconv. rest, high p_{Tt}	1.69	292	14.4	247	0.06
Conv. central, low p_{Tt}	1.68	722	29.8	687	0.04
Conv. central, high p_{Tt}	1.54	39	4.6	31	0.15
Conv. rest, low p_{Tt}	2.01	4865	88.0	4657	0.02
Conv. rest, high p_{Tt}	1.87	276	12.9	266	0.05
Conv. transition	2.52	2554	36.1	2499	0.01
Loose High-mass two-jet	1.71	40	4.8	28	0.17
Tight High-mass two-jet	1.64	24	7.3	13	0.57
Low-mass two-jet	1.62	21	3.0	21	0.14
$E_{\rm T}^{\rm miss}$ significance	1.74	8	1.1	4	0.24
One-lepton	1.75	19	2.6	12	0.20
Inclusive	1.77	14025	355.5	13280	0.03

Signal mass resolution (σ_{CB}), signal (N_S) and background (N_B) numbers in a mass window around m_H = 126.5 GeV containing 90% of the expected signal events