Electroproduction of N* resonances at Jefferson Lab

K. Hicks, Ohio University

INT Workshop on N*'s from Exclusive Electroproduction

November 15, 2016

Overview of N* electroproduction at JLab

- Single-pion electroproduction (K. Park, M. Ungaro, N. Markov)
 - Talks to be presented tomorrow
- Rho electroproduction (S. Morrow, et al.) 2009
- Phi electroproduction (J. Santoro, et al.) 2008
- Eta electroproduction (H. Denezil, et al.) 2007
- $\pi^+\pi^-$ electroprod. (E. Isupov, et al.; G. Fedotov, et al.) \leftarrow This Talk
- KY electroproduction (D. Carman, B. Raue, et al.) 2014, 2013, 2007
 - If time allows, some of the newer (2014) data will be shown

Paper under internal review at CLAS

Measurements of $ep \rightarrow e'\pi^+\pi^-p'$ Cross Sections with CLAS at 1.40 GeV < W < 2.0 GeV and 2.0 GeV² $< Q^2 < 5.0$ GeV²

E.L. Isupov,² V.D. Burkert,¹ K. Hicks,³ B.S. Ishkhanov,² V.I. Mokeev,¹ and CLAS Collaboration

¹Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 ²Skobeltsyn Nuclear Physics Institute and Physics Department at Moscow State University, 119899 Moscow, Russia ³Ohio University, Athens, Ohio 45701 (Dated: September 27, 2016)

This paper reports new exclusive cross sections on $ep \rightarrow e'\pi^+\pi^-p$ using the CLAS detector at Jefferson Laboratory. These results are presented for the first time at photon virtualities 2.0 < $Q^2 < 5.0 \text{ GeV}^2$ in the center-of-mass energy range 1.40 GeV < W < 2.0 GeV, which covers a large part of the nucleon resonance region. The data extend considerably the kinematic reach of previous measurements. Exclusive $ep \rightarrow e'\pi^+\pi^-p$ cross section measurements are of particular importance for the extraction of resonance electrocouplings in the mass range above 1.6 GeV.

Goals of the CLAS two-pion analysis

- Compare electrocouplings of N*'s extracted from 1- and 2-pion data
 - Tests our understanding of reaction mechanisms in π + π electroproduction.
 - Validate N* electrocouplings determined in N π data.
- Look for signature of "missing N*" at higher mass (M > 1.6 GeV)
 - Missing resonances are predicted to have small B.R. to single-pion final state, but substantial B.R. to the N $\pi\pi$
 - Hybrid baryons are predicted at higher mass—can we find these states?
- Explore the quark mass function and dressed quark-gluon vertex
 - Electrocouplings at Q²>3.0 GeV² offer access to the momentum dependence of dressed quark mass function (J.Segovia, V.Mokeev talks)

Further Evidence for the Existence of the New State N'(1720)3/2⁺ from Combined $\pi^+\pi^-p$ Analyses in both Photo- and Electroproduction

N(1720)3/2⁺ hadronic decays from the CLAS data fit with

conventional resonances only

	BF(πΔ), %	BF(ρ p), %
electroproduction	64-100	<5
photoproduction	14-60	19-69

The contradictory BF values for N(1720)3/2⁺ decays to the $\pi\Delta$ and ρ p final states deduced from photo- and electroproduction data make it impossible to describe the data with conventional states only.

efferson Pab

Almost the same quality of the photoproduction data fit at 1.66 GeV <W<1.76 GeV and Q²=0, 0,65, 0.95, 1.30 GeV² was achieved with and without N'(1720)3/2⁺ new states

N* hadronic decays from the data fit that incorporates the new N'(1720)3/2⁺ state

Resonance	BF(π∆), %	BF(ρ p), %
N'(1720)3/2 ⁺ electroproduction photoproduction	47-64 46-62	3-10 4-13
N(1720)3/2 ⁺ electroproduction photoproduction	39-55 38-53	23-49 31-46
∆(1700)3/2 ⁻ electroproduction photoproduction	77-95 78-93	3-5 3-6

Successful description of $\pi^+\pi^-p$ photo- and electroproduction data achieved by implementing new N'(1720)3/2⁺ state with Q²-independent hadronic decay widths of all resonances contributing at W~1.7 GeV provides strong evidence for the existence of new N'(1720)3/2⁺ state.

The photo-/electrocouplings of N'(1720)3/2⁺ and conventional N(1720)3/2⁺ states:

Jefferson Pab

Support for the N'(1720)3/2⁺ from the Coupled Channel Analysis

The coupled channel approach with 8 channels included : $\gamma N \leftrightarrow \pi N, \eta N, K \Lambda, K \Sigma, \pi \Delta, \rho N, \sigma N$

Observation of N'(1720)3/2⁺ state in the CLAS $\pi^+\pi^-p$ photo-/electroproduction data is also seen in the global multi-channel photo-/hadroproduction data analysis by the Agronne-Osaka group.

Jefferson Pal

CLAS experimental parameters

- Run period e1-6: beam energy 5.75 GeV
- Liquid hydrogen target (5 cm long)
- To identify pions cleanly:
 - Electromagnetic Calorimeter (EC)
 - Cerenkov Counter (CC)
 - Time-of-flight Scintillators (SC)
 - Tracking by Drift Chambers (DC)
- Open trigger: above-threshold signal in CC + signal in EC

Electron events in the EC

Red: all events

Black: events after fiducial cut

Energy Deposit in the EC

Left of cut: electrons

Right of cut: pions

Particle identification (pions)

Exclusive Final State: missing mass

Missing Mass of π^{-} squared

Peak: missing pion at $m^2 = (0.14)^2$.

Dashed: same, but for MC

Vertical lines: event selection cut

z-axis defined by Q-vector x-z plane (C) defined by electron scattering y-z plane (A) defined by p and π - plane Angle θ_{π} : from vector p to vector π -Angle ϕ_{π} : from plane C to plane A

Plane (B) defined by final-state p' and π + Angle α : from plane B to plane A Unit vectors: β , γ , δ as shown

Need 5 variables: 3 angles, $M_{\pi\pi}$, $M_{\pi+p}$

Cross sections: 5-fold differential & integrated

$$\frac{dM_{p\pi} + dM_{\pi^+\pi^-} d\Omega_{\pi^-} d\alpha_{p\pi^+}}{\frac{1}{\Gamma_v} \frac{d\sigma}{dW dQ^2 dM_{p\pi^+} dM_{\pi^+\pi^-} d\Omega_{\pi^-} d\alpha_{p\pi^+}}} =$$

where Γ_v is the virtual photon flux, given by

$$\Gamma_v = \frac{\alpha}{4\pi} \frac{1}{E_{beam}^2 M_p^2} \frac{W(W^2 - M_p^2)}{(1 - \varepsilon)Q^2}$$

Each bin in W and Q2 has a unique 5-D representation. The complete cross sections are 7-fold.

There is not enough data to fully populate all 5-D bins, nor could we plot all of these in a paper. We integrate to get 1-D projections:

$$\frac{d\sigma}{dM_{\pi^{+}\pi^{-}}} = \int \frac{d^{5}\sigma}{d^{5}\tau_{\pi^{-}}} dM_{\pi^{+}p} d\Omega_{\pi^{-}} d\alpha_{[p'\pi^{+}][p\pi^{-}]} \\
\frac{d\sigma}{dM_{\pi^{+}p}} = \int \frac{d^{5}\sigma}{d^{5}\tau_{\pi^{-}}} dM_{\pi^{+}\pi^{-}} d\Omega_{\pi^{-}} d\alpha_{[p'\pi^{+}][p\pi^{-}]} (17) \\
\frac{d\sigma}{d(-\cos(\theta_{\pi^{-}}))} = 2\pi \int \frac{d^{5}\sigma}{d^{5}\tau_{\pi^{-}}} dM_{\pi^{+}\pi^{-}} dM_{\pi^{+}p} d\alpha_{[p'\pi^{+}][p\pi^{-}]} \\
\frac{d\sigma}{d\alpha_{[p'\pi^{+}][p\pi^{-}]}} = \int \frac{d^{5}\sigma}{d^{5}\tau_{\pi^{-}}} dM_{\pi^{+}\pi^{-}} dM_{\pi^{+}p} d\Omega_{\pi^{-}} .$$

Fully integrated (total) cross sections vs. W

In general, the cross sections fall off as a function of Q^2 .

Also, bumps for the 1st resonance and the 2nd resonance regions are seen at all values of Q².

We expect the resonance portion of the cross section to increase with Q².

N*'s and %B.F. used in the JM model

Resonances	Γ_{tot}	Branching fraction	Branching fraction
	MeV	to the final $\pi\Delta$ states, $\%$	to the final ρ state, $\%$
$N(1440)1/2^+$	387	19	1.7
$N(1520)3/2^{-}$	130	25	9.4
$N(1535)1/2^{-}$	131	2	10
$\Delta(1620)1/2^{-}$	158	43	49
$N(1650)1/2^{-}$	155	5	6
$N(1680)5/2^+$	115	21	13
$\Delta(1700)3/2^{-}$	276	84	5
$N(1700)3/2^{-}$	148	45	52
$N'(1720)3/2^+$	115	51	9
$N(1720)3/2^+$	117	39	44
$\Delta(1905)5/2^+$	346	0.5	86
$\Delta(1950)7/2^+$	297	18	43

The JM model is described elsewhere: See V. Mokeev et al., PRC 86, 055203 (2012).

Interpolation/Extrapolation of the CLAS Results on $\gamma_v pN^*$ electrocpouplings

Electrocouplings from the CLAS data employed for evaluation of the resonant contributions within the framework of unitarized Breit-Wigner ansatz

Jefferson Pab

Inverse of the JM unitarized N* propagator:

$$S_{\alpha\beta}^{-1} = M_{N^*}^2 \delta_{\alpha\beta} - i (\sum_i \sqrt{\Gamma_{\alpha}} \sqrt{\Gamma_{\beta}}) \sqrt{M_{N^*\alpha}} \sqrt{M_{N^*\beta}} - W^2 \delta_{\alpha\beta}$$

Off-diagonal transitions incorporated into the full resonant amplitudes of the JM model:

 $\begin{array}{l} S_{11}(1535) \leftrightarrow S_{11}(1650) \\ D_{13}(1520) \leftrightarrow D_{13}(1700) \\ 3/2^+(1720) \leftrightarrow P_{13}(1700) \end{array}$

Full resonant amplitude of unitarized Breit-Wigner ansatz is consistent with restrictions imposed by a general unitarity condition.

Resonant contribution from JM model at $Q^2 = 2.1 \text{ GeV}^2$.

Resonant contributiond at $Q^2 = 4.6 \text{ GeV}^2$ from JM model

Resonant contributions near the N(1440)1/2+

The percentage of calculated resonant contribution increases as Q² gets bigger.

Resonant contributions near the N(1530)3/2-

The increase of calculated resonance contribution appears even larger here for $Q^2 > 4$ GeV².

Ratios of resonant contributions at various W

Q^2 ,	1.41 < W < 1.61,	1.61 < W < 1.74,	1.74 < W < 1.86,
${ m GeV^2}$	${ m GeV}$	${ m GeV}$	${ m GeV}$
2.1	0.65 ± 0.033	0.57 ± 0.034	0.20 ± 0.019
2.6	0.57 ± 0.029	0.50 ± 0.028	0.18 ± 0.010
3.2	0.55 ± 0.029	0.49 ± 0.029	0.19 ± 0.017
3.8	0.66 ± 0.034	0.62 ± 0.034	0.21 ± 0.014
4.6	0.75 ± 0.041	0.79 ± 0.049	0.24 ± 0.017

Notes about JM model predictions

- The JM16 model only computes the resonance part
 - Non-resonance background is necessary to include before any conclusions.
 - A complete calculation (including non-resonant background) is in progress.
 - The calculations are only intended for comparison to show what may be missing in the resonant-only calculations.
- Clearly, more work needs to be done, especially at higher W, to explain the new CLAS data on ep \rightarrow e' p' $\pi^+ \pi^-$.
 - Is this evidence for needing more resonances at higher W?
 - Examples (from BoGa PWA): N(1895)1/2⁻, N(1875)3/2⁻ and N(1900)3/2⁺.

W = 1.79-1.86 GeV Q2 = 4.6 GeV².

Description with N(1875) 3/2⁻ M=1.805 GeV

N(1900)3/2+ M=1.86GeV

W = 1.89-1.96 GeV Q2 = 4.6 GeV².

Description with N(1875) 3/2⁻ M=1.805 GeV

N(1900)3/2+ M=1.86 GeV

Studies at Q²=4.6 GeV² implementing N(1875)3/2⁻ and N(1900)3/2+ states (reduced χ^2 are evaluated at 1.76< W < 1.94 GeV)

N(1875)3/2⁻ M=1.875 GeV M=1.86 GeV (BG left edge) M=1.805 GeV (ours) χ²/d.p.= 2.17 2.14 1.45

Inconsistent resonance mass values from independent analyses of photo- and electroproduction. The hypotheses is rejected

 N(1900)3/2⁺ M=1.900 GeV M=1.875 GeV(BG left edge) M=1.85 GeV (ours) χ²/d.p.= 1.69 1.50 1.39

Almost the same χ²/d.p. with mass taken from the photoproduction studies and from our fit. π⁺π⁻p electroproduction data can be described with resonance mass taken from the photoproduction analysis.
 Hypothesis on N(1900)3/2⁺ contribution is accepted

Summary of e p \rightarrow e' p' π^+ π^- CLAS data

- Data analysis has a very clean signal
 - Paper is under internal review at CLAS; to be submitted soon
- 7-dimensional binning splits data many times
 - Limited statistics, but most bins have reasonable error bars
- Model fits using conventional resonances fail at higher W.
 - Suggests the need for new higher-mass resonances.
 - A second N'(1720)3/2⁺ resolves difference of photo- and electroproduction.
 - Preliminary calculations suggest addition of N(1900)3/2⁺ helps.
- A second paper is in preparation using the full JM16 model calc.

 $\gamma d \to K^0 \Lambda(p)$

Nick Compton thesis

Deuteron target is used to access neutron reactions
 Momentum is not zero
 Neutron (udd) goes to K⁰(ds) ∧ (uds)
 T-Channel diagrams suppressed
 Complimentary reaction to $\gamma p \rightarrow K^+ \Lambda$

- N(1900) was found through $K^+\Lambda$
- Access to resonances with weak pion coupling

≻PWA

- Extract resonance parameters
- Incorporated coupled channel
 - Decay amplitudes
 - Neutron coupling

Total Cross Section Nick Compton thesis BoGa Estimation and Fit Compared to K+Lambda

Estimated with BoGa Model

S and P wave contribution shown

CLAS photoproduction of K*+ Λ data

Cyan: Oh and Kim Isobar Model Blue: Kim, Nam, Oh, Kim Regge Model Dotted curves include additional s-channel N* with M<2.2 GeV and L<3.

Clearly, the currently available theoretical models cannot reproduce the data. This suggests that highermass and higher-L resonances are needed.

New analysis of K* Λ by the Bonn group

- Used the CLAS K* skim of g11 done by Wei Tang
 - Measured $K^{*+} \rightarrow K^0 \pi^+ \rightarrow \pi^+ \pi^- final state$
 - Λ identified using missing mass
- Analyzed angular distribution in the K* rest system
 - Extracted density matrix elements: ρ_{00} , ρ_{10} , ρ_{11} using Log Likelihood method
 - Fit using the BoGa PWA to search for new N* resonances

Λ and K* yield extraction

In the following plots:

- Solid curves: final PWA fit (including possible new N* states)
 - Reduced χ^2 : 0.84, 1.84, 0.76 for diff. x-sec, spin-density matrix, recoil pol.
- Blue dotted curves: PWA fit without the new high-mass N*'s
 - Noticeable (but small) effect in the mass regions 2200-2350
 - Reduced χ^2 : 1.92, 1.84, 0.61
- Red dashed curves: t-channel contributions only
 - At higher photon energies, we expect t-channel to dominate

PDG: listed high-mass N* states plus new N*'s

Table 1: Branching ratios for $N^* \to K^*\Lambda$ decays. For the states denoted with * we assume $\Gamma_{\gamma p} = 0.1$ MeV.

$N(1880)1/2^+$	$0.8{\pm}0.3\%$	$N(1895)1/2^ 6.3\pm2.5\%$
$N(2100)1/2^+$	$7.0{\pm}4\%$	$N(1875)3/2^-$ <0.2%
$N(2120)3/2^{-}$	< 0.2%	$N(2060)5/2^-$ 0.8±0.5%
$N(2000)5/2^+$	$2.2{\pm}1.0\%$	$N(1900)3/2^+$ <0.2%
$N(2190)7/2^{-}$	$0.5{\pm}0.3\%$	$N(2355)^*1/2^ 6\pm 1.5\%$
$N(2250)^*3/2^-$	$10{\pm}5\%$	$N(2300)^*5/2^ 4.5\pm1.4\%$

Notes: 1) the photocoupling to the new N*'s (marked with *) are not known. 2) The N*(1880) and N*(1895) are very close to threshold—handled carefully.

Possible new high-mass resonances

Table 2: Masses and widths of tentative additional resonances contributing to the reaction $\gamma p \to K^{*+} \Lambda$.

Resonance	Mass	width
$N(2355)1/2^{-}$	$2355{\pm}20{\rm MeV}$	$235{\pm}30{\rm MeV}$
$N(2250)3/2^{-}$	$2250{\pm}35{\rm MeV}$	$240{\pm}40{\rm MeV}$
$N(2300)5/2^{-}$	$2300^{+30}_{-60}{\rm MeV}$	$205{\pm}65{\rm MeV}$

Comments:

- 1) masses and widths in the fits are fairly stable.
- 2) These N*'s have significant B.R. to the K* final state
- 3) Reasonable PWA fits even with any two of the three states

Caveat Emptor

- The new N* states are seen only in this reaction
 - We need other final states at higher masses to confirm
 - It is likely that there is substantial coupling to two-pion decay
 - We need hadronic-beam data to separate photocouplings.
- The spin-density matrix elements are useful to constrain PWA fits
 - There is significant interference in the N* amplitudes
 - Too much uncertainty in the PWA fits without the spin-density m.e.
- More polarization data would be nice
 - This is, in fact, possible using g12 data

Summary of $\gamma p \rightarrow K^{*+} \Lambda$ CLAS data

- It is likely that the "missing" N* resonances are there, and just need to be "found".
 - Reactions with high-mass thresholds are useful to explore high-mass N*'s
 - A wide variety of final states can be explored by CLAS
 - Polarization observables are helpful to constrain the PWA
- We have 2-3 possible new high-mass N*'s here (need confirmation)