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§   The Models  & hCQM and Int qDiqM 	



§ The helicity amplitudes	



§   The elastic e.m. form factors of the nucleon 	



§ The Unquenched Quark Model ( higher Fock 

components in a systematic way )	



	





The	
  Model	
  	
  	
  	
  
(hCQM)	
  

	
  
hypercentral	
  Cons7tuent	
  Quark	
  Model	
  	
  	
  



different	
  CQMs	
  for	
  bayons	
  

Kin. Energy SU(6) inv SU(6) viol date

Isgur-Karl non rel h.o. + shift OGE 1978-9

Capstick-Isgur rel string + coul-like OGE 1986

U(7)  B.I.L. rel M^2 vibr+L Guersey-R 1994

Hyp.   O(6) non rel/rel hyp.coul+linear OGE 1995

Glozman Riska non rel/relPlessas h.o./linear GBE 1996

Bonn rel linear 3-body instanton 2001



 
 

Non strange spectrum	
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Caps(ck	
  &	
  Isgur’s	
  Model	
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  Algebraic	
  Model	
  

Hypercentral	
  CQM	
  

Glozman	
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  Rept.	
  268,	
  263	
  (1996)	
  
	
  

GB	
  Model	
  
V(x) = - τ/x + α x 	





Hypercentral	
  Cons7tuent	
  Quark	
  Model	
  
hCQM	
  

free	
  parameters	
  fixed	
  from	
  the	
  spectrum	
  

Predic7ons	
  for:	
  
	
   	
  photocouplings	
  
	
   	
  transi7on	
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  factors	
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  what	
  is	
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Comment	


The description of the spectrum is the first task of a model builder	





LQCD (De Rújula, Georgi, Glashow, 1975)	


	


 the quark interaction contains	


	

a long range spin-independent confinement	



          a short range spin dependent term	



Spin-independence         SU(6) configurations	





SU(6) configurations for three quark states 

6 X 6 X 6 = 20 + 70 + 70 + 56 
                    A      M    M      S 

Notation 
(d, Lπ) 

d = dim of SU(6) irrep 
L = total orbital angular momentum 
π = parity 
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Hyperspherical	
  harmonics	
  

Hasenfratz	
  et	
  al.	
  1980:	
  	
  	
  	
  	
  	
  	
  
	
  Σ V(ri,rj)	
  	
  	
  is	
  approximately	
  hypercentral	
  	
  

γ	
  =	
  2n	
  +	
  lρ	
  +	
  lλ	
  	
  

One can introduce the hyperspherical coordinates, which are obtained by
substituting ⌅ = |�⌅| and ⇥ = |�⇥| with the hyperradius, x, and the hyperangle,
⇤, defined respectively by

x =
⇥

�⌅2 + �⇥2 , ⇤ = arctg(
⌅

⇥
). (2)

Using these coordinates, the kinetic term in the three-body Schrödinger equation
can be rewritten as [?]

� 1
2m

(�⌅ + �⇥) = � 1
2m

(
�2

�x2
+

5
x

�

�x
� L2(⇥⌅,⇥⇥, ⇤)

x2
) . (3)

where L2(⇥⌅,⇥⇥, ⇤) is the six-dimensional generalization of the squared angular
momentum operator. Its eigenfunctions are the well known hyperspherical har-
monics [?] Y[�]l⇥l�(⇥⌅,⇥⇥, ⇤) having eigenvalues �(� + 4), with � = 2n + l⌅ + l⇥
(n is a non negative integer); they can be expressed as products of standard
spherical harmonics and Jacobi polynomials.

In the hypercentral Constituent Quark Model (hCQM) [1], the quark inter-
action is assumed to depend on the hyperradius x only V = V3q(x). It has been
observed many years ago that a two-body quark-quark potential leads to matrix
elements in the baryon space quite similar to those of a hypercentral potential
[?]. On the other hand, a two body potential, treated in the hypercentral ap-
proximation [12], that is averaged over angles and hyperangle, is transformed
into a potential which depends on x only; in particular, a power-like two-body
potential

�
i<j (rij)n in the hypercentral approximation is given by a term pro-

portional to xn. The hypercentral approximation has been shown to be valid,
since it provides a good description of baryon dynamics, specially for the lower
states [12].

The hyperradius x is a function of the coordinates of all the three quarks
and then V3q(x) has also a three-body character. There are many reasons sup-
porting the idea of considering three-body interactions. First of all, three-body
mechanisms are certainly generated by the fundamental multi-gluon vertices
predicted by QCD, their explicit treatment is however not possible with the
present theoretical approaches and the presence of three-body mechanisms in
quark dynamics can be simply viewed as ”QCD-inspired”. Furthermore, flux
tube models, which have been proposed as a QCD-based description of quark in-
teractions [], lead to Y-shaped three-quark configurations, besides the standard
��like two-body ones. A three-body confinement potential has been shown to
arise also if the quark dynamics is treated within a bag model [?]. Finally, it
should be reminded that threee-body forces have been considered also in the
calculations by ref. [?] and in the relativized version of the Isgur-Karl model
[7].

For a hypercentral potential the three-quark wave function is factorized

⇧3q(�⌅,�⇥) = ⇧⇤�(x) Y[�]l⇥l�(⇥⌅,⇥⇥, ⇤) (4)

2

hyperradius	
  

hyperangle	
  



Hypercentral	
  Model	
  	
  

V(x)	
  =	
  -­‐τ/x	
  +	
  α	
  x	
  

Hypercentral	
  approxima7on	
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  1995	
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  et	
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  1995	
  



x =  	

  ρ2  +  λ2	
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Results  (predictions) 
with the Hypercentral Constituent 

Quark Model 

for 

q   Helicity amplitudes 

q  Elastic nucleon form factors 



The	
  helicity	
  amplitudes	
  
	
  



HELICITY	
  	
  AMPLITUDES	
  
	
  

Extracted	
  from	
  electroproduc7on	
  of	
  mesons	
  

N N	
  

γ	

 π	
  
N*	
  

A1/2	
  A3/2	
  S1/2	
  	
  



Definition	


	


	

A1/2 = < N* Jz = 1/2 |  HT

em | N Jz = -1/2 >             §	


     A3/2 = < N* Jz = 3/2 | HT

em | N Jz =  1/2 >              §	


      S1/2 = < N* Jz = 1/2 | HL

em | N Jz =  1/2 > 	


	


	

 	

 	

 N, N* nucleon and resonance as 3q states	



              HT
em Hl

em   model transition operator	


	


§  results for the negative parity resonances:   	


      M. Aiello, M.G., E. Santopinto J. Phys. G24, 753 (1998)	


	


Systematic predictions for transverse and longitudinal amplitudes	


    E. Santopinto et al. , Phys. Rev. C86, 065202 (2012)	


	



Proton and neutron electro-excitation to 14 resonances	


P	
  11(1440),	
  D13(1520),	
  S11(1535),	
  S11(1650),	
  D15(1675),	
  F	
  15(1680),	
  P	
  11(1710)	
  	
  

P	
  33(1232),	
  S31(1620),	
  D33(1700),	
  F	
  35(19005),	
  F	
  37(1950)	
  	
  
+ 	

Besides these states, we have considered also the statesD13(1700) and P13(1720),

which are excited in an energy range particularly interesting for the phenomeno-
logical analysis.

The calculations of the matrix elements of Eqs.(12) are performed using
as baryon states the eigenstates of the hamiltonian (9). For each resonance,
in Appendix A we list the states in the SU(6) limit; the physical states of
the various resonances are given by the configuration mixing produced by the
hyperfine interaction in Eq.(9).

It should be stressed that, after having fixed the free parameters (see Eq.
(10) in order to reproduce the baryon spectrum, the baryon states are completely
determined and the results for the helicity amplitudes reported in the following
sections are parameter free predictions of the hypercentral Constituent Quark
Model.

3.1 The photocouplings

The proton and neutron photocouplings predicted by the hCQM [16] are re-
ported in Tables 1,2 and 3 in comparison with the PDG data [38] . The overall
behaviour is fairly well reproduced, but in general there is a lack of strength.
The proton transitions to the S11(1650), D15(1675) and D13(1700) resonances
vanish exactly in absence of hyperfine mixing and are therefore entirely due to
the SU(6) violation. The results obtained with other calculations are qualita-
tively not much di↵erent [16, 17] and this is because the various CQM models
have the same SU(6) structure in common.

3.2 The transition form factors

Taking into account the Q2�behaviour of the transition matrix elements, one
can calculate the hCQM helicity amplitudes [35].

In order to compare with the experimental data, the calculation should be
performed in the rest frame of the resonance (see e.g. [48]). The nucleon and
resonance wave functions are calculated in their respective rest frames and, be-
fore evaluating the matrix elements given in Eqs. (12), one should boost the
nucleon to the resonance c.m.s.. In our non relativistic approach such boost is
trivial but not correct, because of the large nucleon recoil. In order to minimize
the discrepancy between the non relativistic and the relativistic boost in com-
paring with the experimental data, we use the Breit frame, as in refs. ([35, 4]).
Therefore we use the following kinematic relation:

~k2 = Q2 +
(W 2 �M2)2

2(M2 +W 2) +Q2
, (16)

where M is the nucleon mass, W is the mass of the resonance, k0 and ~k are the
energy and the momentum of the virtual photon, respectively, andQ2 = ~k2�k20.
For consistency reasons, in the calculations we have used the value of W given
by the model and not the phenomenological ones.
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N(1520) 3/2- transition amplitudes	



E. Santopinto, M. Giannini.	


Phys. Rev. C86, 	


065202 (2012)	
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(Roper)	


transition amplitudes	
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Figure 15: (Color on line) The P11(1440) proton transverse (a) and longitudinal
(b) helicity amplitudes predicted by the hCQM (full curves), in comparison with
the data of refs. [134], [131] and the Maid2007 analysis [121] of the data by
refs. [135],[132], [133] and [136]. The PDG point [63] is also shown. The figure
is taken from ref. [46] (Copyright (2012) by the American Physical Society).

expect that their internal structures have strong similarities and that a good
description of the N�� transition from factors is possible only with a relativistic
approach. Such feature is further supported by the fact that the transitions to
the higher resonances are only slightly a↵ected by relativistic e↵ects [30].

The Roper excitation is reported in Fig. 15. Because of the 1

x term in the
hypercentral potential of Eq. (82), the Roper resonance can be included in the
first resonance region, at variance with h.o. models, which predict it to be a 2 h̄!
state. There are problems in the low Q2 region, but for the rest the agreement
is interesting, specially if one remembers that the curves are predictions and the
Roper has been often been considered a crucial state, non easily included into a
constituent quark model description. In particular, the longitudinal excitation
is quite di↵erent from zero [105], in agreement with the hCQM and at variance
with the hybrid qqq-gluon model [104]. In the present model, the Roper is a
hyperradial excitation of the nucleon.

We consider now the excitations to some negative resonances [45, 46], namely
the D13(1520) and the S11(1525) ones, reported in Figs. 16 and 17, respectively.

The agreement in the case of the S11 is remarkable, specially if one considers
that the hCQM curve for the transverse transition has been published three
years in advance [45] with respect to the recent TJNAF data [131], [139], [141],
[142].

It is interesting to discuss the influence of the hyperfine mixing on the ex-
citation of the resonances. Usually there is only a small di↵erence between the
values calculated with or without hyperfine interaction. In some cases, however
the excitation strength vanishes in the SU(6) limit, as already mentioned in
Table 6, the non vanishing result is then entirely due to the hyperfine mixing
of states. In the case of the S11(1650) resonance, the resulting transverse and
longitudinal excitations have a relevant strength.

The three helicity amplitudes of the D13(1700) resonance are again non zero

43
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Figure 2: (Color on line)The P33(1232) helicity amplitudes predicted by the
hCQM (full curves) A3/2 (a), A1/2 (b) and S1/2 (c), in comparison with the
data of ref. [49] and with the the Maid2007 analysis [50] of the data by refs.
[51] and [52]. The PDG points [38] are also shown.
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FIG. 5. (Color online) The S11(1525) proton transverse (a) and
longitudinal (b) helicity amplitudes predicted by the hCQM (full
curve), in comparison with the data of Ref. [67] (open diamonds),
[49] (full diamonds), [68] (crosses), [69] (open squares), [70] (full
squares), the MAID2007 analysis [50] (full triangles) of the data by
Ref. [51], and the compilation of the Bonn-Mainz-DESY data of
Refs. [71–74] (stars), presented in Ref. [70]. The PDG point [38]
(pentagon) is also shown.

B. The transition form factors

Taking into account the Q2 behavior of the transition
matrix elements, one can calculate the hCQM helicity
amplitudes [35].

In order to compare results with the experimental data,
the calculation should be performed in the rest frame of the
resonance (see, e.g., Ref. [48]). The nucleon and resonance
wave functions are calculated in their respective rest frames
and, before evaluating the matrix elements given in Eqs. (12),
one should boost the nucleon to the resonance c.m.s. In our
nonrelativistic approach such boost is trivial but not correct,
because of the large nucleon recoil. In order to minimize the
discrepancy between the nonrelativistic and the relativistic
boost when comparing results with the experimental data, we
use the Breit frame, as in Refs. [4,35]. Therefore we use the
following kinematic relation:

!k2 = Q2 + (W 2 − M2)2

2(M2 + W 2) + Q2
, (16)

where M is the nucleon mass, W is the mass of the resonance,
k0 and !k are the energy and the momentum of the virtual
photon, respectively, and Q2 = !k2 − k2

0. For consistency, in
the calculations we have used the values of W given by the
model and not the phenomenological ones.
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FIG. 6. (Color online) The proton helicity amplitudes predicted
by the hCQM for the excitation of S31(1620) (a) and S11(1650) (b),
respectively, in comparison with the data of Ref. [49] (A1/2 open
diamonds, S1/2 full diamonds), [75] (A1/2 open diamonds, S1/2 full
diamonds), the compilation reported in Ref. [65] and the MAID2007

analysis [50] (A1/2 up triangles, S1/2 down triangles) of the data in
Refs. [51,52], and the compilation of the Bonn-Mainz-DESY data of
Refs. [71–74] (crosses) presented in Ref. [70]. The PDG points [38]
(pentagons) are also shown.

The matrix elements of the e.m. transition operator between
any two 3q states are expressed in terms of integrals involving
the hyper-radial wave functions and are calculated numer-
ically. The computer code has been tested by comparison
with the analytical results obtained with the h.o. model of
Refs. [13,14] and with the analytical model of Ref. [45].

C. The excitation to the ! resonance

The N − ! helicity amplitudes are shown in Fig. 2. The
transverse excitation to the ! resonance has a lack of strength
at low Q2, a feature in common with all CQM calculations.
The medium-high-Q2 behavior is decreasing too slowly with
respect to data, similar to what happens for the nucleon
elastic form factors [20,23]. In this case, the nonrelativistic
calculations are improved by taking into account relativistic
effects. Since the ! resonance and the nucleon are in the
ground state SU(6) configuration, we expect that their internal
structures have strong similarities and that a good description
of the N − ! transition from factors is possible only with a
relativistic approach. Such a feature is further supported by
the fact that the transitions to the higher resonances are only
slightly affected by relativistic effects [20].
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Figure 8: (Color on line)The D33(1700) helicity amplitudes predicted by the
hCQM (full curve) A3/2 (a), A1/2 (b) and S1/2 (c) in comparison with the data
of [75] and the Maid2007 analysis [50] of the data by refs. [52]. The PDG points
[38] are also shown.
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Fig. 2 The photocouplings predicted by the hCQM [3,9], in comparison with the experimental data [25]. Upper left proton
excitation to N∗ resonances; upper right the same for neutron excitation; lower proton excitation to ∆ resonances

A significant tool for testing the high Q2 behaviour of the transverse helicity amplitudes is provided by
the asymmetry ratio [31,32]

Z = |A1/2|2 − |A3/2|2
A1/2|2 + |A3/2|2

(5)

Because of helicity conservation in the virtual photon-quark interaction, QCD predicts that Z should reach
the value 1 as long as Q2 → ∞ [33]. In Fig. 3 the Q2 dependence of Z for the resonances N (1520)3/2−,
N (1680)5/2+ and ∆(1232)3/2+ is shown. For the N (1520)3/2−, the data seem to reach an asymptotic value
in agreement with the QCD prescription as well as the hCQMpredictions; one should not forget that in the case
of the negative parity resonances the hCQM description is particularly good [4], specially in the medium-high
Q2 range. In the case of the N (1680)5/2+ resonance, there is some inconsistency of the data, nevertheless
there seems to be an asymptotic value but at 0.5 instead of 1. The situation for the∆(1232)3/2+ is peculiar: the
hCQM predictions and the data are in agreement, but the behaviour is far from being in agreement with QCD.
The helicity amplitudes can be expressed in terms of the electric E2 and magnetic M1 multipoles [32,38]

A1/2 = −CW
1√
3
(GM1 − 3GE2) A3/2 = CW (GM1 + GE2) (6)
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Table 1: Photocouplings (in units 10�3GeV �1/2) predicted by the hCMQ in
comparison with PDG data for proton excitation to N*-like resonances. The
proton transitions to the S11(1650), D15(1675) and D13(1700) resonances van-
ish in the SU(6) limit.

Resonance Ap

1/2(hCQM) Ap

1/2(PDG) Ap

3/2(hCQM) Ap

3/2(PDG)

P11(1440) 88 �65± 4
D13(1520) �66 �24± 9 67 166± 5
S11(1535) 109 90± 30
S11(1650) 69 53± 16
D15(1675) 1 19± 8 2 15± 9
F15(1680) �35 �15± 6 24 133± 12
D13(1700) 8 �18± 13 �11 �2± 24
P11(1710) 43 9± 22
P13(1720) 94 18± 30 �17 �19± 20

Table 2: The same as Table 1 for neutron excitation

Resonance An

1/2(hCQM) An

1/2(PDG) An

3/2(hCQM) An

3/2(PDG)

P11(1440) 58 40± 10
D13(1520) �1 �59± 9 �61 �139± 11
S11(1535) �82 �46± 27
S11(1650) �21 �15± 21
D15(1675) �37 �43± 12 �51 �58± 13
F15(1680) 38 29± 10 15 �33± 9
D13(1700) 12 0± 50 70 �3± 44
P11(1710) �22 �2± 14
P13(1720) �48 1± 15 4 �29± 61
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Table 3: The same as Table 1 for the excitation to �-like resonances

Resonance Ap

1/2(hCQM) Ap

1/2(PDG) Ap

3/2(hCQM) Ap

3/2(PDG)

P33(1232) �97 �135± 6 �169 �250± 8
S31(1620) 30 27± 11
D33(1700) 81 104± 5 70 85± 2
F35(1905) �17 26± 11 �51 �45± 20
F37(1950) �28 �76± 12 �35 �97± 10

The matrix elements of the e.m. transition operator between any two 3q-
states are expressed in terms of integrals involving the hyperradial wavefunctions
and are calculated numerically. The computer code has been tested by compar-
ison with the analytical results obtained with the h.o. model of Refs. [13, 14]
and with the analytical model of Ref. [45].

3.3 The excitation to the � resonance

The N�� helicity amplitudes are shown in Fig. 2. The transverse excitation to
the � resonance has a lack of strength at low Q2, a feature in common with all
CQM calculations. The medium-high Q2 behavior is decreasing too slowly with
respect to data, similarly to what happens for the nucleon elastic form factors
[20, 23]. In this case, the non relativistic calculations are improved by taking
into account relativistic e↵ects. Since the� resonance and the nucleon are in the
ground state SU(6)-configuration, we expect that their internal structures have
strong similarities and that a good description of the N � � transition from
factors is possible only with a relativistic approach. Such feature is further
supported by the fact that the transitions to the higher resonances are only
slightly a↵ected by relativistic e↵ects [20].

An important issue in connection with the � resonance is the possible de-
formation, which manifests itself in a non zero value for the transverse and
longitudinal quadrupole strength. To this end one considers in particular the
ratio

R
EM

= � G
E

G
M

= �
p
3 A1/2 � A3/2p
3 A1/2 + A3/2

(17)

where G
E

and G
M

are, respectively, the transverse electric and magnetic form
factors for the N ! � transition [53]. If the quarks in the nucleon and the � are
in a pure S�wave state there is no quadrupole excitation [54]. A deformation
can be produced if the interaction contains a hyperfine term as in Eq. (9) and
both the nucleon and the � states acquire D-components..
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Fig. 2 The photocouplings predicted by the hCQM [3,9], in comparison with the experimental data [25]. Upper left proton
excitation to N∗ resonances; upper right the same for neutron excitation; lower proton excitation to ∆ resonances

A significant tool for testing the high Q2 behaviour of the transverse helicity amplitudes is provided by
the asymmetry ratio [31,32]

Z = |A1/2|2 − |A3/2|2
A1/2|2 + |A3/2|2

(5)

Because of helicity conservation in the virtual photon-quark interaction, QCD predicts that Z should reach
the value 1 as long as Q2 → ∞ [33]. In Fig. 3 the Q2 dependence of Z for the resonances N (1520)3/2−,
N (1680)5/2+ and ∆(1232)3/2+ is shown. For the N (1520)3/2−, the data seem to reach an asymptotic value
in agreement with the QCD prescription as well as the hCQMpredictions; one should not forget that in the case
of the negative parity resonances the hCQM description is particularly good [4], specially in the medium-high
Q2 range. In the case of the N (1680)5/2+ resonance, there is some inconsistency of the data, nevertheless
there seems to be an asymptotic value but at 0.5 instead of 1. The situation for the∆(1232)3/2+ is peculiar: the
hCQM predictions and the data are in agreement, but the behaviour is far from being in agreement with QCD.
The helicity amplitudes can be expressed in terms of the electric E2 and magnetic M1 multipoles [32,38]

A1/2 = −CW
1√
3
(GM1 − 3GE2) A3/2 = CW (GM1 + GE2) (6)

High Q2 Helicity Amplitudes in the Hypercentral Constituent Quark Model 1013

-1,5

-1

-0,5

0

0,5

1

1,5

-1 0 1 2 3 4 5 6

D13
 

PDG
azn09
maid07
vm09
hCQM

Z

Q^2   (GeV/c)^2

-1,5

-1

-0,5

0

0,5

1

1,5

-1 0 1 2 3 4 5 6

PDG
azn05_2
maid07
VB
hCQM
park 15

Z

Q^2        (GeV)^2

F15

-1

-0,8

-0,6

-0,4

-0,2

0

-1 0 1 2 3 4 5 6 7

P33

PDG
azn09
maid07
hCQM

Z

Q^2           (GeV)^2

Fig. 3 The ratio Z of Eq. 5 for the resonances N (1520)3/2− (upper left), N (1680)5/2+ (upper right) and∆(1232)3/2+ (lower).
The data are from [25] (PDG), [34] (azn09), [35] (maid07), [36] (vm09), [37] (park15). The theoretical curves are the predictions
[4,9] of the hCQM [1,2]

where CW is a kinematical factor. The asymmetry ratio can then be written as [38]

Z = −1
2
+ 3

GE2(GE2 − GM1)

G2
M1 + 3G2

E2
(7)

the ratio turns out to be near to 1/2 in agreement with the fact that the quadrupole transition is very small. In
CQMs, the quadrupole transition is made possible by the mixing with the 2+S configuration (see Fig. 1), which
gives rise to a small D component in the ∆. The value Z = 1 would be obtained for GE2 = −GM1, that is the
electric and magnetic transitions should have the same strength, a feature not respected neither by the CQMs
nor by the data. Here we are faced with the problem of the presence of higher orbital states in the nucleon
wave function, as discussed for instance in [39], but in order to get a reasonable asymptotic behaviour, such
states should be of the same order of magnitude as the standard S one.

4 Introducing Relativity

The hCQMallows a fair description ofmany baryon properties [2] notwithstanding its non relativistic character.
The CQM leads to the determination of the three quark wave function in the c.m.s., however, the form factors
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Point Form Relativistic Dynamics	



Point Form is one of the Relativistic Hamiltonian Dynamics	


                   for a fixed number of particles    (Dirac)	


	


Construction of a representation of the Poincaré generators	


     	

Pµ (tetramomentum), Jk (angular momenta), Ki (boosts)	


 	

obeying the Poincaré group commutation relations	


    in particular             	


                                           [Pk , Ki ] = i δkj H	



Three forms:	


	

Light (LF), Instant (IF), Point (PF)	



Differ in the number and type of (interaction) free generators	





Point form:         Pµ interaction dependent	


                            Jk  and Ki      free	



Composition of angular momentum states as in the 
non relativistic case 	



M = M0 + MI	

Mass operator	



M0 = Σi	

 pi
2 + m2

	

   Σi pi = 0	



Pi undergo the same Wigner rotation -> M0 is invariant	


Similar reasoning for the hyperradius	
  

The eigenstates of the relativistic hCQM are interpreted as	


eigenstates of the mass operator M	



Moving three-quark states are obtained through 	


(interaction free) Lorentz boosts   (velocity states)	
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• Expansion of current to any order	
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• 	
  Problem	
  of	
  missing	
  resonances	
  

Interac(ng	
  qD	
  model	
  	
  
E.	
  Santopinto,	
  PRC72,	
  022201	
  (2005)	
  
I	
  part:Construc(on	
  of	
  the	
  states	
  



§ 	
  21	
  SU(6)sf	
  representa(on	
  
§ 	
  Decomposed	
  in	
  SU(2)s	
  x	
  SU(3)f	
  
§ 	
  [bar-­‐3,0]	
  &	
  [6,1]	
  representa(ons.	
  Nota(on:	
  [flavor,spin]	
  

• 	
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  &	
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  [Wilczek,	
  Jaffe]	
  
• 	
  [bar-­‐3,0]:	
  good	
  (scalar)	
  diquark	
  
• 	
  [6,1]:	
  bad	
  (axial-­‐vector)	
  diquark	
  

Scalar	
  &	
  axial-­‐vector	
  diquarks	
  



Evidences	
  of	
  diquark	
  correla7ons	
  

56	
  

• Regge behavior of hadrons 
Baryons arranged in rotational Regge trajectories (J=α+α’M2) with the same 
slope of the mesonic ones. 
∆   I = ½ rule in weak nonleptonic decays 

Neubert and Stech, Phys. Lett. B 231 (1989) 477; Phys. Rev. D 44 (1991) 775 
Regularities in parton distribution functions and in spin- 
dependent structure functions 
Close and Thomas, Phys. Lett. B 212 (1988) 227 
Regularities in Λ(1116) and Λ(1520) fragmentation functions 

Jaffe, Phys. Rept. 409 (2005) 1 [Nucl. Phys. Proc. Suppl. 142 (2005) 343] 
Wilczek, hep-ph/0409168 
Any interaction that binds π and ρ mesons in the rainbow-ladder 

approximation of the DSE will produce diquarks 
Cahill, Roberts and Praschifka, Phys. Rev. D 36 (1987) 2804 
Indications of diquark confinement 

Bender, Roberts and Von Smekal, Phys. Lett. B 380 (1996) 7 

• 

• 

• 

• 

• 
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TABLE II. Comparison between the calculated masses of non-
strange baryon resonances up to 2 GeV, Mcalc, and the experimental
masses [22], Mexp, for the 4∗ and 3∗ resonances. The masses are
given in MeV.

Baryon Status Mexp J P lP S Mcalc

(MeV) (MeV)

N(939) P11 ∗∗∗∗ 938 1
2

+
0+ 1

2 940

N(1440) P11 ∗∗∗∗ 1430–1470 1
2

+
0+ 1

2 1543

N(1520) D13 ∗∗∗∗ 1515–1530 3
2

−
1− 1

2 1538

N(1535) S11 ∗∗∗∗ 1520–1555 1
2

−
1− 1

2 1538

N(1650) S11 ∗∗∗∗ 1640–1680 1
2

−
1− 3

2 1675

N(1675) D15 ∗∗∗∗ 1670–1685 5
2

−
1− 3

2 1673

N(1680) F15 ∗∗∗∗ 1675–1690 5
2

+
2+ 1

2 1675

N(1700) D13 ∗∗∗ 1650–1750 3
2

−
1− 3

2 1673

N(1710) P11 ∗∗∗ 1680–1740 1
2

+
0+ 1

2 1640

N(1720) P13 ∗∗∗∗ 1650–1750 3
2

+
2+ 1

2 1675
!(1232)P33 ∗∗∗∗ 1230–1234 3

2
+

0+ 3
2 1235

!(1600)P33 ∗∗∗ 1550–1700 3
2

+
0+ 1

2 1714

!(1620)S31 ∗∗∗∗ 1615–1675 1
2

−
1− 1

2 1673

!(1700)D33 ∗∗∗∗ 1670–1770 3
2

−
1− 1

2 1673

!(1900)S31 ∗∗∗ 1850–1950 1
2

−
1− 1

2 2003

!(1905)F35 ∗∗∗∗ 1870–1920 5
2

+
2+ 3

2 1930

!(1910)P31 ∗∗∗∗ 1870–1920 1
2

+
2+ 3

2 1930

!(1920)P33 ∗∗∗ 1900–1970 3
2

+
2+ 3

2 1930

!(1930)D35 ∗∗∗ 1920–1970 5
2

−
1− 3

2 2003

!(1950)F37 ∗∗∗∗ 1940–1960 7
2

+
2+ 3

2 1930

These integrals, denoted by Unl,n′l′ (k)δmm′ are straightforward
and Table III shows the corresponding results for transitions
from the ground state with quantum numbers, n = 1, lP = 0+

to a state with n, l. It is observed that the elastic form factor is

F (k) = 1
(1 + k2a2)2

, (18)

with a = 1
2τm

. In addition to having a power-law behavior with
momentum transfer, k, typical of Coulomb-like interactions,
this form factor has precisely the power dependence observed
experimentally. Thus the quark-diquark model presented here
has the further advantage of producing in first approximation
an elastic form factor in agreement with experimental data,
Fig. 3. All form factors depend on the scale a. To determine
the scale a the rms radius can be calculated by using
the ground state wave functions, 〈r2〉 = 3

τ 2m2 = 12a2. This
calculated value is then fitted to the experimental value
〈r2〉exp = 0.74(1) fm2 [22]. The resulting value is a = 0.25 fm.
Since the parameter τ is determined from the spectrum,
one obtains the reduced mass m = 102 MeV. This value is
somewhat lower than the naive expectation m = 200 MeV,
obtained by assuming the quark mass to be 300 MeV and the
diquark mass to be 600 MeV. The results shown in Table III

TABLE III. The scalar form factors of Eq. (17) for transitions to
final states labeled by the quantum numbers n, lP , where P is the
parity. The initial state is n = 1, lP = 0+ and a = 1

2τm
.

n lP 〈nlP |U |10+〉

1 0+ 1
(1+k2a2)2

2 1− i√
2

( 4
9 )3 24ka

(1+ 16
9 k2a2)3

2 0+ 16
√

2( 4
9 )3 (ka)2

(1+ 16
9 k2a2)3

3 2+ − 4√
6

( 9
16 )2 (ka)2

(1+ 9
4 k2a2)4

3 1− i
√

264ka
27 ( 9

16 )3 (1+ 27
4 (ka)2)

(1+ 9
4 k2a2)4

3 0+ 4√
3

( 9
16 )2 (1+ 27

4 (ka)2)(ka)2

(1+ 9
4 k2a2)4

should be compared with the analogous results in the three
quark model, as for example reported in Table IX of Ref. [24].

In order to calculate the magnetic elastic form factors and
the helicity amplitudes, other matrix elements are also needed
to be calculated; this program will be completed in another
article (not least because a relativistic version of the model is
required for a good calculation of form factors), since here we
are interested only to explore the qualitative features of the
model and of its results. In particular the quark-diquark model
presented here produces the phenomenon of stretching, which
is at the basis of the Regge behavior of hadrons. The transition
radii increase with n and l, as one can see from Table III, or
by evaluating 〈r2〉n,l=n−1 = (2n + 2)(2n + 1) n2

4τ 2m2 . In other
words, hadrons swell as the angular momentum increases.

In this article, we present a simple quark-diquark model
with a specific direct plus exchange interaction. This model re-
produces the spectrum just as well as conventional three-quark
models. However, it has far fewer missing resonances than
the usual models. Most importantly, the model produces form
factors with power-law behavior as a function of momentum
transfer, in agreement with experimental data. Finally, it shows
the phenomenon of stretching which is at the basis of the Regge
behavior of hadrons.
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FIG. 3. The electric form factor of the proton. The dotted line is
the result of the model [Eq. (18)] using a = 0.25 fm, the dot-dashed
line corresponds to the dipole fit, a = 0.23 fm. The experimental data
are from Ref. [25].
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baryons [38,67]. Thus, we consider the following interaction,
inspired by Gürsey-Radicati [47]:

Mex(r) = (−1)L+1e−σ r
[
AS"s1 · "s2+AF

"λf
1 · "λf

2 +AI "t1 · "t2
]
,

(4)

where "s and "t are the spin and isospin operators and "λf are the
SUf(3) Gell-Mann matrices. In the nonstrange sector, we also
have a contact interaction

Mcont =
(

m1m2

E1E2

)1/2+ε
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2+ε

,

(5)

which was introduced in the mass operator of Ref. [39]
to reproduce the ' − N mass splitting. It is worthwhile to
compare the exchange interactions of Eq. (4) and that of

Ref. [39],

Mex(r) = (−1)L+1e−σ r [AS"s1 · "s2 + AI "t1 · "t2
+ASI ("s1 · "s2)("t1 · "t2)]; (6)

one can notice that the spin-isospin ("s1 · "s2)("t1 · "t2) term of
Eq. (6) has here been substituted with a flavor-dependent one.
The isospin dependence is still necessary in Eq. (4), because
there are resonances which have the same quantum numbers
except the isospins. These baryons, belonging to the same
SUf(3) representation, have different isospins that result from
different combinations of the isospins of the quark and the
diquark, like ((1600) and )(1193) (see Tables V and VII).
Thus, without the introduction of an isospin dependence into
the exchange interaction, the previous states, ((1600) and
)(1193), would become degenerate and lie at the same energy.

TABLE III. Comparison between the experimental [17] values of non strange baryon resonances masses (up to 2 GeV) and the numerical
ones, from ”Fit 1”. J P and LP are respectively the total angular momentum and the orbital angular momentum of the baryon, including the
parity P ; S is the total spin, obtained coupling the spin of the diquark, s1, and that of the quark; finally nr is the number of nodes in the radial
wave function. Since in the nonstrange sector we can only have two type of diquarks, the scalar, [n,n], and axial-vector diquark, {n,n}, with
spin s1 = 0 and 1, respectively, for simplicity here we use the notation of Refs. [39,42].

Resonance Status Mexp. (MeV) J P LP S s1 nr Mcalc. (fit 1) (MeV)

N (939) P11 **** 939 1
2

+
0+ 1

2 0 0 939
N (1440) P11 **** 1420–1470 1

2
+

0+ 1
2 0 1 1511

N (1520) D13 **** 1515–1525 3
2

−
1− 1

2 0 0 1537
N (1535) S11 **** 1525–1545 1

2
−

1− 1
2 0 0 1537

N (1650) S11 **** 1645–1670 1
2

−
1− 1

2 1 0 1625

N (1675) D15 **** 1670–1680 5
2

−
1− 3

2 1 0 1746

N (1680) F15 **** 1680–1690 5
2

+
2+ 1

2 0 0 1799
N (1700) D13 *** 1650–1750 3

2
−

1− 1
2 1 0 1625

N (1710) P11 *** 1680–1740 1
2

+
0+ 1

2 1 0 1776
N (1720) P13 **** 1700–1750 3

2
+

0+ 3
2 1 0 1648

Missing 1
2

−
1− 3

2 1 0 1746
Missing 3

2
−

1− 3
2 1 0 1746

Missing 3
2

+
2+ 1

2 0 0 1799
N (1875) D13 *** 1820–1920 3

2
−

1− 1
2 0 1 1888

N (1880) P11 ** 1835–1905 1
2

+
0+ 1

2 0 2 1890
N (1895) S11 ** 1880–1910 1

2
−

1− 1
2 0 1 1888

N (1900) P13 *** 1875–1935 3
2

+
0+ 3

2 1 1 1947

'(1232) P33 **** 1230–1234 3
2

+
0+ 3

2 1 0 1247
'(1600) P33 *** 1500–1700 3

2
+

0+ 3
2 1 1 1689

'(1620) S31 **** 1600–1660 1
2

−
1− 1

2 1 0 1830
'(1700) D33 **** 1670–1750 3

2
−

1− 1
2 1 0 1830

'(1750) P31 * 1708–1780 1
2

+
0+ 1

2 1 0 1489
'(1900) S31 ** 1840–1920 1

2
−

1− 3
2 1 0 1910

'(1905) F35 **** 1855–1910 5
2

+
2+ 3

2 1 0 2042
'(1910) P31 **** 1860–1920 1

2
+

2+ 3
2 1 0 1827

'(1920) P33 *** 1900–1970 3
2

+
2+ 3

2 1 0 2042

'(1930) D35 *** 1900–2000 5
2

−
1− 3

2 1 0 1910
'(1940) D33 ** 1940–2060 3

2
−

1− 3
2 1 0 1910

'(1950) F37 **** 1915–1950 7
2

+
2+ 3

2 1 0 2042
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baryons [38,67]. Thus, we consider the following interaction,
inspired by Gürsey-Radicati [47]:

Mex(r) = (−1)L+1e−σ r
[
AS"s1 · "s2+AF

"λf
1 · "λf

2 +AI "t1 · "t2
]
,

(4)

where "s and "t are the spin and isospin operators and "λf are the
SUf(3) Gell-Mann matrices. In the nonstrange sector, we also
have a contact interaction

Mcont =
(

m1m2

E1E2

)1/2+ε
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2+ε

,

(5)

which was introduced in the mass operator of Ref. [39]
to reproduce the ' − N mass splitting. It is worthwhile to
compare the exchange interactions of Eq. (4) and that of

Ref. [39],

Mex(r) = (−1)L+1e−σ r [AS"s1 · "s2 + AI "t1 · "t2
+ASI ("s1 · "s2)("t1 · "t2)]; (6)

one can notice that the spin-isospin ("s1 · "s2)("t1 · "t2) term of
Eq. (6) has here been substituted with a flavor-dependent one.
The isospin dependence is still necessary in Eq. (4), because
there are resonances which have the same quantum numbers
except the isospins. These baryons, belonging to the same
SUf(3) representation, have different isospins that result from
different combinations of the isospins of the quark and the
diquark, like ((1600) and )(1193) (see Tables V and VII).
Thus, without the introduction of an isospin dependence into
the exchange interaction, the previous states, ((1600) and
)(1193), would become degenerate and lie at the same energy.

TABLE III. Comparison between the experimental [17] values of non strange baryon resonances masses (up to 2 GeV) and the numerical
ones, from ”Fit 1”. J P and LP are respectively the total angular momentum and the orbital angular momentum of the baryon, including the
parity P ; S is the total spin, obtained coupling the spin of the diquark, s1, and that of the quark; finally nr is the number of nodes in the radial
wave function. Since in the nonstrange sector we can only have two type of diquarks, the scalar, [n,n], and axial-vector diquark, {n,n}, with
spin s1 = 0 and 1, respectively, for simplicity here we use the notation of Refs. [39,42].

Resonance Status Mexp. (MeV) J P LP S s1 nr Mcalc. (fit 1) (MeV)

N (939) P11 **** 939 1
2

+
0+ 1

2 0 0 939
N (1440) P11 **** 1420–1470 1

2
+

0+ 1
2 0 1 1511

N (1520) D13 **** 1515–1525 3
2

−
1− 1

2 0 0 1537
N (1535) S11 **** 1525–1545 1

2
−

1− 1
2 0 0 1537

N (1650) S11 **** 1645–1670 1
2

−
1− 1

2 1 0 1625

N (1675) D15 **** 1670–1680 5
2

−
1− 3

2 1 0 1746

N (1680) F15 **** 1680–1690 5
2

+
2+ 1

2 0 0 1799
N (1700) D13 *** 1650–1750 3

2
−

1− 1
2 1 0 1625

N (1710) P11 *** 1680–1740 1
2

+
0+ 1

2 1 0 1776
N (1720) P13 **** 1700–1750 3

2
+

0+ 3
2 1 0 1648

Missing 1
2

−
1− 3

2 1 0 1746
Missing 3

2
−

1− 3
2 1 0 1746

Missing 3
2

+
2+ 1

2 0 0 1799
N (1875) D13 *** 1820–1920 3

2
−

1− 1
2 0 1 1888

N (1880) P11 ** 1835–1905 1
2

+
0+ 1

2 0 2 1890
N (1895) S11 ** 1880–1910 1

2
−

1− 1
2 0 1 1888

N (1900) P13 *** 1875–1935 3
2

+
0+ 3

2 1 1 1947

'(1232) P33 **** 1230–1234 3
2

+
0+ 3

2 1 0 1247
'(1600) P33 *** 1500–1700 3

2
+

0+ 3
2 1 1 1689

'(1620) S31 **** 1600–1660 1
2

−
1− 1

2 1 0 1830
'(1700) D33 **** 1670–1750 3

2
−

1− 1
2 1 0 1830

'(1750) P31 * 1708–1780 1
2

+
0+ 1

2 1 0 1489
'(1900) S31 ** 1840–1920 1

2
−

1− 3
2 1 0 1910

'(1905) F35 **** 1855–1910 5
2

+
2+ 3

2 1 0 2042
'(1910) P31 **** 1860–1920 1

2
+

2+ 3
2 1 0 1827

'(1920) P33 *** 1900–1970 3
2

+
2+ 3

2 1 0 2042

'(1930) D35 *** 1900–2000 5
2

−
1− 3

2 1 0 1910
'(1940) D33 ** 1940–2060 3

2
−

1− 3
2 1 0 1910

'(1950) F37 **** 1915–1950 7
2

+
2+ 3

2 1 0 2042
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baryons [38,67]. Thus, we consider the following interaction,
inspired by Gürsey-Radicati [47]:

Mex(r) = (−1)L+1e−σ r
[
AS"s1 · "s2+AF

"λf
1 · "λf

2 +AI "t1 · "t2
]
,

(4)

where "s and "t are the spin and isospin operators and "λf are the
SUf(3) Gell-Mann matrices. In the nonstrange sector, we also
have a contact interaction

Mcont =
(

m1m2

E1E2

)1/2+ε
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2+ε

,

(5)

which was introduced in the mass operator of Ref. [39]
to reproduce the ' − N mass splitting. It is worthwhile to
compare the exchange interactions of Eq. (4) and that of

Ref. [39],

Mex(r) = (−1)L+1e−σ r [AS"s1 · "s2 + AI "t1 · "t2
+ASI ("s1 · "s2)("t1 · "t2)]; (6)

one can notice that the spin-isospin ("s1 · "s2)("t1 · "t2) term of
Eq. (6) has here been substituted with a flavor-dependent one.
The isospin dependence is still necessary in Eq. (4), because
there are resonances which have the same quantum numbers
except the isospins. These baryons, belonging to the same
SUf(3) representation, have different isospins that result from
different combinations of the isospins of the quark and the
diquark, like ((1600) and )(1193) (see Tables V and VII).
Thus, without the introduction of an isospin dependence into
the exchange interaction, the previous states, ((1600) and
)(1193), would become degenerate and lie at the same energy.

TABLE III. Comparison between the experimental [17] values of non strange baryon resonances masses (up to 2 GeV) and the numerical
ones, from ”Fit 1”. J P and LP are respectively the total angular momentum and the orbital angular momentum of the baryon, including the
parity P ; S is the total spin, obtained coupling the spin of the diquark, s1, and that of the quark; finally nr is the number of nodes in the radial
wave function. Since in the nonstrange sector we can only have two type of diquarks, the scalar, [n,n], and axial-vector diquark, {n,n}, with
spin s1 = 0 and 1, respectively, for simplicity here we use the notation of Refs. [39,42].

Resonance Status Mexp. (MeV) J P LP S s1 nr Mcalc. (fit 1) (MeV)

N (939) P11 **** 939 1
2

+
0+ 1

2 0 0 939
N (1440) P11 **** 1420–1470 1

2
+

0+ 1
2 0 1 1511

N (1520) D13 **** 1515–1525 3
2

−
1− 1

2 0 0 1537
N (1535) S11 **** 1525–1545 1

2
−

1− 1
2 0 0 1537

N (1650) S11 **** 1645–1670 1
2

−
1− 1

2 1 0 1625

N (1675) D15 **** 1670–1680 5
2

−
1− 3

2 1 0 1746

N (1680) F15 **** 1680–1690 5
2

+
2+ 1

2 0 0 1799
N (1700) D13 *** 1650–1750 3

2
−

1− 1
2 1 0 1625

N (1710) P11 *** 1680–1740 1
2

+
0+ 1

2 1 0 1776
N (1720) P13 **** 1700–1750 3

2
+

0+ 3
2 1 0 1648

Missing 1
2

−
1− 3

2 1 0 1746
Missing 3

2
−

1− 3
2 1 0 1746

Missing 3
2

+
2+ 1

2 0 0 1799
N (1875) D13 *** 1820–1920 3

2
−

1− 1
2 0 1 1888

N (1880) P11 ** 1835–1905 1
2

+
0+ 1

2 0 2 1890
N (1895) S11 ** 1880–1910 1

2
−

1− 1
2 0 1 1888

N (1900) P13 *** 1875–1935 3
2

+
0+ 3

2 1 1 1947

'(1232) P33 **** 1230–1234 3
2

+
0+ 3

2 1 0 1247
'(1600) P33 *** 1500–1700 3

2
+

0+ 3
2 1 1 1689

'(1620) S31 **** 1600–1660 1
2

−
1− 1

2 1 0 1830
'(1700) D33 **** 1670–1750 3

2
−

1− 1
2 1 0 1830

'(1750) P31 * 1708–1780 1
2

+
0+ 1

2 1 0 1489
'(1900) S31 ** 1840–1920 1

2
−

1− 3
2 1 0 1910

'(1905) F35 **** 1855–1910 5
2

+
2+ 3

2 1 0 2042
'(1910) P31 **** 1860–1920 1

2
+

2+ 3
2 1 0 1827

'(1920) P33 *** 1900–1970 3
2

+
2+ 3

2 1 0 2042

'(1930) D35 *** 1900–2000 5
2

−
1− 3

2 1 0 1910
'(1940) D33 ** 1940–2060 3

2
−

1− 3
2 1 0 1910

'(1950) F37 **** 1915–1950 7
2

+
2+ 3

2 1 0 2042

025202-3

No	
  missing	
  states	
  below	
  2	
  GeV	
  



Σ	
  and	
  Σ*	
  spectrum	
  

63	
  

E. SANTOPINTO AND J. FERRETTI PHYSICAL REVIEW C 92, 025202 (2015)

TABLE V. Comparison between the experimental values [17] of !- and !∗-type resonance masses (up to 2 GeV) and the numerical ones
(all values are expressed in MeV), from fit 2. J P and LP are respectively the total angular momentum and the orbital angular momentum of
the baryon, including the parity P ; S is the total spin, obtained by coupling the spin of the diquark s1 and that of the quark; Q2q stands for the
diquark-quark structure of the state; F and F1 are the dimensions of the SUf(3) representations for the baryon and the diquark, respectively; I

and t1 are the isospins of the baryon and the diquark, respectively; finally nr is the number of nodes in the radial wave function.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

!(1193) P11 **** 1189—1197 1
2

+
0+ 1

2 0 [n,s]n 8 3̄ 1 1
2 0 1211

!(1620) S11 ** ≈1620 1
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1660) P11 *** 1630–1690 1

2
+

0+ 1
2 1 {n,n}s 8 6 1 1 0 1546

!(1670) D13 **** 1665–1685 3
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1750) S11 *** 1730–1800 1

2
−

1− 1
2 0 [n,s]n 8 3̄ 1 1

2 0 1868
!(1770) P11 * ≈1770 1

2
+

0+ 1
2 1 {n,s}n 8 6 1 1

2 0 1668

!(1775) D15 **** 1770–1780 5
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1880) P11 ** ≈1880 1

2
+

0+ 1
2 0 [n,s]n 8 3̄ 1 1

2 1 1801

!(1915) F15 **** 1900–1935 5
2

+
2+ 1

2 0 [n,s]n 8 3̄ 1 1
2 0 2061

!(1940) D13 *** 1900–1950 3
2

−
1− 1

2 0 [n,s]n 8 3̄ 1 1
2 0 1868

Missing 3
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1895
!(2000) S11 * ≈2000 1

2
−

1− 3
2 1 {n,n}s 8 6 1 1 0 1895

!∗(1385) P13 **** 1382–1388 3
2

+
0+ 3

2 1 {n,n}s 10 6 1 1 0 1334
!∗(1840) P13 * ≈1840 3

2
+

0+ 3
2 1 {n,s}n 10 6 1 1

2 0 1439
!∗(2080) P13 ** ≈2080 3

2
+

0+ 3
2 1 {n,n}s 10 6 1 1 1 1924

the rms deviation corrected for the number of free parameters
of the model (fit 2).

There is a certain difference between the values of the model
parameters used in the two fits. This is especially evident
in the case of the quark masses and the exchange potential
parameters. The values of the parameters strongly depend
from one another. Thus, if we modify those for the exchange
potential, this will also have an effect on the constituent quark
masses. Moreover, and most important, some parameters are
present in the first fit and not in second, because they were
introduced to reproduce the " − N mass splitting, and thus
they are inessential in the strange sector. In fact, we can say
that the nonstrange sector is a special case. This is because spin
forces are stronger in this sector than in the others. This can

be seen not only in baryons, but also in meson spectroscopy,
where light meson masses result from very large hyperfine
contributions, while, for example, in the strange or charmed
sectors spin forces are much weaker. This is the reason
why we expect to get better results for heavy baryons [46],
where spin forces are weaker and can be treated more
easily.

It is also interesting to note that in our model #(1116) and
#∗(1520) are described as bound states of a scalar diquark
[n,n] and a quark s, where the quark-diquark system is in
S or P wave, respectively. This is in accordance with the
observations of Refs. [29,30] on #’s fragmentation functions,
that the two resonances can be described as [n,n] − s systems.
See Table VII.

TABLE VI. As Table V, but for $-, $∗-, and %-type resonances.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

$(1318) P11 **** 1315–1322 1
2

+
0+ 1

2 0 [n,s]s 8 3̄ 1
2

1
2 0 1317

Missing 1
2

+
0+ 1

2 1 {n,s}s 8 6 1
2

1
2 0 1772

$(1820) D13 *** 1818–1828 3
2

−
1− 1

2 0 [n,s]s 8 3̄ 1
2

1
2 0 1861

Missing 1
2

+
0+ 1

2 0 [n,s]s 8 3̄ 1
2

1
2 1 1868

Missing 1
2

+
0+ 1

2 1 {s,s}n 8 6 1
2 0 0 1874

Missing 3
2

−
1− 3

2 1 {n,s}s 8 6 1
2

1
2 0 1971

$∗(1530) P13 **** 1531–1532 3
2

+
0+ 3

2 1 {n,s}s 10 6 1
2

1
2 0 1552

Missing 3
2

+
0+ 3

2 1 {s,s}n 10 6 1
2 0 0 1653

%(1672) P03 **** 1672–1673 3
2

+
0+ 3

2 1 {s,s}s 10 6 0 0 0 1672
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TABLE V. Comparison between the experimental values [17] of !- and !∗-type resonance masses (up to 2 GeV) and the numerical ones
(all values are expressed in MeV), from fit 2. J P and LP are respectively the total angular momentum and the orbital angular momentum of
the baryon, including the parity P ; S is the total spin, obtained by coupling the spin of the diquark s1 and that of the quark; Q2q stands for the
diquark-quark structure of the state; F and F1 are the dimensions of the SUf(3) representations for the baryon and the diquark, respectively; I

and t1 are the isospins of the baryon and the diquark, respectively; finally nr is the number of nodes in the radial wave function.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

!(1193) P11 **** 1189—1197 1
2

+
0+ 1

2 0 [n,s]n 8 3̄ 1 1
2 0 1211

!(1620) S11 ** ≈1620 1
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1660) P11 *** 1630–1690 1

2
+

0+ 1
2 1 {n,n}s 8 6 1 1 0 1546

!(1670) D13 **** 1665–1685 3
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1750) S11 *** 1730–1800 1

2
−

1− 1
2 0 [n,s]n 8 3̄ 1 1

2 0 1868
!(1770) P11 * ≈1770 1

2
+

0+ 1
2 1 {n,s}n 8 6 1 1

2 0 1668

!(1775) D15 **** 1770–1780 5
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1880) P11 ** ≈1880 1

2
+

0+ 1
2 0 [n,s]n 8 3̄ 1 1

2 1 1801

!(1915) F15 **** 1900–1935 5
2

+
2+ 1

2 0 [n,s]n 8 3̄ 1 1
2 0 2061

!(1940) D13 *** 1900–1950 3
2

−
1− 1

2 0 [n,s]n 8 3̄ 1 1
2 0 1868

Missing 3
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1895
!(2000) S11 * ≈2000 1

2
−

1− 3
2 1 {n,n}s 8 6 1 1 0 1895

!∗(1385) P13 **** 1382–1388 3
2

+
0+ 3

2 1 {n,n}s 10 6 1 1 0 1334
!∗(1840) P13 * ≈1840 3

2
+

0+ 3
2 1 {n,s}n 10 6 1 1

2 0 1439
!∗(2080) P13 ** ≈2080 3

2
+

0+ 3
2 1 {n,n}s 10 6 1 1 1 1924

the rms deviation corrected for the number of free parameters
of the model (fit 2).

There is a certain difference between the values of the model
parameters used in the two fits. This is especially evident
in the case of the quark masses and the exchange potential
parameters. The values of the parameters strongly depend
from one another. Thus, if we modify those for the exchange
potential, this will also have an effect on the constituent quark
masses. Moreover, and most important, some parameters are
present in the first fit and not in second, because they were
introduced to reproduce the " − N mass splitting, and thus
they are inessential in the strange sector. In fact, we can say
that the nonstrange sector is a special case. This is because spin
forces are stronger in this sector than in the others. This can

be seen not only in baryons, but also in meson spectroscopy,
where light meson masses result from very large hyperfine
contributions, while, for example, in the strange or charmed
sectors spin forces are much weaker. This is the reason
why we expect to get better results for heavy baryons [46],
where spin forces are weaker and can be treated more
easily.

It is also interesting to note that in our model #(1116) and
#∗(1520) are described as bound states of a scalar diquark
[n,n] and a quark s, where the quark-diquark system is in
S or P wave, respectively. This is in accordance with the
observations of Refs. [29,30] on #’s fragmentation functions,
that the two resonances can be described as [n,n] − s systems.
See Table VII.

TABLE VI. As Table V, but for $-, $∗-, and %-type resonances.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

$(1318) P11 **** 1315–1322 1
2

+
0+ 1

2 0 [n,s]s 8 3̄ 1
2

1
2 0 1317

Missing 1
2

+
0+ 1

2 1 {n,s}s 8 6 1
2

1
2 0 1772

$(1820) D13 *** 1818–1828 3
2

−
1− 1

2 0 [n,s]s 8 3̄ 1
2

1
2 0 1861

Missing 1
2

+
0+ 1

2 0 [n,s]s 8 3̄ 1
2

1
2 1 1868

Missing 1
2

+
0+ 1

2 1 {s,s}n 8 6 1
2 0 0 1874

Missing 3
2

−
1− 3

2 1 {n,s}s 8 6 1
2

1
2 0 1971

$∗(1530) P13 **** 1531–1532 3
2

+
0+ 3

2 1 {n,s}s 10 6 1
2

1
2 0 1552

Missing 3
2

+
0+ 3

2 1 {s,s}n 10 6 1
2 0 0 1653

%(1672) P03 **** 1672–1673 3
2

+
0+ 3

2 1 {s,s}s 10 6 0 0 0 1672

025202-6
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Group, is given by [39]

|p1,p2,λ1,λ2〉, (7)

where p1 and p2 are the four-momenta of the diquark and the
quark, respectively, while λ1 and λ2 are, respectively, the z
projections of their spins.

The velocity states are introduced as [39,43,44]

|v,"k1,λ1,"k2,λ2〉 = UB(v)|k1,s1,λ1,k2,s2,λ2〉0, (8)

where the suffix 0 means that the diquark and the quark three-
momenta "k1 and "k2 satisfy the condition

"k1 + "k2 = 0 . (9)

Following the standard rules of the point-form approach, the
boost operator UB(v) is taken as a canonical one, showing that
the transformed four-momenta are given by p1,2 = B(v)k1,2
and satisfy

p
µ
1 + p

µ
2 = P

µ
N

MN

(√
"q 2 + m2

1 +
√

"q 2 + m2
2

)
, (10)

where P
µ
N is the observed nucleon four-momentum and MN

is its mass. The important point is that Eq. (8) redefines the
single-particle spins. Since canonical boosts are applied, the
conditions for a point-form approach [43,70] are satisfied.
Thus, the spins on the left-hand state of Eq. (8) perform the
same Wigner rotations as "k1 and "k2, allowing us to couple the
spin and the orbital angular momentum as in the nonrelativistic
case [43], while the spins in the ket on the right-hand side of
Eq. (8) undergo the single-particle Wigner rotations.

In point-form dynamics, Eq. (2) corresponds to a good
mass operator as it commutes with the Lorentz generators and
with the four-velocity. We diagonalize (2) in the Hilbert space
spanned by the velocity states. Instead of the internal momenta
"k1 and "k2, one can also use the relative momentum "q, conjugate
to the relative coordinate "r = "r1 − "r2, thus considering the
following velocity basis states:

|v,"q,λ1,λ2〉 = UB(v)|k1,s1,λ1,k2,s2,λ2〉0 . (11)
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FIG. 1. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ " and "∗ resonances (up
to 2 GeV; from fit 2) and the experimental masses from PDG [17]
(blue [gray] boxes).
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FIG. 2. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ # and #∗ resonances (up
to 2 GeV; from fit 2) and the experimental masses from PDG [17]
(blue [gray] boxes).

IV. RESULTS AND DISCUSSION

In this section, we show our results for the strange and
nonstrange baryon spectra. Because this paper is mainly
focused on the extension of the interacting quark-diquark
model to strange baryons, here we present the results of two
fits to the experimental data [17]. In the first, “fit 1,” we fit
the model mass formula to the strange and nonstrange baryon
spectra, while in the second, “fit 2,” we focus our attention
on the strange sector only. Obviously, in this second case
we expect to get a better reproduction of the experimental
data in the strange baryon sector and, perhaps, to increase
the predictive power of our model for still unobserved strange
baryon resonances. Using the set of parameters of Table II
(fit 1), Tables III and IV show the comparison between the
experimental data and the results of our quark-diquark model
calculation. In this case, the rms deviation is 146 MeV. This
value corresponds to the rms deviation corrected for the
number of free parameters of the model (fit 1). Figures 1–3 and
Tables V–VII show our quark-diquark model results, obtained
with the set of parameters of Table II (fit 2). In this second
case, the rms deviation is 89 MeV. This value corresponds to
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FIG. 3. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ $, $∗, and % resonances (up to
2 GeV; from fit 2) and the experimental masses from PDG [17] (blue
[gray] boxes).
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TABLE VII. As Table V, but for !- and !∗-type resonances.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

!(1116) P01 **** 1116 1
2

+
0+ 1

2 0 [n,n]s 8 3̄ 0 0 0 1116
!(1600) P01 *** 1560–1700 1

2
+

0+ 1
2 0 [n,s]n 8 3̄ 0 1

2 0 1518
!(1670) S01 **** 1660–1680 1

2
−

1− 1
2 0 [n,n]s 8 3̄ 0 0 0 1650

!(1690) D03 **** 1685–1695 3
2

−
1− 1

2 0 [n,n]s 8 3̄ 0 0 0 1650
Missing 3

2
−

1− 1
2 0 [n,s]n 8 3̄ 0 1

2 0 1732
Missing 1

2
−

1− 3
2 1 {n,s}n 8 6 0 1

2 0 1785
Missing 3

2
−

1− 1
2 0 [n,n]s 8 3̄ 0 0 1 1785

!(1800) S01 *** 1720–1850 1
2

−
1− 1

2 0 [n,s]n 8 3̄ 0 1
2 0 1732

!(1810) P01 *** 1750–1850 1
2

+
0+ 1

2 0 [n,n]s 8 3̄ 0 0 1 1666

!(1820) F05 **** 1815–1825 5
2

+
2+ 1

2 0 [n,n]s 8 3̄ 0 0 0 1896

!(1830) D05 **** 1810–1830 5
2

−
1− 3

2 1 {n,s}n 8 6 0 1
2 0 1785

!(1890) P03 **** 1850–1910 3
2

+
0+ 3

2 1 {n,s}n 8 6 0 1
2 0 1896

Missing 1
2

+
0+ 1

2 1 {n,s}n 8 6 0 1
2 0 1955

Missing 1
2

+
0+ 1

2 0 [n,s]n 8 3̄ 0 1
2 1 1960

Missing 1
2

−
1− 1

2 1 {n,s}n 8 6 0 1
2 0 1969

Missing 3
2

−
1− 1

2 1 {n,s}n 8 6 0 1
2 0 1969

!∗(1405) S01 **** 1402–1410 1
2

−
1− 1

2 0 [n,n]s 1 3̄ 0 0 0 1431
!∗(1520) D03 **** 1519–1521 3

2
−

1− 1
2 0 [n,n]s 1 3̄ 0 0 0 1431

Missing 1
2

−
1− 1

2 0 [n,s]n 1 3̄ 0 1
2 0 1443

Missing 3
2

−
1− 1

2 0 [n,s]n 1 3̄ 0 1
2 0 1443

Missing 1
2

−
1− 1

2 0 [n,n]s 1 3̄ 0 0 1 1854
Missing 3

2
−

1− 1
2 0 [n,n]s 1 3̄ 0 0 1 1854

Missing 1
2

−
1− 1

2 0 [n,s]n 1 3̄ 0 1
2 1 1928

Missing 3
2

−
1− 1

2 0 [n,s]n 1 3̄ 0 1
2 1 1928

The presence of more diquark types, with respect to the
nonstrange case of Ref. [39], makes the reproduction of the
experimental data below the energy of 2 GeV more difficult
than before. In particular, one can notice that in the present
case (see results from fit 2, Tables V–VII) there are 19 missing
resonances below the energy of 2 GeV, while in the nonstrange
sector [39] there were no missing states under 2 GeV. Indeed, in
the strange sector one has two scalar diquarks, [n,n] and [n,s],
and three axial-vector diquarks, {n,n}, {n,s}, and {s,s}, while
in the nonstrange sector one only has a scalar diquark, [n,n],
and an axial-vector diquark, {n,n}. Nevertheless, we think that
the number of missing resonances of our model may decrease
when experimental data from more powerful experiments and
more precise data analyses are extracted. The search for these
resonances should be one of the main goals of the baryon
research programs at JLab, BES, ELSA, Crystal Barrel, and
TAPS. See also the latest multichannel Bonn-Gatchina partial
wave analysis results, including data from Crystal Barrel and
TAPS at ELSA and other laboratories [71].

Baryon resonance problems have already been treated with
an algebraic U(4) quark-diquark models [63], unquenched
quark models [7–16], and hypercentral models [4,72], but in
the end baryon resonances still remain an open problem [73].
In three-quark QMs for baryons, light baryons are ordered
according to the approximate SUf(3) symmetry. Nevertheless,

on one hand many unseen excited resonances are predicted
by every three-quark model; on the other hand, states with
certain quantum numbers appear in the spectrum at excitation
energies much lower than predicted [17]. For example, in the
nonstrange sector up to an excitation energy of 2.41 GeV, on
average about 45 N states are predicted, but only 12 have been
established (four- or three-star) and 7 are tentative (two- or
one-star) [17]. A possible solution to the puzzle of missing
resonances is the introduction of a new effective degree of
freedom: the diquark. This is what we tried to do in the present
paper and in Ref. [39] in the nonstrange sector.

While the absolute values of the diquark masses are model
dependent, their difference is not. Comparing our result for the
mass difference between the axial-vector and scalar diquarks
to those of Table I, it is interesting to note that our estimations
are comparable with the other ones. The main deviation from
the evaluations reported in the table arises in the difference
{n,s} − [n,s].

The whole mass operator of Eq. (2) has been diagonalized
by means of a numerical variational procedure, based on
harmonic oscillator trial wave functions. With a variational
basis of 100 harmonic oscillator shells, the results converge
very well.

The present work can be expanded to include charmed
and/or bottomed baryons [46], which can be quite interesting
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ters increases only by one, since there are two new pa-
rameters, V0 and ν [see Eq. (5)], while the parameter
ε of the contact interaction [see Eqs. (4) and (8)] has
been removed. Finally, it has to be noted that in the

mq = 140 MeV mS = 150 MeV mAV = 360 MeV
τ = 1.23 µ = 125 fm−1 β = 1.57 fm−2

AS = 125 MeV AI = 85 MeV ASI = 350 MeV
σ = 0.60 fm−1 E0 = 826 MeV D = 2.00 fm2

η = 10.0 fm−1 V0 = 1450 MeV ν = 0.35 fm−1

TABLE I: Resulting values for the model parameters.

present work all the calculations are performed without
any perturbative approximation, as in Ref. [20].
The eigenfunctions of the mass operator of Eq. (1) can

be thought as eigenstates of the mass operator with in-
teraction in a Bakamjian-Thomas construction [59]. The
interaction is introduced adding an interaction term to
the free mass operator M0 =

√

#q 2 +m2
1+

√

#q 2 +m2
2, in

such a way that the interaction commutes with the non
interacting Lorenz generators and with the non interact-
ing four velocity [60].
The dynamics is given by a point form Bakamjian-

Thomas construction. Point formmeans that the Lorentz
group is kinematic. Furthermore, since we are doing a
point form Bakamjian-Thomas construction, here P =
MV0 where V0 is the noninteracting four-velocity (whose
eigenvalue is v).
The general quark-diquark state, defined on the prod-

uct space H1 ⊗ H2 of the one-particle spin s1 (0 or 1)
and spin s2 (1/2) positive energy representations H1 =

L2(R3)⊗S0
1 orH1 = L2(R3)⊗S1

1 andH2 = L2(R3)⊗S
1/2
2

of the Poincaré Group, can be written as [20]

|p1, p2,λ1,λ2〉 , (9)

where p1 and p2 are the four-momenta of the diquark and
the quark, respectively, while λ1 and λ2 are, respectively,
the z-projections of their spins.
We introduce the velocity states as [20, 44]

|v,#k1,λ1,#k2,λ2〉 = UB(v)|k1, s1,λ1, k2, s2,λ2〉0 , (10)

where the suffix 0 means that the diquark and the quark
three-momenta #k1 and #k2, called internal momenta, sat-
isfy:

#k1 + #k2 = 0 . (11)

Following the standard rules of the point form approach,
the boost operator UB(v) is taken as a canonical one,
obtaining that the transformed four-momenta are given
by p1,2 = B(v)k1,2 and satisfy the point form relation

pµ1 + pµ2 =
Pµ
N

MN

(

√

#q 2 +m2
1 +

√

#q 2 +m2
2

)

, (12)

where Pµ
N is the observed nucleon four-momentum and

MN is its mass. It is worthwhile noting that Eq. (10) re-
defines the single particle spins. Having applied canonical
boosts, the conditions for a point form approach [44, 61]
are satisfied. Therefore, the spins on the left hand state
of Eq. (10) perform the same Wigner rotations as #k1 and
#k2, allowing to couple the spin and the orbital angular
momentum as in the non relativistic case [44], while the
spins in the ket on the right hand of Eq. (10) undergo
the single particle Wigner rotations.
In Point form dynamics, Eq. (1) corresponds to a good

mass operator since it commutes with the Lorentz gen-
erators and with the four velocity. We diagonalize Eq.
(1) in the Hilbert space spanned by the velocity states.

Finally, instead of the internal momenta #k1 and #k2 we
use the relative momentum #q, conjugate to the relative
coordinate #r = #r1 − #r2, thus considering the following
velocity basis states:

|v, #q,λ1,λ2〉 = UB(v)|k1, s1,λ1, k2, s2,λ2〉0 . (13)
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FIG. 1: (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ non strange baryon res-
onances (up to 2 GeV) and the experimental masses from
PDG [43] (boxes).

III. RESULTS AND DISCUSSION

Figure 1 and Table II show the comparison between the
experimental data [43, 62] and the results of our quark-
diquark model calculation, obtained with the set of pa-
rameters of Table I. In addition to the experimental data
from PDG [43], we also consider the latest multi-channel
Bonn-Gatchina partial wave analysis results, including
data from Crystal Barrel/TAPS at ELSA and other lab-
oratories [62]. In particular, these data differ from those
of the PDG [43] in the case of the ∆(1940)D33.
The spin-isospin transition interaction of Eq. (5)

mixes quark-scalar diquark and quark-axial-vector di-
quark states, i.e. states with s1 = 0 (t1 = 0) and s1 = 1
(t1 = 1), whose total spin (isospin) is S = 1

2 (T = 1
2 ).

Thus, in this version of the model the nucleon state, as
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ters increases only by one, since there are two new pa-
rameters, V0 and ν [see Eq. (5)], while the parameter
ε of the contact interaction [see Eqs. (4) and (8)] has
been removed. Finally, it has to be noted that in the

mq = 140 MeV mS = 150 MeV mAV = 360 MeV
τ = 1.23 µ = 125 fm−1 β = 1.57 fm−2

AS = 125 MeV AI = 85 MeV ASI = 350 MeV
σ = 0.60 fm−1 E0 = 826 MeV D = 2.00 fm2

η = 10.0 fm−1 V0 = 1450 MeV ν = 0.35 fm−1

TABLE I: Resulting values for the model parameters.

present work all the calculations are performed without
any perturbative approximation, as in Ref. [20].
The eigenfunctions of the mass operator of Eq. (1) can

be thought as eigenstates of the mass operator with in-
teraction in a Bakamjian-Thomas construction [59]. The
interaction is introduced adding an interaction term to
the free mass operator M0 =

√

#q 2 +m2
1+

√

#q 2 +m2
2, in

such a way that the interaction commutes with the non
interacting Lorenz generators and with the non interact-
ing four velocity [60].
The dynamics is given by a point form Bakamjian-

Thomas construction. Point formmeans that the Lorentz
group is kinematic. Furthermore, since we are doing a
point form Bakamjian-Thomas construction, here P =
MV0 where V0 is the noninteracting four-velocity (whose
eigenvalue is v).
The general quark-diquark state, defined on the prod-

uct space H1 ⊗ H2 of the one-particle spin s1 (0 or 1)
and spin s2 (1/2) positive energy representations H1 =

L2(R3)⊗S0
1 orH1 = L2(R3)⊗S1

1 andH2 = L2(R3)⊗S
1/2
2

of the Poincaré Group, can be written as [20]

|p1, p2,λ1,λ2〉 , (9)

where p1 and p2 are the four-momenta of the diquark and
the quark, respectively, while λ1 and λ2 are, respectively,
the z-projections of their spins.
We introduce the velocity states as [20, 44]

|v,#k1,λ1,#k2,λ2〉 = UB(v)|k1, s1,λ1, k2, s2,λ2〉0 , (10)

where the suffix 0 means that the diquark and the quark
three-momenta #k1 and #k2, called internal momenta, sat-
isfy:

#k1 + #k2 = 0 . (11)

Following the standard rules of the point form approach,
the boost operator UB(v) is taken as a canonical one,
obtaining that the transformed four-momenta are given
by p1,2 = B(v)k1,2 and satisfy the point form relation

pµ1 + pµ2 =
Pµ
N

MN

(

√

#q 2 +m2
1 +

√

#q 2 +m2
2

)

, (12)

where Pµ
N is the observed nucleon four-momentum and

MN is its mass. It is worthwhile noting that Eq. (10) re-
defines the single particle spins. Having applied canonical
boosts, the conditions for a point form approach [44, 61]
are satisfied. Therefore, the spins on the left hand state
of Eq. (10) perform the same Wigner rotations as #k1 and
#k2, allowing to couple the spin and the orbital angular
momentum as in the non relativistic case [44], while the
spins in the ket on the right hand of Eq. (10) undergo
the single particle Wigner rotations.
In Point form dynamics, Eq. (1) corresponds to a good

mass operator since it commutes with the Lorentz gen-
erators and with the four velocity. We diagonalize Eq.
(1) in the Hilbert space spanned by the velocity states.

Finally, instead of the internal momenta #k1 and #k2 we
use the relative momentum #q, conjugate to the relative
coordinate #r = #r1 − #r2, thus considering the following
velocity basis states:

|v, #q,λ1,λ2〉 = UB(v)|k1, s1,λ1, k2, s2,λ2〉0 . (13)
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FIG. 1: (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ non strange baryon res-
onances (up to 2 GeV) and the experimental masses from
PDG [43] (boxes).

III. RESULTS AND DISCUSSION

Figure 1 and Table II show the comparison between the
experimental data [43, 62] and the results of our quark-
diquark model calculation, obtained with the set of pa-
rameters of Table I. In addition to the experimental data
from PDG [43], we also consider the latest multi-channel
Bonn-Gatchina partial wave analysis results, including
data from Crystal Barrel/TAPS at ELSA and other lab-
oratories [62]. In particular, these data differ from those
of the PDG [43] in the case of the ∆(1940)D33.
The spin-isospin transition interaction of Eq. (5)

mixes quark-scalar diquark and quark-axial-vector di-
quark states, i.e. states with s1 = 0 (t1 = 0) and s1 = 1
(t1 = 1), whose total spin (isospin) is S = 1

2 (T = 1
2 ).

Thus, in this version of the model the nucleon state, as
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Resonance Status Mexp. JP LP S s1 nr Mcalc.

(MeV) (MeV)

N(939) P11 **** 939 1

2

+
0+ 1

2
0,1 0 939

N(1440) P11 **** 1420 - 1470 1

2

+
0+ 1

2
0,1 1 1412

N(1520) D13 **** 1515 - 1525 3

2

−
1− 1

2
0,1 0 1533

N(1535) S11 **** 1525 - 1545 1

2

−
1− 1

2
0,1 0 1533

N(1650) S11 **** 1645 - 1670 1

2

−
1− 3

2
1 0 1667

N(1675) D15 **** 1670 - 1680 5

2

−
1− 3

2
1 0 1667

N(1680) F15 **** 1680 - 1690 5

2

+
2+ 1

2
0,1 0 1694

N(1700) D13 *** 1650 - 1750 3

2

−
1− 3

2
1 0 1667

N(1710) P11 *** 1680 - 1740 1

2

+
0+ 1

2
0,1 2 1639

N(1720) P13 **** 1700 - 1750 3

2

+
2+ 1

2
0,1 0 1694

N(1875) D13 *** 1820 - 1920 3

2

−
1− 1

2
0,1 1 1866

N(1880) P11 ** 1835 - 1905 1

2

+
0+ 1

2
0,1 3 1786

N(1895) S11 ** 1880 - 1910 1

2

−
1− 1

2
0,1 1 1866

N(1900) P13 *** 1875 - 1935 3

2

+
0+ 3

2
0 0 1780

missing – – 3

2

+
2+ 1

2
0,1 1 1990

N(2000) F15 ** 1950 - 2150 5

2

+
2+ 1

2
0,1 1 1990

∆(1232) P33 **** 1230 - 1234 3

2

+
0+ 3

2
1 0 1236

∆(1600) P33 *** 1500 - 1700 3

2

+
0+ 3

2
1 1 1687

∆(1620) S31 **** 1600 - 1660 1

2

−
1− 1

2
1 0 1600

∆(1700) D33 **** 1670 - 1750 3

2

−
1− 1

2
1 0 1600

∆(1750) P31 * 1708 - 1780 1

2

+
0+ 1

2
1 0 1857

∆(1900) S31 ** 1840 - 1920 1

2

−
1− 1

2
1 1 1963

∆(1905) F35 **** 1855 - 1910 5

2

+
2+ 3

2
1 0 1958

∆(1910) P31 **** 1860 - 1920 1

2

+
2+ 3

2
1 0 1958

∆(1920) P33 *** 1900 - 1970 3

2

+
2+ 3

2
1 0 1958

∆(1930) D35 *** 1900 - 2000 5

2

−
1− 3

2
1 0 2064

∆(1940) D33 ** 1940 - 2060 3

2

−
1− 1

2
1 1 1963

∆(1950) F37 **** 1915 - 1950 7

2

+
2+ 3

2
1 0 1958

TABLE II: Comparison between the experimental [43] values
of non strange baryon resonances masses (up to 2 GeV) and
the numerical ones (all values are expressed in MeV ). Ten-
tative assignments of 2∗ and 1∗ resonances are shown in the
second part of the table. JP and LP are respectively the total
angular momentum and the orbital angular momentum of the
baryon, including the parity P ; S is the total spin, obtained
coupling the spin of the diquark s1 and that of the quark;
finally nr is the number of nodes in the radial wave function.

well as states such as the D13(1520), the S11(1535) and
the P11(1440), contains both a s1 = 0 and a s1 = 1 com-
ponent. See Table IV. In particular, the nucleon state,
obtained by solving the eigenvalue problem of Eq. (1),
in a schematic notation can be written as

|N〉 = aS |qDS , L = 0〉+ aAV |qDAV , L = 0〉 , (14)

where DS and DAV stand for the scalar and axial-vector
diquarks, respectively, and q for the quark. The coeffi-
cients aS and aAV , obtained by solving the eigenvalue

mS (MeV) mAV −mS (MeV) Source

730 210 Bloch et al. [26]
750÷860 10÷170 Oettel et al. [29]

- 290 Wilczek [6]
- 210 Jaffe [5]

600 350 Ferretti et al. [20]
852 224 Galatà and Santopinto [21]
- 200÷300 Lichtenberg et al. [47]

770 140 de Castro et al. [48]
420 520 Schäfer et al. [49]
692 330 Cahill et al. [50]
595 205 Lichtenberg et al. [51]
737 212 Burden et al. [52]
688 202 Maris [53]
- 360 Orginos [54]

750 100 Flambaum et al. [55]
590 210
- 162 Babich et al. [12]
- 270 Eichmann et al. [56]

740 210 Hecht et al. [65]
- 135 Santopinto and Galatà [66]

710 199 Ebert et al. [67]
– 183 Chakrabarti et al. [68]

780 280 Roberts et al. [45]
150 210 This work

TABLE III: Mass difference (in MeV) between scalar and
axial-vector diquarks, according to some previous studies.

problem of Eq. (1), are:

aS = 0.727 , (15a)

aAV = 0.687 . (15b)

The radial wave functions (in momentum space) of the
quark-scalar diquark [ΦS(q)] and quark-axial-vector di-
quark [ΦAV (q)] systems of Eq. (14) can be fitted by
harmonic oscillator wave functions,

ΦS(q) =
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2
α2

Sq2 , (16a)

ΦAV (q) =
2α3/2

AV

π1/4
e−

1

2
α2

AV q2 , (16b)

with αS = 3.29 GeV−1 and αAV = 3.04 GeV−1. The
same can be done for the ∆(1232) radial wave function,

Φ∆(q) =
2α3/2

∆

π1/4
e−

1

2
α2

∆
q2 , (17)

where α∆ = 3.14 GeV−1. This parametrization can then
be used to compute observables, such as the nucleon elec-
tromagnetic form factors. See also App. A, where we
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Resonance Status Mexp. JP LP S s1 nr Mcalc.

(MeV) (MeV)

N(939) P11 **** 939 1

2

+
0+ 1

2
0,1 0 939

N(1440) P11 **** 1420 - 1470 1

2

+
0+ 1
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0,1 1 1412

N(1520) D13 **** 1515 - 1525 3

2

−
1− 1
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0,1 0 1533
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2

−
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−
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−
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+
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+
0+ 1

2
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+
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missing – – 3
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2+ 1

2
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N(2000) F15 ** 1950 - 2150 5

2

+
2+ 1
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0,1 1 1990
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+
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∆(1750) P31 * 1708 - 1780 1
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+
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1 0 1857
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+
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∆(1930) D35 *** 1900 - 2000 5

2

−
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−
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+
2+ 3
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1 0 1958

TABLE II: Comparison between the experimental [43] values
of non strange baryon resonances masses (up to 2 GeV) and
the numerical ones (all values are expressed in MeV ). Ten-
tative assignments of 2∗ and 1∗ resonances are shown in the
second part of the table. JP and LP are respectively the total
angular momentum and the orbital angular momentum of the
baryon, including the parity P ; S is the total spin, obtained
coupling the spin of the diquark s1 and that of the quark;
finally nr is the number of nodes in the radial wave function.

well as states such as the D13(1520), the S11(1535) and
the P11(1440), contains both a s1 = 0 and a s1 = 1 com-
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obtained by solving the eigenvalue problem of Eq. (1),
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|N〉 = aS |qDS , L = 0〉+ aAV |qDAV , L = 0〉 , (14)

where DS and DAV stand for the scalar and axial-vector
diquarks, respectively, and q for the quark. The coeffi-
cients aS and aAV , obtained by solving the eigenvalue

mS (MeV) mAV −mS (MeV) Source

730 210 Bloch et al. [26]
750÷860 10÷170 Oettel et al. [29]

- 290 Wilczek [6]
- 210 Jaffe [5]

600 350 Ferretti et al. [20]
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where α∆ = 3.14 GeV−1. This parametrization can then
be used to compute observables, such as the nucleon elec-
tromagnetic form factors. See also App. A, where we
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TABLE II: Comparison between the experimental [43] values
of non strange baryon resonances masses (up to 2 GeV) and
the numerical ones (all values are expressed in MeV ). Ten-
tative assignments of 2∗ and 1∗ resonances are shown in the
second part of the table. JP and LP are respectively the total
angular momentum and the orbital angular momentum of the
baryon, including the parity P ; S is the total spin, obtained
coupling the spin of the diquark s1 and that of the quark;
finally nr is the number of nodes in the radial wave function.

well as states such as the D13(1520), the S11(1535) and
the P11(1440), contains both a s1 = 0 and a s1 = 1 com-
ponent. See Table IV. In particular, the nucleon state,
obtained by solving the eigenvalue problem of Eq. (1),
in a schematic notation can be written as

|N〉 = aS |qDS , L = 0〉+ aAV |qDAV , L = 0〉 , (14)

where DS and DAV stand for the scalar and axial-vector
diquarks, respectively, and q for the quark. The coeffi-
cients aS and aAV , obtained by solving the eigenvalue
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problem of Eq. (1), are:

aS = 0.727 , (15a)

aAV = 0.687 . (15b)

The radial wave functions (in momentum space) of the
quark-scalar diquark [ΦS(q)] and quark-axial-vector di-
quark [ΦAV (q)] systems of Eq. (14) can be fitted by
harmonic oscillator wave functions,
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with αS = 3.29 GeV−1 and αAV = 3.04 GeV−1. The
same can be done for the ∆(1232) radial wave function,

Φ∆(q) =
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where α∆ = 3.14 GeV−1. This parametrization can then
be used to compute observables, such as the nucleon elec-
tromagnetic form factors. See also App. A, where we
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  SI	
  interac7on	
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  scalar	
  and	
  axial-­‐vector	
  
diquarks	
  components	
  in	
  nucleon	
  WF	
  with	
  
probability:	
  

	
  
•  	
  Important	
  also	
  in	
  the	
  calcula7on	
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  several	
  other	
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  factors,	
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  decays,	
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  moments,	
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  component	
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EXOTIC (non q3)  
DEGREES  

OF FREEDOM 

Baryon Masses 
Flavor  

Asymmetry 

Proton Spin 
Strong Decays 

Electromagnetic  
Couplings 

Strange  
Form Factors 



Unquenching the quark  model���
& Why Unquenching?���
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E. .Santopinto,. Bijker PRC 80, 065210 (2009), 
PRC 82, 062202 (2010);J. Ferrettii,Santopinto, Bijker 
 Phys. Rev. C 85, 035204 (2012) 
 



 
 

Non strange spectrum	



Caps(ck	
  and	
  Isgur,	
  Phys.	
  Rev.	
  D34,	
  2809.	
   Bijker,	
  Iachello,	
  Leviatan,	
  Ann.	
  Phys.	
  
236,	
  69	
  (1994)	
  

.	
  

Giannini,	
  Santopinto,	
  Vassallo,	
  	
  Eur.	
  Phys.	
  J	
  .A12:447	
  
	
  

Caps(ck	
  &	
  Isgur’s	
  Model	
   U(7)	
  Algebraic	
  Model	
  

Hypercentral	
  CQM	
  

Glozman	
  &	
  Riska,	
  Phys.	
  Rept.	
  268,	
  263	
  (1996)	
  
	
  

GB	
  Model	
  
V(x) = - τ/x + α x 	





	
  
Many	
  versions	
  of	
  CQMs	
  have	
  been	
  developed	
  

(IK,	
  	
  CI,	
  GBE,	
  U(7),	
  hCQM,Bonn,	
  etc.)	
  
	
  non	
  rela7vis7c	
  and	
  rela7vis7c	
  

While	
  these	
  models	
  display	
  	
  peculiar	
  features,	
  	
  
they	
  share	
  the	
  following	
  main	
  features	
  :	
  	
  

the	
  effec7ve	
  degrees	
  of	
  freedom	
  of	
  3q	
  and	
  a	
  confining	
  poten7al	
  
the	
  underling	
  O(3)	
  SU(3)	
  symmetry	
  

	
  All	
  of	
  them	
  are	
  able	
  to	
  give	
  a	
  good	
  descrip7on	
  of	
  the	
  3	
  and	
  4	
  stars	
  
spectrum	
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CQMs:	


	


	

Good description of the spectrum  and magnetic moments	



                	


	

Predictions of many quantities:	



  	

 	

 	

 	

strong couplins	


	

 	

 	

 	

photocouplings	


	

 	

 	

 	

helicity amplitudes	


	

 	

 	

 	

elastic form factors	


	

 	

 	

 	

structure functions	



	


	

Based on the effective degrees of freedom of 3 constituent quarks
	

 	

 	

 	

 	

 	

	





 Is it a degrees of freedom problem?	



regionouter  in theimportant   ? scorrection   qq

	
  	
  	
  	
  	
  U(7)	
  	
  	
  	
  PRC	
  54,	
  1935	
  (1996)	
  	
  
	
  	
  	
  	
  	
  	
  	
  hCQM	
  	
  	
  	
  JPG	
  24,	
  753	
  (1998)	
  

?scorrectionqq −

A 3\2 

A 1\2 

D13 transition amplitudes 



Considering also CQMs for mesons, CQMs able to 
reproduce the overall trend of hundred of data	



 	


•  … but they show very similar deviations for 

observables   such  as 	


 	


•  photocouplings ���
	



•  helicity amplitudes,	
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  please	
  note	
  

•  the	
  medium	
  Q2	
  behaviour	
  is	
  fairly	
  well	
  reproduced	
  
•  there	
  is	
  lack	
  of	
  strength	
  at	
  low	
  Q2	
  (outer	
  region)	
  in	
  the	
  e.m.	
  

transi7ons	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

•  emerging	
  picture:	
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  plus	
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  sea-­‐quark)	
  	
  cloud	
  

Quark core	
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  cloud	
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There are two possibilities:���
���
���
���
���

phenomenological parametrization ���
  ���
���

                      microscopic explicit quark description���
���

                                        ���
���
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���
���
���
���
���
���
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One needs to find a qqbar creation  mechanism 1) QCD inspired���
2) without the problem of  double counting���

���
	





•  the physical nucleon  N   is made of a bare nucleon ���
             dressed by a surrounding meson cloud	



•  Introducing higher Fock components	



Two main approaches	



Problems of inconsistency	



Consistency ok	


But:  how many components?	



Necessity of unquenching the quark model	





EMFN8	
   Roelof	
  Bijker,	
  ICN-­‐UNAM	
   84 

Exotic Degrees of Freedom 
•  Quark-antiquark pairs: pentaquarks, meson 

cloud models (Thomas, Speth, Kaiser, Weise, 
Oset, Brodsky, Ma, Isgur, …) 

•  Higher-Fock components (Riska, Zou, …) 

 

Extend	
  the	
  CQM	
  to	
  include	
  	
  
the	
  effects	
  of	
  quark-­‐an7quark	
  pairs	
  	
  
in	
  a	
  general	
  and	
  consistent	
  way	
  



85 



Problems ���
���

  1) find a quark pair creation mechanism QCD inspired���
���

   2) implementation of this mechanism at the quark level but  in such a 
way to ���
���

do not destroy the good CQMs results ���
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Unquenched Quark Model 

•  Pair-creation operator with 3P0 quantum 
numbers of vacuum 

•  Important: sum over a large tower of 
intermediate states to preserve the 
phenomenological success of CQM 

Strange quark-antiquark  
pairs in the proton with  
h.o. wave functions 

Tornqvist & Zenczykowski (1984) 
Geiger & Isgur, PRD 55, 299 (1997) 
Isgur, NPA 623, 37 (1997) 
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Geiger & Isgur, PRD 55, 299 (1997) 

•  Any	
  ini7al	
  baryon	
  or	
  baryon	
  resonance	
  
•  Any	
  flavor	
  of	
  the	
  quark-­‐an7quark	
  pair	
  
•  Any	
  model	
  of	
  baryons	
  and	
  mesons	
  

Extensions 
Bijker & Santopinto,  
         PRC 80, 065210 (2009) 
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Formalism 

Three-quark configuration 
SU(3) flavor symmetry 

Five-quark component 
Isospin symmetry 

Pair-creation operator:              
      L=S=1, J=0, color singlet, flavor singlet 
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Unquenched Quark Model 
•  Harmonic oscillator quark model 
•  Sum over intermediate meson-baryon states includes 

for each oscillator shell all possible spin-flavor states  
•  Oscillator size parameters taken for baryons and 

mesons taken from literature (Capstick, Isgur, Karl) 
•  Smearing of the pair-creation vertex (Geiger, Isgur) 
•  Strength of 3P0 coupling taken from literature on 

strong decays of baryons (Capstick, Roberts) 

•  No attempt to optimize the parameters 



Unquenching	
  the	
  quark	
  model	
  

Mesons 	
  	
  	
  	
  	
  	
  P.	
  Geiger,	
  N.	
  Isgur,	
  Phys.	
  Rev.	
  D41,	
  1595	
  (1990)	
  	
  
	
   	
   	
   	
   	
   	
  D44,	
  	
  799	
  (1991)	
  

q	
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q	
  loop	
  

Note:	
  	
  	
  
• 	
  	
  sum	
  over	
  complete	
  set	
  of	
  intermediate	
  
states	
  necessary	
  for	
  preserving	
  the	
  OZI	
  rule	
  
• 	
  	
  linear	
  interac7on	
  is	
  preserved	
  aser	
  	
  
	
  	
  	
  	
  	
  	
  renormaliza7on	
  of	
  the	
  string	
  constant	
  

	
  	
  	
  	
  	
  	
  	
  

Pair-­‐crea7on	
  operator	
  with	
  3P0	
  quantum	
  number	
  





The good magnetic moment  results of the CQM are preserved by the UCQM���
	



Bijker,	
  Santopinto,Phys.Rev.C80:065210,2009.	
  



Flavor Asymmetry 
Gottfried sum rule	





Proton Flavor asymmetry 	


Santopinto, Bijker, PRC 82,062202(R) (2010)	



	





Flavor asymmetry of the octect baryons in the  UCQM	



Flavor asymmetry	


Nonperturbative QCD	



Pauli blocking (Field & Feynman, 1977) too small	


Pion dressing of the nucleon (Thomas et al., 1983)	


Meson cloud models 	



Santopinto, Bijker, PRC 82,062202(R) (2010)	





Flavor asymmetries of octect baryons	


Santopinto, Bijker, PRC 82,062202(R) (2010)	



Alberg 	



Eichen 	


 Y.-J Zhang	





Genova 2012	



3. Proton Spin Crisis 
1980’s	

 1990’s	

 2000’s	



Naive parton model	


3 valence quarks	



QCD: contributions from 	


sea quarks and gluons	



.. and orbital angular	


momentum	



HERMES, PRD 75, 012007 (2007)	


COMPASS, PLB 647, 8 (2007)	





Proton Spin 
•  COMPASS@CERN: Gluon contribution is small (sign 

undetermined) 
•  Unquenched quark model 

 
 
 
•  More than half of the proton spin from the sea! 
•  Orbital angular momentum  
 

Ageev et al., PLB 633, 25 (2006)	


Platchkov, NPA 790, 58 (2007)	



Suggested by Myhrer & Thomas, 2008, but 
not explicitly calculated	





4. Strangeness in the Proton 
•  The strange (anti)quarks 

come uniquely from the sea: 
there is no contamination 
from up or down valence 
quarks 

•  The strangeness distribution 
is a very sensitive probe of 
the nucleon’s properties 

•  Flavor content of form 
factors 

•  New data from Parity 
Violating Electron Scattering 
experiments: SAMPLE, 
HAPPEX, PVA4 and G0 
Collaborations 

Genova 2012	
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“There is no excellent beauty that hath 
not some strangeness in the proportion”                                 	


            (Francis Bacon, 1561-1626)	





Quark Form Factors 
•  Charge symmetry 
 
•  Quark form factors 

Kaplan & Manohar, NPB 310, 527 (1988)	


Musolf et al, Phys. Rep. 239, 1 (1994)	



 Genova 2012	





Genova 2012	
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Static Properties 



Strange Magnetic Moment 

Jacopo Ferretti, Ph.D. Thesis, 2011	


Bijker, Ferretti, Santopinto, Phys. Rev. C 85, 035204 (2012)	



Genova 2012	
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Strange Radius 

Genova 2012	
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Jacopo Ferretti, Ph.D. Thesis, 2011	


Bijker, Ferretti, Santopinto, Phys. Rev. C 85, 035204 (2012)	





Genova 2012	
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Strange Proton 
•  Strange radius and magnetic 

moment of the proton 
•  Theory 
•  Lattice QCD 
•  Global analysis PVES 
•  Unquenched QM 

Jacopo Ferretti, Ph.D. Thesis, 2011	


Bijker, Ferretti, Santopinto, Phys. Rev. C 85, 035204 (2012)	





Unquenching the quark  model���
 for   the MESONS & Why Unquenching?���

���
Santopinto, Galatà, Ferretti,Vassallo ���
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UQM:	
  Meson	
  Self	
  Energies	
  &	
  couple	
  channels	
  

●  Hamiltonian: 

●  H0 act only in the bare meson space and it is chosen the Godfray and Isgur model 

●  V couples |A> to the continuum |BC>   

●  Dispersive equation 

●  from non-relativistic Schrödinger equation 

●  Bare energy Ea (H0 eigenvalue) satisfies: 
●                                        Ma = physical mass of meson A 

●                                        Σ(Ea) = self energy of meson A 



UQM:	
  Meson	
  Self	
  Energies	
  -­‐-­‐	
  UQM	
  I	
  

●  Coupling Va,bc(q) in Σ(Ea) calculated as: 
●                                                                                                                                 Sum over a complete set of accesible   

●                                                            ground state (1S) mesons 

●                                                            Coupling calculated in the 3P0 model 

●  Two possible diagrams contribute: 

●  Self energy in the UQM: 



Godrey	
  and	
  Isgur	
  model	
  as	
  bare	
  mass	
  
●  Bare energies Ea calculated in the relativized G.I.Model  for 

mesons 

●  Hamiltonian: 

●  Confining potential: 

●  Hyperfine interaction: 

●  Spin-orb. : 



UQM	
  or	
  couple	
  channel	
  Quark	
  Model	
  
●  Parameters of the relativized QM fitted to 

 

  

●  Recursive fitting procedure 

●  Ma = calculated physical masses of q bar-q mesons → 
reproduce experimental spectrum [PDG] 

●  Intrinsic error of QM/UQM calculations: 30-50 MeV 



UQM:	
  charmonium	
  with	
  self-­‐energy	
  corr.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Ferrej,	
  Galata'	
  and	
  Santopinto,	
  Phys.	
  Rev.	
  C	
  88,	
  015207	
  (2013);	
  arXiv:	
  1401.4431	
  

●  Parameters of the UQM (3P0 vertices) 

●    

●    

●  fitted to: 



UQM:	
  charmonium	
  spectrum	
  with	
  self-­‐energy	
  	
  	
  corr.	
  
Ferrej,	
  Galata'	
  and	
  Santopinto,	
  Phys.	
  Rev.	
  C	
  88,	
  015207	
  (2013)	
  

●    

M	
  [X(3872);	
  UQM]	
  =	
  3908	
  MeV	
  



UQM:	
  charmonium	
  	
  with	
  self-­‐energy	
  corr.	
  
Ferrej,	
  Galata'	
  and	
  Santopinto,	
  Phys.	
  Rev.	
  C	
  88,	
  015207	
  (2013)	
  

●  Experimental mass: 3871.68 ± 0.17 MeV [PDG] 

●  Several predictions for X(3872)'s mass. Here: c bar-c + continuum effects 
●                                                   
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  the	
  X(3872)	
  as	
  a	
  charmonium	
  state	
  plus	
  an	
  extra	
  
component	
  due	
  to	
  the	
  coupling	
  to	
  the	
  meson-­‐meson	
  con(nuum	
  	
  

Ferrej,Galatà,	
  Santopinto,	
  Phys.Rev.	
  C88	
  (2013)	
  1,	
  015207	
  	
  

●  UCQM results used to study the problem of the X(3872) 
mass, meson with JPC = 1++, 23P1 quantum numbers 

●  Experimental mass: 3871.68 ± 0.17 MeV [PDG] 
●  X(3872) very close to D bar-D* decay threshold 
●  Possible importance of continuum coupling effects? 
●  Several interpretations:       pure c bar-c   
●                                              D bar-D* molecule   
●                                               tetraquark  
●                                              c bar-c + continuum effects                                                   

nessary to study strong and radiative decays to uderstand  
the situation 
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  Molecular	
  model	
  does	
  not	
  predict	
  	
  radia(ve	
  decays	
  into	
  Ψ(3770)	
  and	
  
Ψ2(13D2)-­‐à	
  Possible	
  way	
  to	
  dis(nguish	
  between	
  the	
  two	
  interpreta(ons	
  
	
  
	
  
	
  



Ferreq,Galatà,Santopinto,Phys.Rev.	
  D90	
  (2014)	
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●  Prompt production from CDF collaboration in high-
energy hadron collisions incompatible with a 
molecular interpretation 

●  meson-meson molecule: large (a few fm) and fragile 

●  See: Bignamini et al., Phys. Rev. Lett. 103, 162001 (2009); Bauer, 
Int. J. Mod. Phys. A 20, 3765 (2005) 



	
  BoComonium	
  spectrum	
  
	
  (in	
  a	
  couple	
  channel	
  calcula7ons)	
  a)	
  

);	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Ferrej,	
  Santopin7o,	
  Phys.Rev.	
  D90,	
  094022	
  (2014),	
  arXiv:	
  1306.2874	
  

●  Parameters of the UQM (3P0 vertices) 

●    

●    

●  Pair-creation strength γ0 fitted to: 



BoComonium	
  	
  Strong	
  Decays	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Ferrej,	
  Santopinto,	
  Phys.Rev.	
  D90	
  	
  094022	
  (2014)	
   	
  arXiv:	
  

1306.2874	
  
●  Two-body strong decays. Results: 
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●  Results: 
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  Ferrej,	
  Santopin7o,	
  Phys.Rev.	
  D90	
  (2014)	
  9,	
  094022	
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1306.2874	
  

●  Results: 



Couple	
  Channels	
  correc7ons	
  to	
  BoComonium	
  ,	
  
the	
  	
  χb(3P)	
  system	
  

Ferrej,	
  Santopin7o,	
  Phys.Rev.	
  D90	
  (2014)	
  9,	
  094022	
   	
  :	
  1306.2874	
  

●  Results used to study some properties of the χb(3P) 
system, meson multiplet with N=3, L=1 quantum 
numbers 

●  χb(3P) states close to first open bottom decay thresholds 

●  Possible importance of continuum coupling effects? 

●  Pure c bar-c  and c bar-c + continuum effects 
interpretations 

●  Necessary to study decays (strong, e.m., hadronic, ...) to confirm one 
interpretation 

●         



Couple	
  Channels	
  correc7ons	
  to	
  BoComonium	
  ,	
  
the	
  	
  χb(3P)	
  system	
  

Ferrej,	
  Santopin7o,	
  Phys.Rev.	
  D90	
  (2014)	
  9,	
  094022	
  	
  	
  

●  Some experimental results for the mass barycenter of 
the system: 

●  M[χb(3P)] = 10.530 ± 0.005 (stat.) ± 0.009 (syst.) GeV 

●  Aad et al. [ATLAS Coll.], Phys. Rev. Lett. 108, 152001 (2012) 

●  M[χb(3P)] = 10.551 ± 0.014 (stat.) ± 0.017 (syst.) GeV 

●  Abazov et al. [D0 Coll.], Phys. Rev. D 86, 031103 (2012)         

●  Mass barycenter in the UQM: 



Main points 
•  Unquenching quark model:we have constructed the formalism 

in an explicit way, also thanks to group theory tecniques. Now, 
it can be applied to any quark model. 	



•  We think we have maked up the problems of quark models 
adding  the  coupling  with  the  continuum,  thus  opening  the 
possibilty of many, many applications	



•  Future: application  to open problems in hadron structure and 
spectroscopy : helicity amplitudes, strong decays,and so on.	





Blue curves hCQM    rp  0.5 fm 	



Green curves	


 H.O.	
  

m	
  =	
  3/2	
  

m	
  =	
  1/2	
  

rp  0.5 fm 	



rp  0.86 fm 	





Effective Degrees of Freedom in Baryon Spectroscopy 1099

Fig. 1 The calculated masses (black lines) from Refs. [2,6] are compared to three-/four-star resonances (dark boxes) and one-
/two-star resonances (pale boxes) from PDG [38]. We include theoretical predictions up to an energy of 2GeV

Fig. 2 The hypercentral QM results (black lines) of Refs. [40,41] are compared to three-/four-star resonances (dark boxes) and
one-/two-star resonances (pale boxes) from PDG [38]

operator, Mex(r), with a more general Gürsey-Radicati inspired interaction [6]. The results for the strange
sector are reported in Fig. 1. See also Fig. 2, where we compare the hypercentral quark model results of Refs.
[40,41] with data.

It is clear that a larger number of experiments and analyses, looking for missing resonances, are necessary
because many aspects of hadron spectroscopy are still unclear. In particular, the number of Λ states reported
by the PDG is small with respect to the predictions of Lattice QCD and models. In this respect, it is worthwhile
to note that the relativistic version of the interacting quark–diquark model predicts seven Λ missing states
belonging to the octet and other six missing states belonging to the singlet (considering only states under
2GeV).

It is also worthwhile noting that in our model [6]Λ(1116) andΛ∗(1520) are described as bound states of a
scalar diquark [n, n] and a quark s, where the quark–diquark system is in S or P-wave, respectively [6]. This is
in accordance with the observations of Refs. [42,43] on Λ’s fragmentation functions, that the two resonances
can be described as [n, n] − s systems.

We should also underline that the interacting quark–diquark model provides wave functions that can
describe in a reasonableway the elastic electromagnetic form factors of the nucleon. In particular, they provide a
reproduction of the existing data for the ratio of the electric andmagnetic form factor of the proton characterized
by a zero at Q2 = 8 GeV2 (see Fig. 3), like in vectormeson parametrizations. On the contrary, it was impossible
to get this zero with a three-quark model calculation [44] (see Fig. 4). New experiments at Jlab (JLab12), Bes,
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