Study of the Structure of Excited Nucleons by means of the calculation of the electromagnetic transition form factors of the nucleons

E. Santopinto INFN

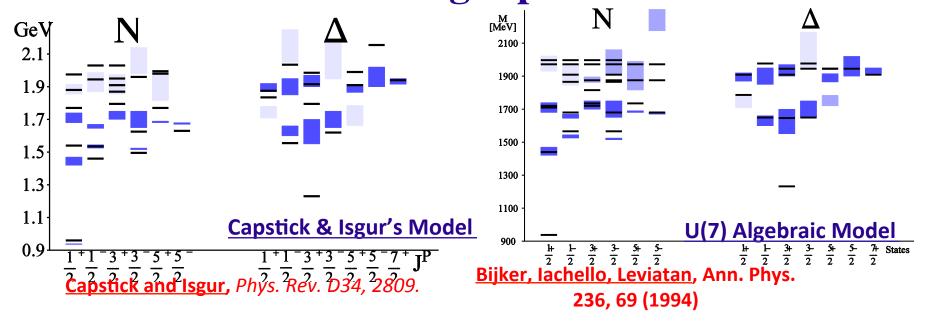
Department of Physics Genova University

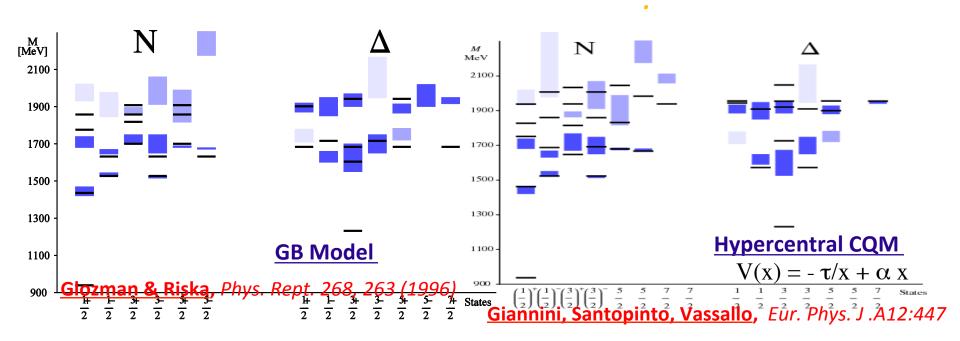
INT Seattle, november 2016

Outline of the talk

- The Models & hCQM and Int qDiqM
- ■The helicity amplitudes
- The elastic e.m. form factors of the nucleon
- ■The Unquenched Quark Model (higher Fock

components in a systematic way)


The Model (hCQM)


hypercentral Constituent Quark Model

different CQMs for bayons

	Kin. Energy	SU(6) inv	SU(6) viol	date
Isgur-Karl	non rel	h.o. + shift	OGE	1978-9
Capstick-Isgur	rel	string + coul-like	OGE	1986
U(7) B.I.L.	rel M^2	vibr+L	Guersey-R	1994
Нур. О(6)	non rel/rel	hyp.coul+linear	OGE	1995
Glozman Riska	non rel/rel Plessas	h.o./linear	GBE	1996
Bonn	rel	linear 3-body	instanton	2001

Non strange spectrum

Hypercentral Constituent Quark Model hCQM

free parameters fixed from the spectrum

Comment

The description of the spectrum is the first task of a model builder

Predictions for:

photocouplings transition form factors elastic from factors

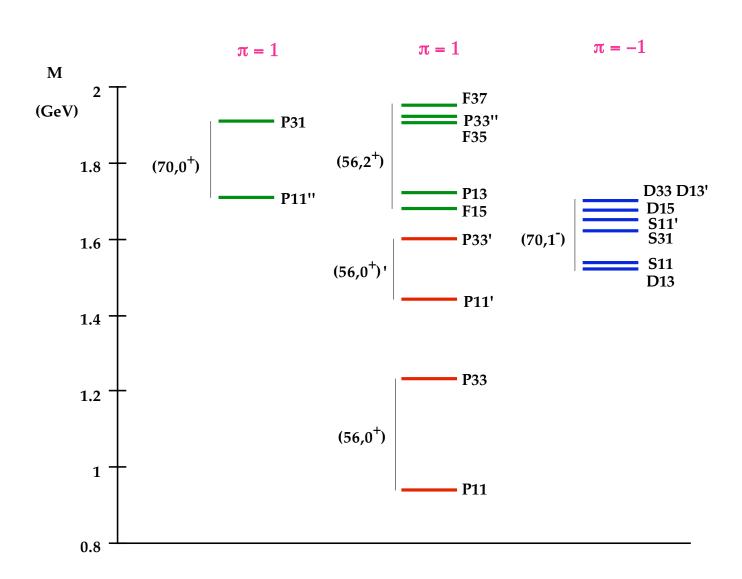
••••••

describe data (if possible) understand what is missing

LQCD (De Rújula, Georgi, Glashow, 1975)

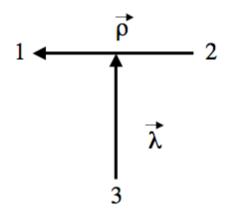
the quark interaction contains
a long range spin-independent confinement
a short range spin dependent term

Spin-independence \rightarrow SU(6) configurations


SU(6) configurations for three quark states

$$6 \times 6 \times 6 = 20 + 70 + 70 + 56$$

A M M S


Notation

$$(d, L^{\pi})$$

d = dim of SU(6) irrep L = total orbital angular momentum $\pi = parity$

Jacobi coordinates

Hyperspherical Coordinates

$$(\rho, \Omega_{\rho}, \lambda, \Omega_{\lambda}) \Rightarrow (x, t, \Omega_{\rho}, \Omega_{\lambda})$$

$$x=\sqrt{
ho^2+\lambda^2}$$
 hyperradius

$$t = arctgrac{
ho}{\lambda}$$
 hyperangle

$$\gamma = 2n + l_{\rho} + l_{\lambda}$$

$$L^2(\Omega)Y_{[\gamma]}(\Omega) = -\gamma(\gamma+4)Y_{[\gamma]}(\Omega)$$

$$L^2(\Omega) \Leftrightarrow C_2(O(6))$$

 γ grand angular quantum number

$$Y_{[\gamma]}(\Omega)$$

 $Y_{[\gamma]}(\Omega)$ Hyperspherical harmonics

$$\sum_{i < j} V(\mathbf{r}_{ij}) \approx V(\mathbf{x}) + \dots$$

$$\gamma = 2n + I_{\rho} + I_{\lambda}$$

Hasenfratz et al. 1980:

 $\Sigma V(r_i,r_i)$ is approximately hypercentral

Hypercentral Hypothesis

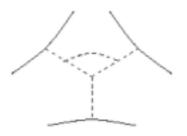
$$V = V(x)$$

Factorization

$$\psi(x,t,\Omega_
ho,\Omega_\lambda) = \psi_{
u\gamma}(x) \qquad Y_{[\gamma,l_
ho,l_\lambda]} \ ext{("dynamics")} \qquad ext{("geometry")}$$

Only one differential equation in x (hyperradial equation)

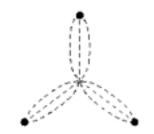
Hypercentral Model

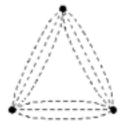

Phys. Lett. B, 1995

$$V(x) = -\tau/x + \alpha x$$

Hypercentral approximation of

$$V = -b/r + c r$$

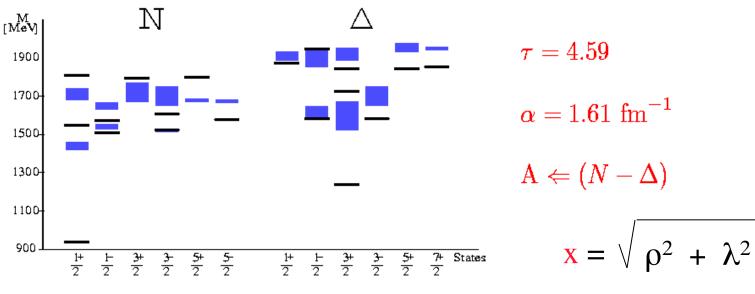

• QCD fundamental mechanism



3-body forces

Carlson et al, 1983 Capstick-Isgur 1986 hCQM 1995

• Flux tube model


Hypercentral Model (1)

$$H_{3q} = 3m + \sum_{i=1}^{3} \frac{\mathbf{p}_i^2}{2m} + V(\mathbf{x}) + H_{hyp}$$

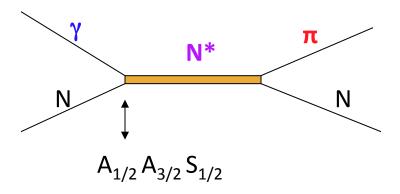
M. Ferraris, M. M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B364 (1995), 231

•
$$V(\mathbf{x}) = -\frac{\tau}{\mathbf{x}} + \alpha \mathbf{x};$$
 $H_{hyp} = A \left[\sum_{i < j} V^S(\mathbf{r}_i, \mathbf{r}_j) \ \boldsymbol{\sigma_i} \cdot \boldsymbol{\sigma_j} + \mathrm{tensor} \right]$

• 3 parameters $\tau \alpha A \leftarrow$ fixed to the spectrum, $m = \frac{M}{3}$

hyperradius

Results (predictions) with the Hypercentral Constituent Quark Model


for

- Helicity amplitudes
- ☐ Elastic nucleon form factors

The helicity amplitudes

HELICITY AMPLITUDES

Extracted from electroproduction of mesons

Definition

$$A_{1/2} = \langle N^* J_z = 1/2 | H_{em}^T | N J_z = -1/2 \rangle$$

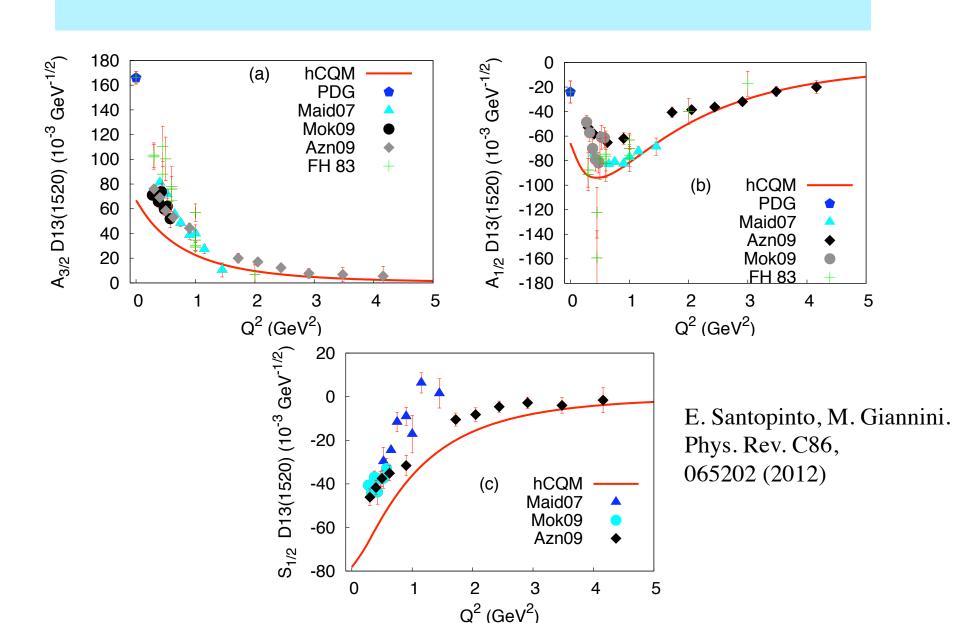
$$A_{3/2} = \langle N^* J_z = 3/2 | H_{em}^T | N J_z = 1/2 \rangle$$

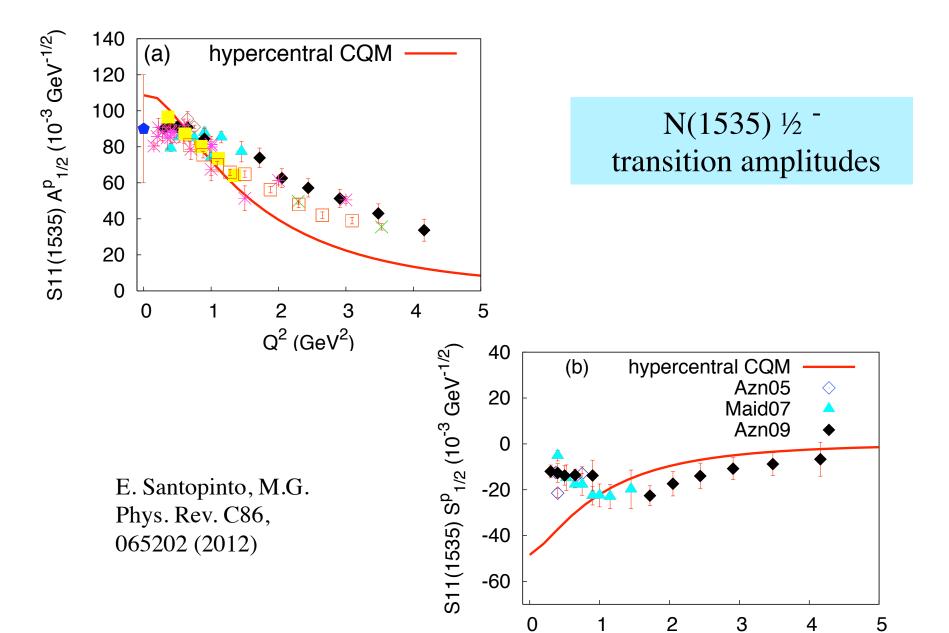
$$S_{1/2} = \langle N^* J_z = 1/2 | H_{em}^L | N J_z = 1/2 \rangle$$

N, N* nucleon and resonance as 3q states

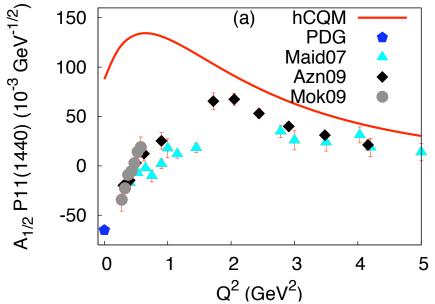
H^T_{em} H^l_{em} model transition operator

§ results for the negative parity resonances: M. Aiello, M.G., E. Santopinto J. Phys. G24, 753 (1998)

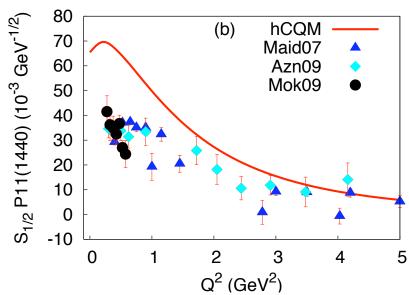

Systematic predictions for transverse and longitudinal amplitudes E. Santopinto et al., Phys. Rev. C86, 065202 (2012)

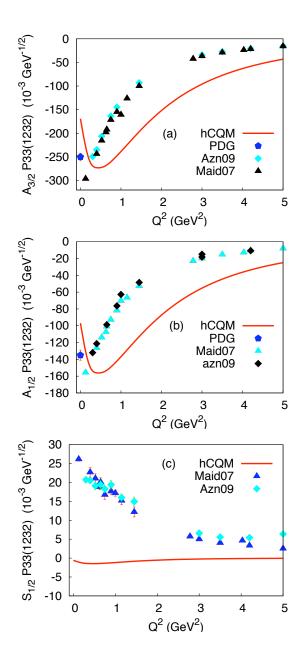

Proton and neutron electro-excitation to 14 resonances

P 11(1440), D13(1520), S11(1535), S11(1650), D15(1675), F 15(1680), P 11(1710) P 33(1232), S31(1620), D33(1700), F 35(19005), F 37(1950) + D13(1700) and P13(1720)

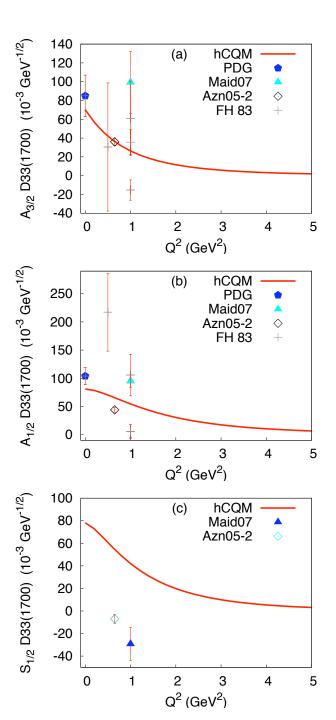

. · · · · · · 1

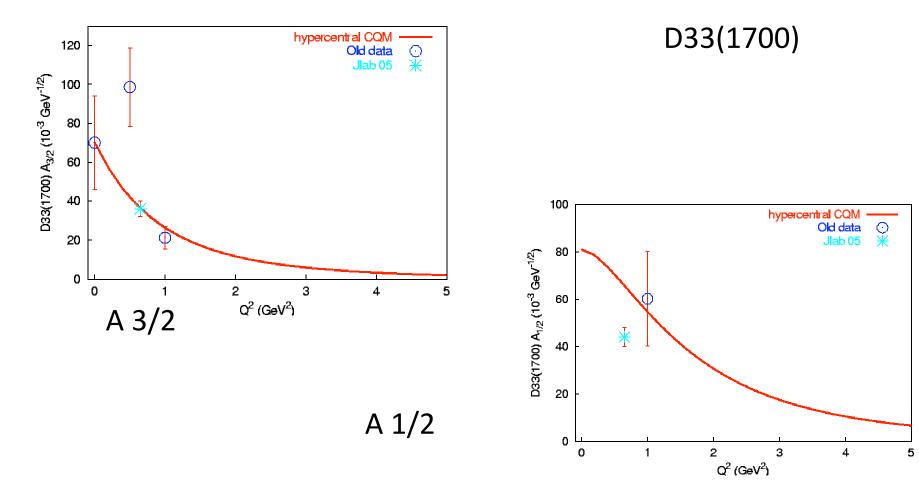
N(1520) 3/2 transition amplitudes

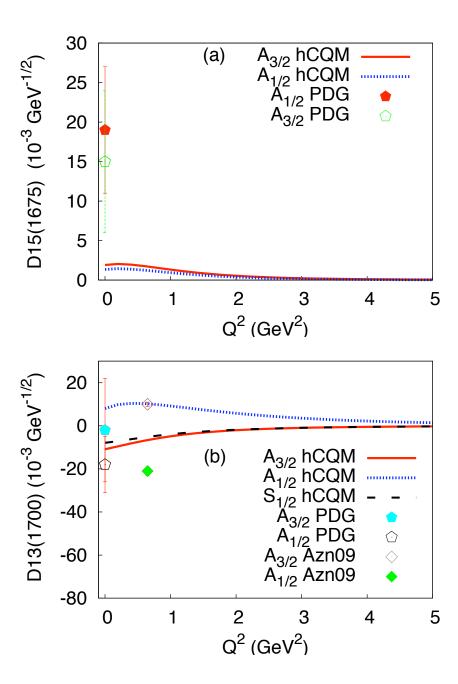


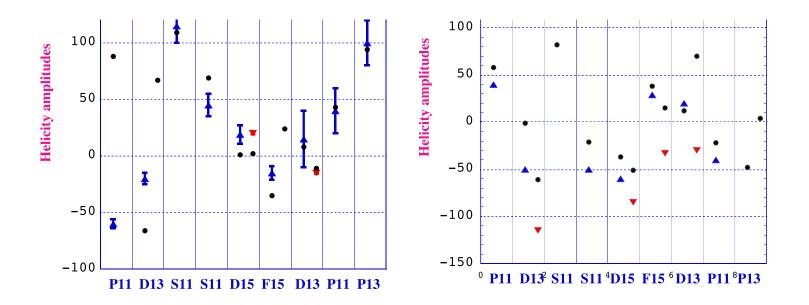

 Q^2 (GeV²)

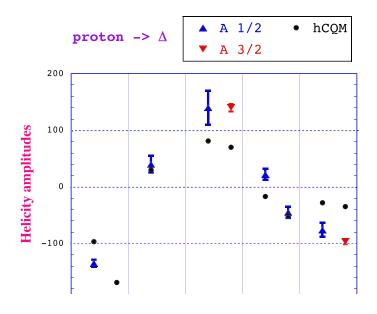
N(1440) ½ ⁺
(Roper)
transition amplitudes

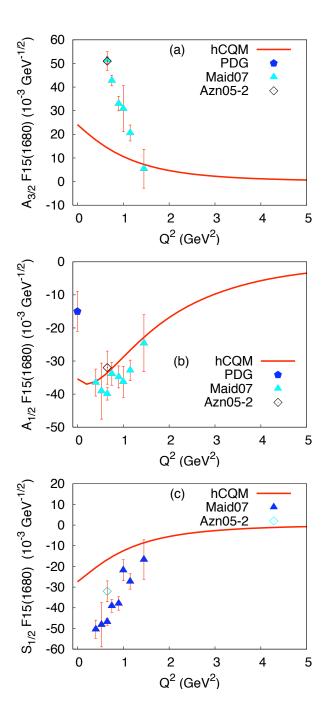


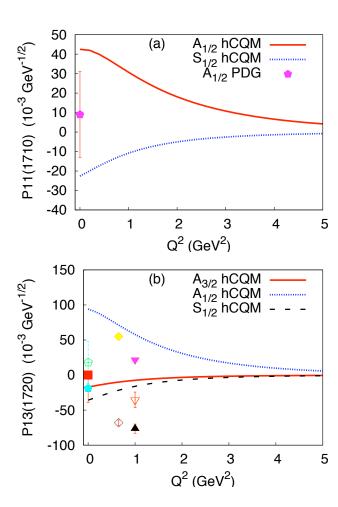

E. Santopinto, M.Giannini, Phys. Rev. C86, 065202 (2012)

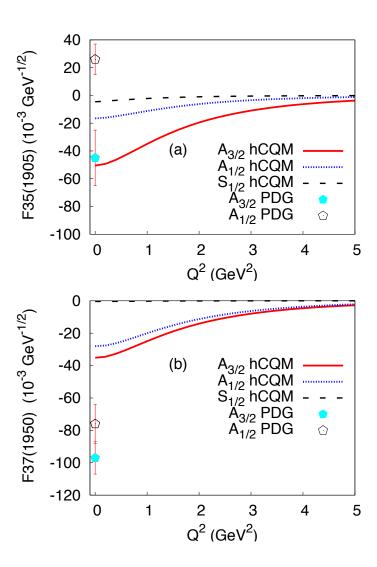


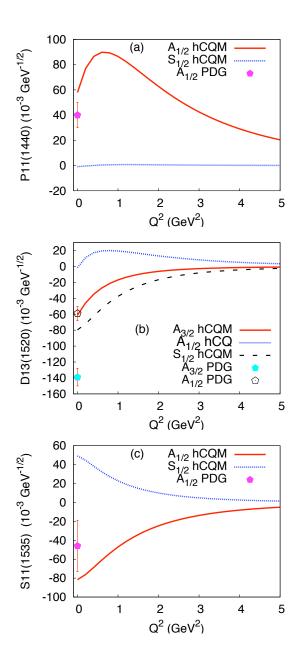

E. Santopinto, M.Giannini, Phys. Rev. C86, 065202 (2012)

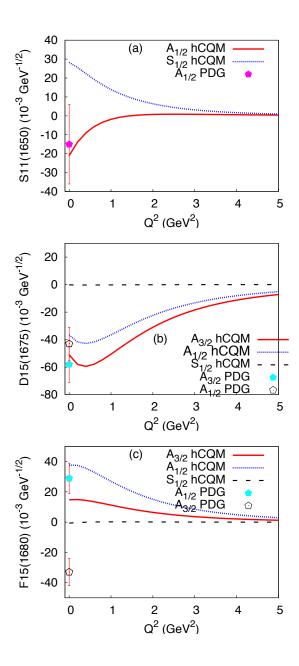


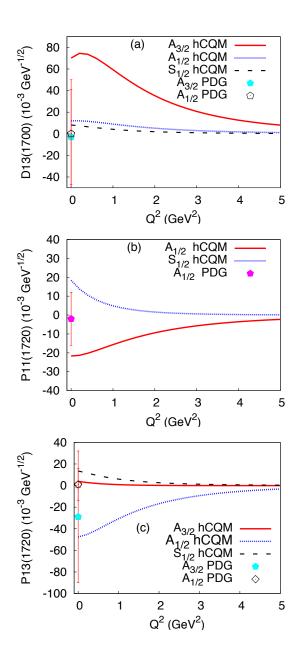


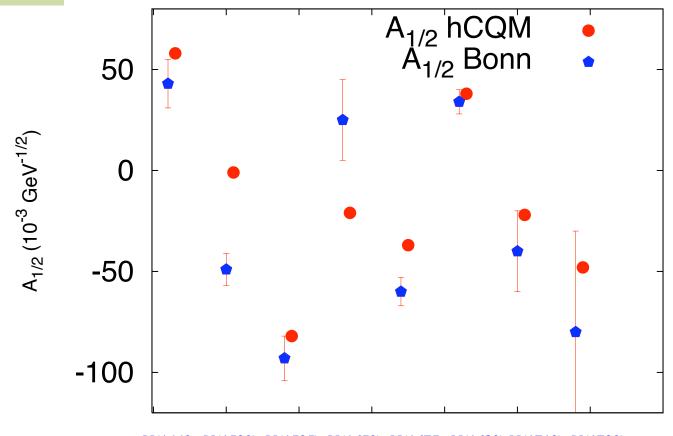

E. Santopinto, M.Giannini, Phys. Rev. C86, 065202 (2012)











Resonance	$A_{1/2}^{p}(hCQM)$ $A_{1/2}^{p}(PDG)$ (in units $10^{-3}GeV^{-1/2}$)		$ \begin{array}{ c c c c c }\hline A_{3/2}^p(hCQM) & A_{3/2}^p(PDG)\\ \text{(in units } 10^{-3}GeV^{-1/2}) \\ \hline \end{array} $	
P11(1440) D13(1520) S11(1535) S11(1650) D15(1675) F15(1680) D13(1700) P11(1710) P13(1720)	88 -66 109 69 1 -35 8 43 94	-65 ± 4 -24 ± 9 90 ± 30 53 ± 16 19 ± 8 -15 ± 6 -18 ± 13 9 ± 22 18 ± 30	67 2 24 -11 -17	166 ± 5 15 ± 9 133 ± 12 -2 ± 24 -19 ± 20

Resonance	$A_{1/2}^p(hCQM)$ (in units 10		$A_{3/2}^p(hCQM)$ (in units 10^{-3}	$A_{3/2}^p(PDG)$ $FGeV^{-1/2}$
P33(1232) S31(1620) D33(1700)	-97 30 81	-135 ± 6 27 ± 11 104 ± 5	-169 70	-250 ± 8 85 ± 2
F35(1905) F37(1950)	-17 -28	$26 \pm 11 \\ -76 \pm 12$	$ \begin{array}{c c} -51 \\ -35 \end{array} $	$-45 \pm 20 \\ -97 \pm 10$

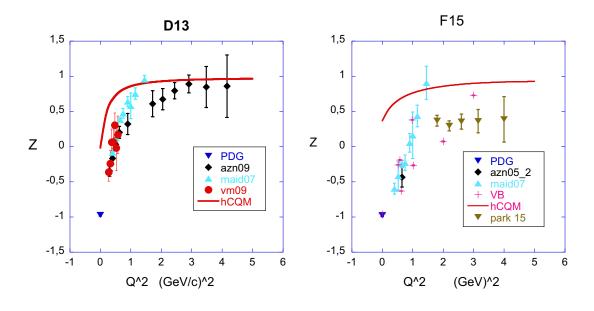
Neutron photocouplings

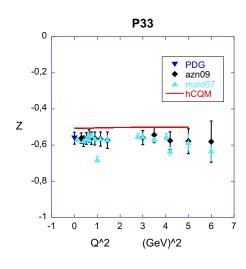
 $N(1440 \quad N(1520) \quad N(1525) \quad N(1650) \quad N(1675 \quad N(1680) \quad N(1710) \quad N(1720)$

hCQM: E. Santopinto, M.G. Phys. Rev. C86, 065202 (2012)

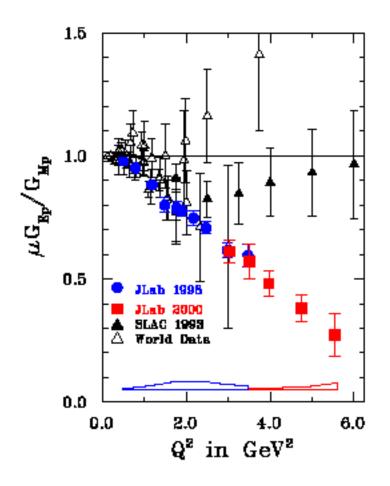
Bonn: A.V. Anisovich et al., EPJ A49, 67 (2013)

- The hCQM seems to provide realistic three-quark wave functions
- The main reason is the presence of the hypercoulomb term

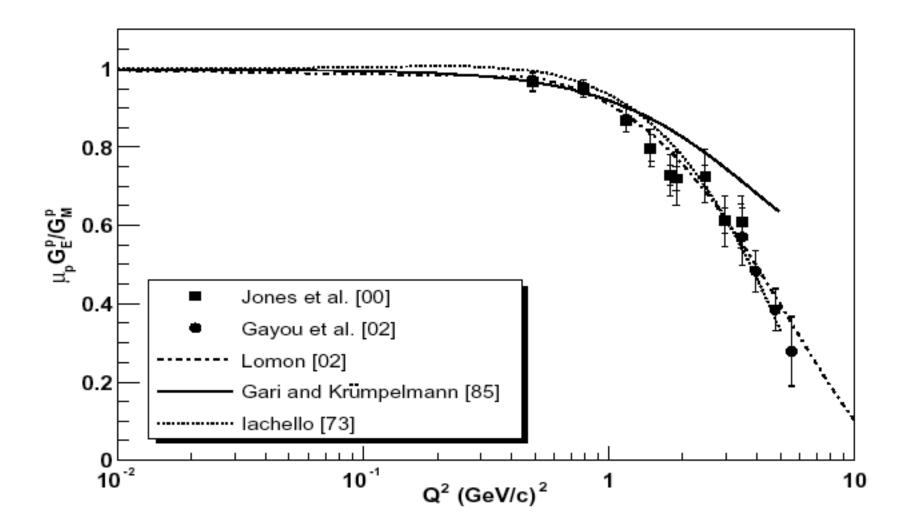

Solvable model


$$V(x) = -\tau/x + \alpha x$$
 linear term treated as a perturbation wf mainly concentrated in the low x region

- energy levels expressed analytically
- > unperturbed wf given by the 1/x term
- major contribution to the helicity amplitudes


Good results due to semplicity

$$Z = \frac{|A_{1/2}|^2 - |A_{3/2}|^2}{A_{1/2}|^2 + |A_{3/2}|^2}$$



The nucleon elastic form factors

- elastic scattering of polarized electrons on polarized protons
- measurement of polarizations asymmetry gives directly the $% \left(G_{i}^{p}\right) =\left(G_{i}^{p}\right) G_{i}^{p}$
- discrepancy with Rosenbluth data (?)
- linear and strong decrease
- pointing towards a zero (!)
- latest data seem to confirm the behaviour

RELATIVITY

Various levels

- relativistic kinetic energy
- Lorentz boosts
- Relativistic dynamics
- quark-antiquark pair effects (meson cloud)
- relativistic equations (BS, DS)

Point Form Relativistic Dynamics

Point Form is one of the Relativistic Hamiltonian Dynamics for a fixed number of particles (Dirac)

Construction of a representation of the Poincaré generators P_{μ} (tetramomentum), J_{k} (angular momenta), K_{i} (boosts) obeying the Poincaré group commutation relations in particular

$$[P_{k}, K_{i}] = i \delta_{kj} H$$

Three forms:

Light (LF), Instant (IF), Point (PF)

Differ in the number and type of (interaction) free generators

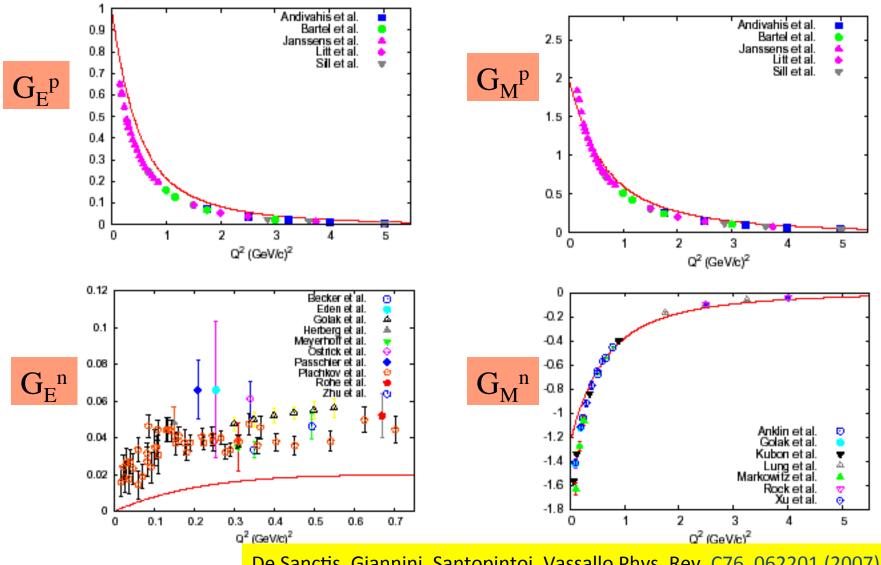
Point form: P_{μ} interaction dependent

 $J_{\rm k}$ and $K_{\rm i}$ free

Composition of angular momentum states as in the non relativistic case

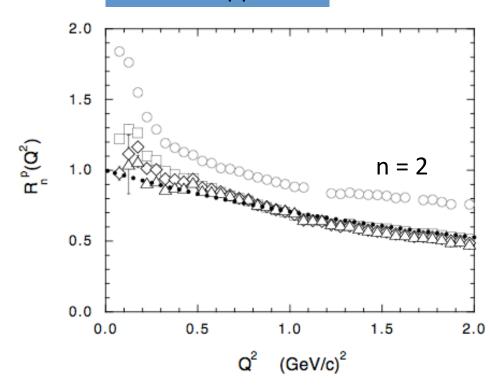
Mass operator
$$M = M_0 + M_I$$

$$\mathbf{M}_0 = \sum_{i} \sqrt{\mathbf{p}_i^2 + \mathbf{m}^2} \qquad \qquad \sum_{i} \mathbf{p}_i = 0$$


 $\overrightarrow{\mathbf{P}}_{i}$ undergo the same Wigner rotation -> M_{0} is invariant Similar reasoning for the hyperradius

The eigenstates of the relativistic hCQM are interpreted as eigenstates of the mass operator M

Moving three-quark states are obtained through (interaction free) Lorentz boosts (velocity states)


Calculated values!

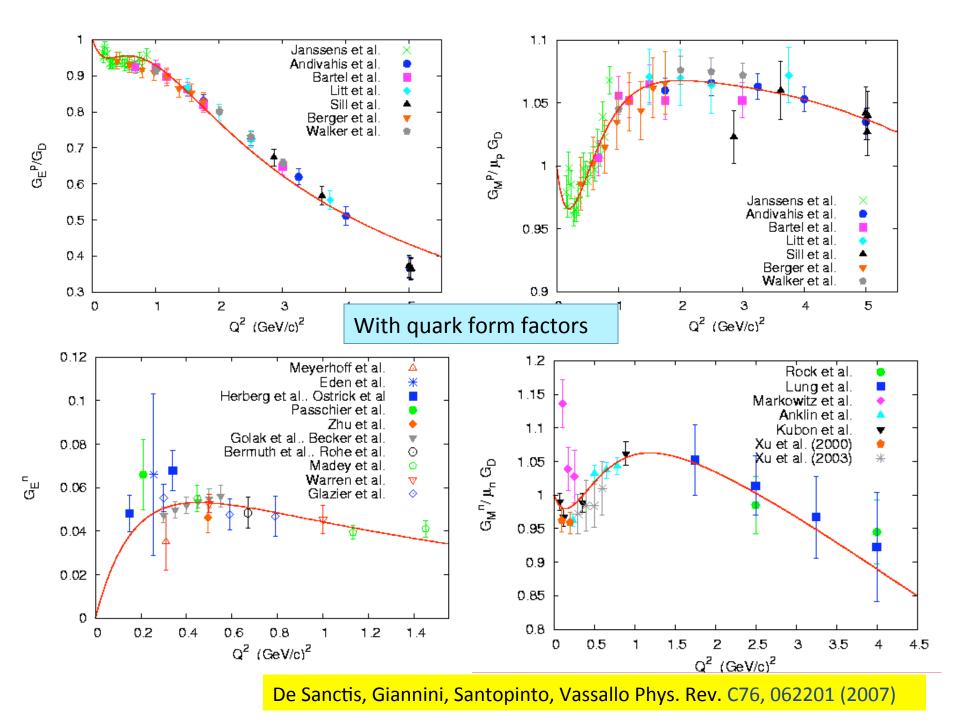
- •Boosts to initial and final states
- •Expansion of current to any order
- •Conserved current

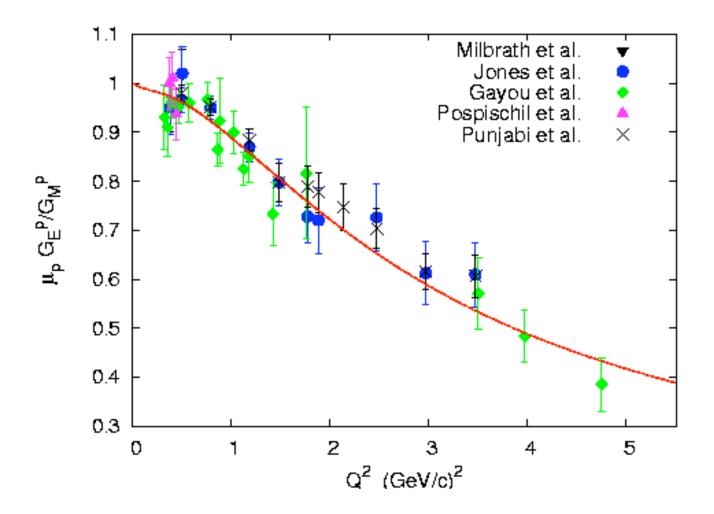
De Sanctis, Giannini, Santopintoi, Vassallo Phys. Rev. C76, 062201 (2007)

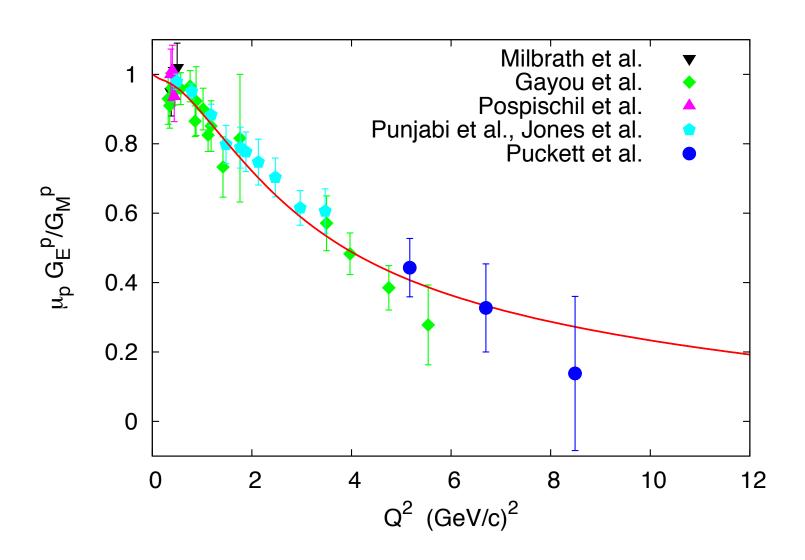
Further support 2

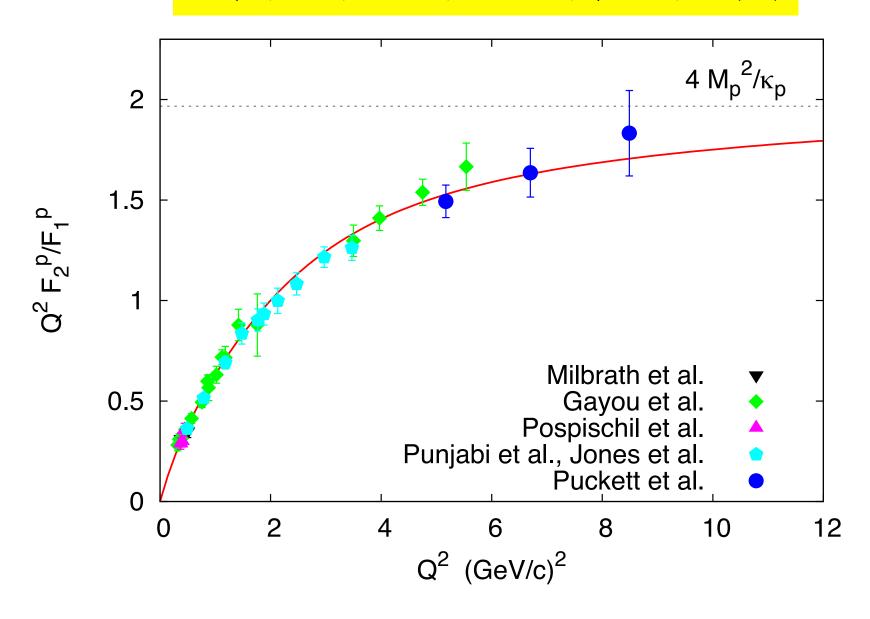
Ratio between proton Nachtmann moments & CQ distribution

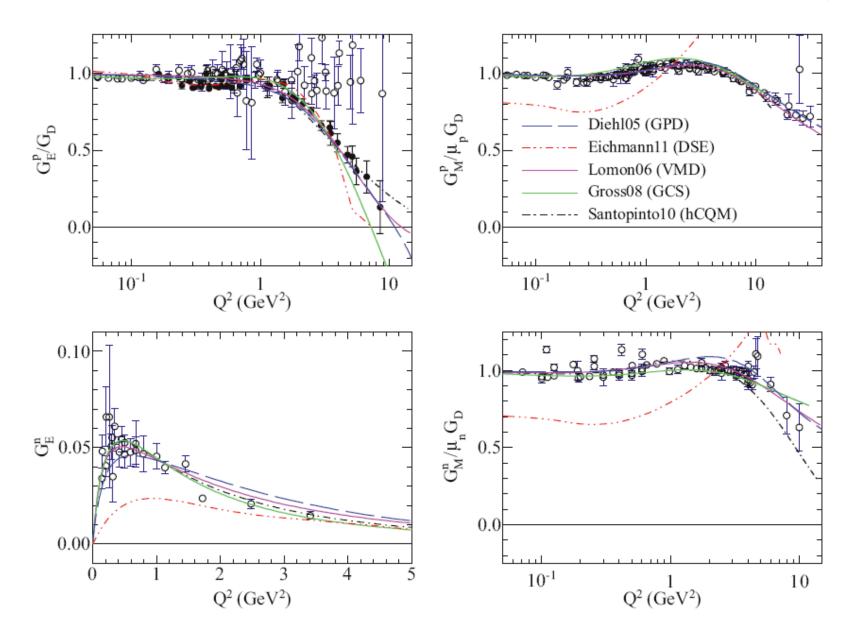
Bloom-Gilman duality

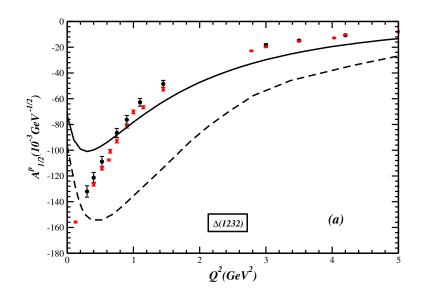

Inelastic proton scattering as elastic scattering on CQ


(approximate) scaling function square of CQ ff

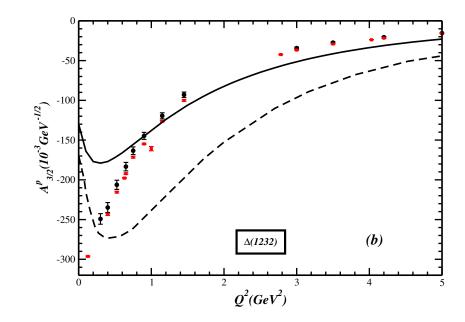

$$F(Q^2) = 1/(1+1/6 r_{CO}^2 Q^2)$$


 $r_{CO} \approx 0.2$ -:0.4 fm

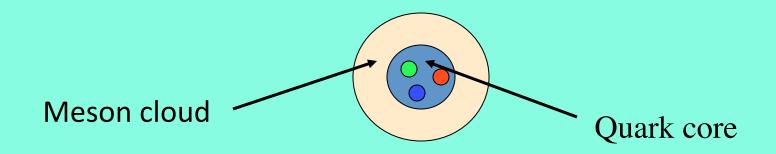

Ricco ,,et al., PR **D67**, 094004 (2003)







Relativistic hCQM In Point Form

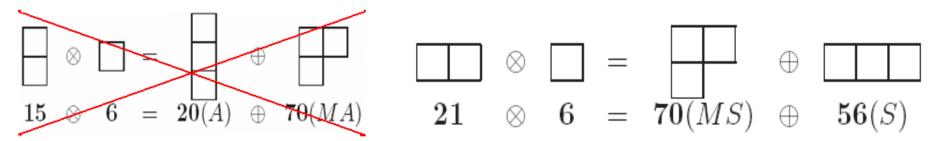


please note

- the medium Q² behaviour is fairly well reproduced
- there is lack of strength at low Q² (outer region) in the e.m. transitions
- emerging picture:

quark core plus (meson or sea-quark) cloud

Interacting qD model


E. Santopinto, PRC72, 022201 (2005)

I part:Construction of the states

- Diquark
- Two correlated quarks in S wave:symm.
- •Baryon in 1_c color representation \rightarrow diquark in bar- 3_c (A)
- Diquark WF:

$$\square \otimes \square = \square \oplus \square$$
 $\bigoplus \Psi_D$ (spin-flavor) symmetric $\longrightarrow 15$ (A) repr. not present

SU(6)_{sf} representations for baryons

Problem of missing resonances

Scalar & axial-vector diquarks

- 21 SU(6)_{sf} representation
- Decomposed in SU(2)_s x SU(3)_f
- [bar-3,0] & [6,1] representations. Notation: [flavor,spin]
- "Good" & "bad" diquarks
- According to OGE-calculations, [bar-3,0] is energetically favored
 [Wilczek, Jaffe]
- [bar-3,0]: good (scalar) diquark
- [6,1]: bad (axial-vector) diquark

Evidences of diquark correlations

Regge behavior of hadrons

Baryons arranged in rotational Regge trajectories ($J=\alpha+\alpha'M2$) with the same slope of the mesonic ones.

- $\Delta I = \frac{1}{2}$ rule in weak nonleptonic decays
 - Neubert and Stech, Phys. Lett. B 231 (1989) 477; Phys. Rev. D 44 (1991) 775
- Regularities in parton distribution functions and in spindependent structure functions
 - Close and Thomas, Phys. Lett. B **212** (1988) 227
- Regularities in $\Lambda(1116)$ and $\Lambda(1520)$ fragmentation functions Jaffe, Phys. Rept. **409** (2005) 1 [Nucl. Phys. Proc. Suppl. **142** (2005) 343] Wilczek, hep-ph/0409168
 - Any interaction that binds π and ρ mesons in the rainbow-ladder approximation of the DSE will produce diquarks
 - Cahill, Roberts and Praschifka, Phys. Rev. D 36 (1987) 2804
- Indications of diquark confinement
 - Bender, Roberts and Von Smekal, Phys. Lett. B 380 (1996) 7

the Interacting qD model

E. Santopinto, PRC72, 022201 (2005)

Hamiltonian

$$H = \frac{p^2}{2m} - \frac{\tau}{r} + \beta r + [B\delta_{S_{12},1} + C\delta_0] + (-1)^{l+1} 2Ae^{-\alpha r} [(\vec{s}_{12} \cdot \vec{s}_3) + (\vec{t}_{12} \cdot \vec{t}_3) + (\vec{s}_{12} \cdot \vec{s}_3)(\vec{t}_{12} \cdot \vec{t}_3)]$$

- Non-rel. Kinetic energy + Coulomb + linear confining terms
- Splitting between scalar & axial-vector diquarks
- Exchange potential

TABLE III. The scalar form factors of Eq. (17) for transitions to final states labeled by the quantum numbers n, l^P , where P is the parity. The initial state is $n = 1, l^P = 0^+$ and $a = \frac{1}{2\tau m}$.

\overline{n}	l^P	$\langle nl^P U 10^+\rangle$
1	0+	$\frac{1}{(1+k^2a^2)^2}$
2	1-	$\frac{i}{\sqrt{2}} \left(\frac{4}{9}\right)^3 \frac{24ka}{(1+\frac{16}{9}k^2a^2)^3}$
2	0_{+}	$16\sqrt{2}(\frac{4}{9})^3 \frac{(ka)^2}{(1+\frac{16}{9}k^2a^2)^3}$
3	2^+	$-\frac{4}{\sqrt{6}} \left(\frac{9}{16}\right)^2 \frac{(ka)^2}{(1+\frac{9}{4}k^2a^2)^4}$
3	1-	$\frac{i\sqrt{2}64ka}{27} \left(\frac{9}{16}\right)^3 \frac{\left(1+\frac{27}{4}(ka)^2\right)}{\left(1+\frac{9}{4}k^2a^2\right)^4}$
3	0_{+}	$\frac{4}{\sqrt{3}} \left(\frac{9}{16}\right)^2 \frac{\left(1 + \frac{27}{4}(ka)^2\right)(ka)^2}{\left(1 + \frac{9}{4}k^2a^2\right)^4}$

Rel. Interacting qD model – strange B.

E. S. and J. Ferretti, PRC92, 025202 (2015)

Model

- Model extended to strange sector
- Hamiltonian:

$$\begin{split} M &= E_0 + \sqrt{\vec{q}^2 + m_1^2} + \sqrt{\vec{q}^2 + m_2^2} + M_{\text{dir}}(r) \\ &+ M_{\text{ex}}(r) \\ M_{\text{ex}}(r) &= (-1)^{L+1} e^{-\sigma r} [A_S \vec{s}_1 \cdot \vec{s}_2 \\ &+ A_F \vec{\lambda}_1^f \cdot \vec{\lambda}_2^f + A_I \vec{t}_1 \cdot \vec{t}_2 \end{bmatrix} \\ \end{split} \qquad \qquad M_{\text{dir}}(r) = -\frac{\tau}{r} (1 - e^{-\mu r}) + \beta r. \end{split}$$

- Gursey-Radicati inspired exchange interaction
- Parameters fitted to strange baryon spectrum

Rel. Interacting qD model – strange B.

E. S. and J. Ferretti, PRC92, 025202 (2015)

Parameters

Parameter	Value (Fit 1)	Value (Fit 2)	Parameter	Value (Fit 1)	Value (Fit 2)
m_n $m_{[n,n]}$ $m_{\{n,n\}}$ $m_{\{s,s\}}$ μ A_S A_I E_0	200 MeV 600 MeV 950 MeV 1580 MeV 75.0 fm ⁻¹ 350 MeV 250 MeV 141 MeV	159 MeV 607 MeV 963 MeV 1352 MeV 28.4 fm ⁻¹ -436 MeV 791 MeV 150 MeV	m_s $m_{[n,s]}$ $m_{\{n,s\}}$ $ au$ β A_F σ	550 MeV 900 MeV 1200 MeV 1.20 2.15 fm ⁻² 100 MeV 2.30 fm ⁻¹ 0.37	213 Mev 856 MeV 1216 MeV 1.02 2.36 fm ⁻² 193 MeV 2.25 fm ⁻¹
D	6.13 fm^2	_	η	11.0 fm ⁻¹	_

N spectrum and $N(1900)P_{13}$

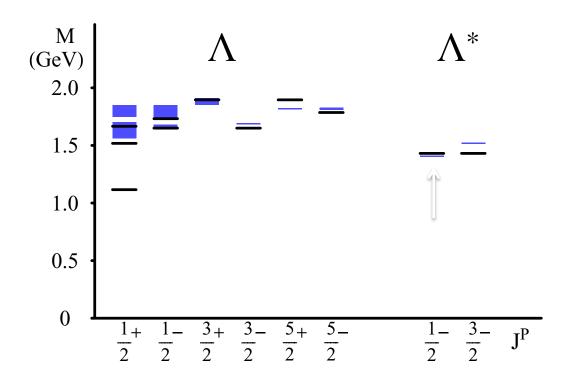
Resonance	Status	$M^{\text{exp.}}$ (MeV)	J^{P}	L^P	S	s_1	n_r	M ^{calc.} (fit 1) (MeV)
$N(939) P_{11}$	****	939	$\frac{1}{2}^{+}$	0+	1/2	0	0	939
$N(1440) P_{11}$	****	1420-1470	$\frac{1}{2}$ +	0^{+}	$\frac{1}{2}$	0	1	1511
$N(1520) D_{13}$	****	1515–1525	$\frac{2}{3}$ -	1-	$\frac{1}{2}$	0	0	1537
$N(1535) S_{11}$	****	1525–1545	$\frac{1}{2}$	1-	$\frac{1}{2}$	0	0	1537
$N(1650) S_{11}$	****	1645–1670	$\frac{1}{2}$	1-	$\frac{1}{2}$	1	0	1625
$N(1675) D_{15}$	****	1670–1680		1-	$\frac{3}{2}$	1	0	1746
$N(1680) F_{15}$	****	1680–1690	$\frac{5}{2}$ + $\frac{5}{2}$ +	2^{+}	$\frac{1}{2}$	0	0	1799
$N(1700) D_{13}$	***	1650-1750	$\frac{\frac{2}{3}}{\frac{2}{2}}$	1-	$\frac{1}{2}$	1	0	1625
$N(1710) P_{11}$	***	1680–1740	$\frac{1}{2}$ +	0_{+}	$\frac{1}{2}$	1	0	1776
$N(1720) P_{13}$	****	1700–1750	$\frac{1}{2} + \frac{1}{2} + \frac{1}$	0^{+}	$\frac{3}{2}$	1	0	1648
Missing			$\frac{1}{2}$	1-	$\frac{3}{2}$	1	0	1746
Missing	3 missing st	ates	$\frac{3}{2}$ -	1-	$\frac{2}{3}$	1	0	1746
Missing	3 1111331118 30	aces	$\frac{3}{2} - \frac{3}{2} + \frac{3}{2} - \frac{3}{2}$	2+	$\frac{1}{2}$	0	0	1799
$N(1875) D_{13}$	***	1820-1920	$\frac{\frac{2}{3}}{\frac{2}{3}}$	1-	$\frac{1}{2}$	0	1	1888
$N(1880) P_{11}$	**	1835–1905	$\frac{1}{2}$ +	0^{+}	$\frac{1}{2}$	0	2	1890
$N(1895) S_{11}$	**	1880–1910	1 —	1-	$\frac{1}{2}$	0	1	1888
$N(1900) P_{13}$	***	1875–1935	$\frac{\frac{1}{2}}{\frac{3}{2}}$ +	0_{+}	$\frac{3}{2}$	1	1	1947

E. S. AND FERRETTI, PRC92, 025202 (2015)

Δ spectrum

Resonance	Status	M ^{exp.} (MeV)	J^P	L^P	S	s_1	n_r	M ^{calc.} (fit 1) (MeV)
$\Delta(1232) P_{33}$	****	1230–1234	3 + 2	0+	3 2	1	0	1247
$\Delta(1600) P_{33}$	***	1500-1700	$\frac{2}{3}$ +	0_{+}	$\frac{2}{3}$	1	1	1689
$\Delta(1620) S_{31}$	****	1600-1660	$\frac{1}{2}$	1-	$\frac{1}{2}$	1	0	1830
$\Delta(1700) D_{33}$	****	1670-1750	$\frac{2}{3}$ -	1-	$\frac{1}{2}$	1	0	1830
$\Delta(1750) P_{31}$	*	1708-1780	$\frac{1}{2}$ +	0_{+}	$\frac{1}{2}$	1	0	1489
$\Delta(1900) S_{31}$	**	1840-1920	$\frac{1}{2}$	1-	$\frac{2}{3}$	1	0	1910
$\Delta(1905) F_{35}$	****	1855-1910	$\frac{5}{2}$ +	2+	$\frac{3}{2}$	1	0	2042
$\Delta(1910) P_{31}$	****	1860-1920	$\frac{1}{2}$ +	2+	$\frac{2}{3}$	1	0	1827
$\Delta(1920) P_{33}$	***	1900-1970	$\frac{\frac{2}{3}}{2}$ +	2+	$\frac{2}{3}$	1	0	2042
$\Delta(1930) D_{35}$	***	1900-2000	$\frac{\frac{2}{5}}{2}$	1-	$\frac{2}{3}$	1	0	1910
$\Delta(1940) D_{33}$	**	1940-2060	$\frac{2}{3}$ -	1-	$\frac{2}{3}$	1	0	1910
$\Delta(1950) F_{37}$	****	1915–1950	$\frac{\frac{2}{7}}{2}$ +	2+	$\frac{2}{3}$	1	0	2042

No missing states below 2 GeV


Σ and Σ^* spectrum

Resonance	Status	M ^{exp.} (MeV)	J^P	L^P	S	s_1	Q^2q	F	F ₁	I	t_1	n_r	M ^{calc.} (fit 2) (MeV)
$\Sigma(1193) P_{11}$	****	1189—1197	$\frac{1}{2}^{+}$	0+	$\frac{1}{2}$	0	[n,s]n	8	3	1	$\frac{1}{2}$	0	1211
$\Sigma(1620) S_{11}$	**	≈1620	$\frac{1}{2}$	1-	$\frac{3}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1753
$\Sigma(1660) P_{11}$	***	1630-1690	$\frac{1}{2}$ +	0_{+}	$\frac{1}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1546
$\Sigma(1670) D_{13}$	****	1665–1685	$\frac{\frac{2}{3}}{2}$	1-	$\frac{2}{3}$	1	$\{n,n\}s$	8	6	1	1	0	1753
$\Sigma(1750) S_{11}$	***	1730-1800	$\frac{1}{2}$	1-	$\frac{1}{2}$	0	[n,s]n	8	$\bar{3}$	1	$\frac{1}{2}$	0	1868
$\Sigma(1770) P_{11}$	*	≈1770	$\frac{1}{2}$ +	0_{+}	$\frac{1}{2}$	1	$\{n,s\}n$	8	6	1	$\frac{1}{2}$	0	1668
$\Sigma(1775) D_{15}$	****	1770–1780	$\frac{5}{2}$ -	1-	$\frac{2}{3}$	1	$\{n,n\}s$	8	6	1	1	0	1753
$\Sigma(1880) P_{11}$	**	≈1880	$\frac{1}{2}$ +	0_{+}	$\frac{1}{2}$	0	[n,s]n	8	3	1	$\frac{1}{2}$	1	1801
$\Sigma(1915) F_{15}$	****	1900–1935	$\frac{5}{2}$ +	2+	$\frac{1}{2}$	0	[n,s]n	8	3	1	$\frac{1}{2}$	0	2061
$\Sigma(1940) D_{13}$	***	1900-1950	$\frac{\frac{2}{3}}{2}$	1-	$\frac{1}{2}$	0	[n,s]n	8	3	1	$\frac{1}{2}$	0	1868
Missing 1	missing	state	$\frac{2}{3}$ -	1-	$\frac{3}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1895
$\Sigma(2000) S_{11}$	*	≈2000	$\frac{1}{2}$ -	1-	$\frac{\frac{2}{3}}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1895
$\Sigma^*(1385) P_{13}$	****	1382–1388	$\frac{3}{2}$ +	0^{+}	$\frac{3}{2}$	1	$\{n,n\}s$	10	6	1	1	0	1334
$\Sigma^*(1840) P_{13}$	*	≈1840	$\frac{\frac{2}{3}}{\frac{2}{2}}$ +	0^{+}	$\frac{2}{3}$	1	$\{n,s\}n$	10	6	1	$\frac{1}{2}$	0	1439
$\Sigma^*(2080) P_{13}$	**	≈2080	$\frac{\frac{2}{3}}{2}$ +	0_{+}	$\frac{\frac{2}{3}}{2}$	1	$\{n,n\}s$	10	6	1	1	1	1924

Ξ , Ξ^* and Ω spectrum

								_					
Resonance	Status	M ^{exp.} (MeV)	J^P	L^P	S	s_1	Q^2q	F	F ₁	Ι	t_1	n_r	M ^{calc.} (fit 2) (MeV)
$\Xi(1318) P_{11}$	****	1315–1322	1 + 2	0+	1/2	0	[n,s]s	8	3	$\frac{1}{2}$	$\frac{1}{2}$	0	1317
Missing			$\frac{1}{2}$ +	0^{+}	$\frac{1}{2}$	1	$\{n,s\}s$	8	6	$\frac{1}{2}$	$\frac{1}{2}$	0	1772
$\Xi(1820) D_{13}$	***	1818-1828	$\frac{3}{2}$	1-	$\frac{1}{2}$	0	[n,s]s	8	3	$\frac{1}{2}$	$\frac{1}{2}$	0	1861
Missing			$\frac{1}{2}$ +	0^{+}	$\frac{1}{2}$	0	[n,s]s	8	3	$\frac{1}{2}$	$\frac{1}{2}$	1	1868
Missing	5 miss	ing states	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	$\{s,s\}n$	8	6	$\frac{1}{2}$	0	0	1874
Missing	3 111133	ing states	$\frac{3}{2}$	1-	$\frac{3}{2}$	1	$\{n,s\}s$	8	6	$\frac{1}{2}$	$\frac{1}{2}$	0	1971
$\Xi^*(1530) P_{13}$	****	1531–1532	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	$\{n,s\}s$	10	6	$\frac{1}{2}$	$\frac{1}{2}$	0	1552
Missing			$\frac{\frac{2}{3}}{\frac{2}{2}}$ +	0_{+}	$\frac{2}{3}$	1	$\{s,s\}n$	10	6	$\frac{1}{2}$	0	0	1653
$\Omega(1672) P_{03}$	****	1672–1673	$\frac{3}{2}$ +	0_{+}	$\frac{3}{2}$	1	$\{s,s\}s$	10	6	0	0	0	1672

Λ and Λ^* spectrum

*** and **** PDG states below 2 GeV

Λ and Λ^* spectrum

Resonance	Status	M ^{exp.} (MeV)	J^P	L^{P}	S	s_1	Q^2q	F	F ₁	Ι	t_1	n_r	M ^{calc.} (fit 2) (MeV)
$\Lambda(1116) P_{01}$	****	1116	1 +	0+	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	0	1116
$\Lambda(1600) P_{01}$	***	1560-1700	$\frac{1}{2}^{+}$	0_{+}	$\frac{1}{2}$	0	[n,s]n	8	3	0	$\frac{1}{2}$	0	1518
$\Lambda(1670) \ S_{01}$	****	1660-1680	$\frac{1}{2}$	1-	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	0	1650
$\Lambda(1690)~D_{03}$	****	1685-1695	$\frac{3}{2}$	1-	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	0	1650
Missing			$\frac{3}{2}$	1-		0	[n,s]n	8	3	0	$\frac{1}{2}$	0	1732
Missing			$\frac{1}{2}$	1-	$\frac{\frac{1}{2}}{\frac{3}{2}}$	1	$\{n,s\}n$	8	6	0	$\frac{1}{2}$	0	1785
Missing			$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$	1-	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	1	1785
$\Lambda(1800) S_{01}$	***	1720-1850	$\frac{1}{2}$	1-	$\frac{1}{2}$	0	[n,s]n	8	3	0	$\frac{1}{2}$	0	1732
$\Lambda(1810) P_{01}$	***	1750-1850	$\frac{1}{2}$ +	0_{+}	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	1	1666
$\Lambda(1820) F_{05}$	****	1815-1825	$\frac{5}{2}$ +	2+	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	0	1896
$\Lambda(1830) D_{05}$	****	1810-1830	$\frac{5}{2}$	1-	$\frac{3}{2}$	1	$\{n,s\}n$	8	6	0	$\frac{1}{2}$	0	1785
$\Lambda(1890) P_{03}$	****	1850-1910	$\frac{3}{2}$ +	0_{+}	$\frac{3}{2}$	1	$\{n,s\}n$	8	6	0	$\frac{1}{2}$	0	1896
Missing			$\frac{1}{2}$ +	0_{+}	$\frac{1}{2}$	1	$\{n,s\}n$	8	6	0	$\frac{1}{2}$	0	1955
Missing			$\frac{1}{2}$ +	0_{+}	$\frac{1}{2}$	0	[n,s]n	8	$\bar{3}$	0	$\frac{1}{2}$	1	1960
Missing			$\frac{1}{2}$ -	1-		1	$\{n,s\}n$	8	6	0		0	1969
Missing			$\frac{1}{2}^{+}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$	1-	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1	$\{n,s\}n$	8	6	0	$\frac{1}{2}$ $\frac{1}{2}$	0	1969
$\Lambda^*(1405) S_{01}$	****	1402-1410	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	0	[n,n]s	1	3	0	0	0	1431
$\Lambda^*(1520) D_{03}$	****	1519–1521	$\frac{\frac{2}{3}}{2}$	1-	$\frac{1}{2}$	0	[n,n]s	1	3	0	0	0	1431
Missing			$\frac{1}{2}$ -	1-	$\frac{1}{2}$	0	[n,s]n	1	3	0	$\frac{1}{2}$	0	1443
Missing			$\frac{1}{2} - \frac{1}{2} - \frac{3}{2} - \frac{1}{2}$	1-	$\frac{1}{2}$	0	[n,s]n	1	3	0	$\frac{1}{2}$	0	1443
Missing			$\frac{1}{2}$ -	1-	$\frac{1}{2}$	0	[n,n]s	1	3	0	0	1	1854
Missing	13 miss	ing states	$\frac{1}{2} - \frac{1}{2} - \frac{3}{2} - \frac{1}{2}$	1-	$\frac{1}{2}$	0	[n,n]s	1	3	0	0	1	1854
Missing			$\frac{1}{2}$ -	1-	$\frac{1}{2}$	0	[n,s]n	1	3	0	$\frac{1}{2}$	1	1928
Missing			$\frac{\frac{2}{3}}{2}$	1-	$\frac{1}{2}$	0	[n,s]n	1	3	0	$\frac{1}{2}$	1	1928

Relativistic qD Model with Spin-Isospin (SI) transition interaction

- SI transition interaction mixes scalar and axial-vector diquark components
- Motivations:
 - 1. Improve reproduction of nonstrange baryon spectrum
 - 2. Introduce axial-vector diquark component in nucleon WF
- Better reproduction of nucleon e.m. form factors expected De Sanctis et al. PRC84, 055201 (2011)
- Other observables can also be computed

Model Hamiltonian

•
$$H = E_0 + \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + M_{dir}$$

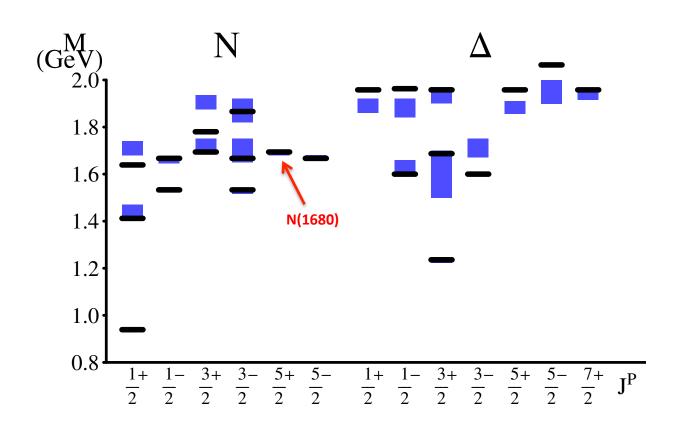
 $+ M_{ex} + M_{cont} + M_{tr}$

•
$$M_{tr} = V_0 e^{-\frac{1}{2}v^2r^2} (\vec{s}_2 \cdot \vec{S})(\vec{t}_2 \cdot \vec{T})$$

S and T are spin and isospin transition operators

Model parameters

```
m_q = 140 \text{ MeV} m_S = 150 \text{ MeV} m_{AV} = 360 \text{ MeV}


\tau = 1.23 \mu = 125 \text{ fm}^{-1} \beta = 1.57 \text{ fm}^{-2}

A_S = 125 \text{ MeV} A_I = 85 \text{ MeV} A_{SI} = 350 \text{ MeV}

\sigma = 0.60 \text{ fm}^{-1} E_0 = 826 \text{ MeV} D = 2.00 \text{ fm}^2

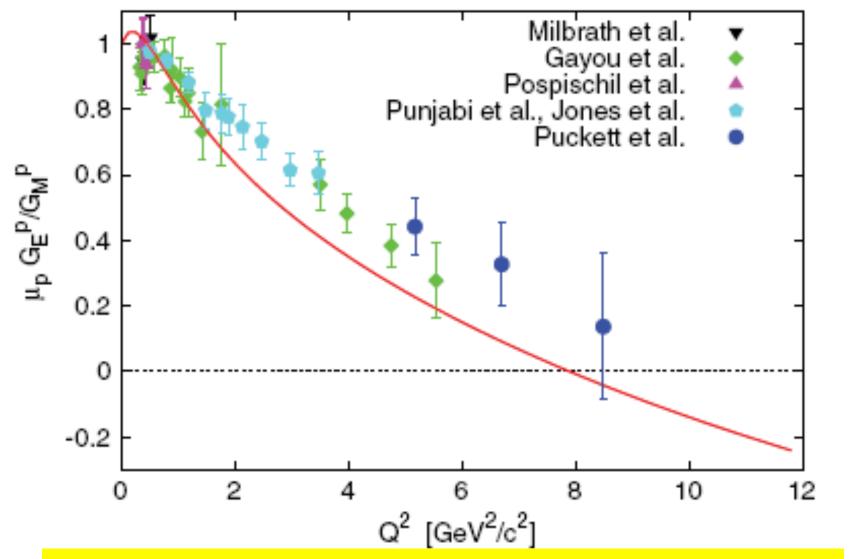
\eta = 10.0 \text{ fm}^{-1} V_0 = 1450 \text{ MeV} \nu = 0.35 \text{ fm}^{-1}
```

Nonstrange spectrum

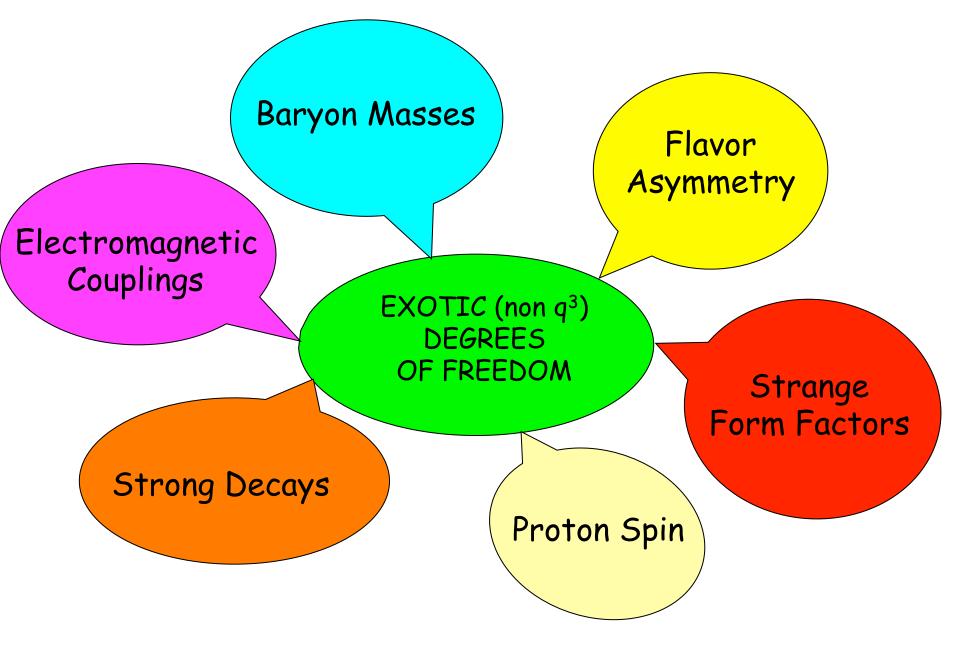
Nonstrange spectrum

								=								
Resonance	Status	$M^{\text{exp.}}$ (MeV)	J^P	L^P	S s :	n_r	$M^{\text{calc.}}$ (MeV)		Resonance	Status	$M^{\text{exp.}}$ (MeV)	J^P L	P S	s_1	n_r	$M^{\text{calc.}}$ (MeV)
$N(939) P_{11}$ $N(1440) P_{11}$ $N(1520) D_{13}$ $N(1535) S_{11}$ $N(1650) S_{11}$ $N(1675) D_{15}$	**** *** ****	939 1420 - 1470 1515 - 1525 1525 - 1545 1645 - 1670 1670 - 1680	$\frac{1}{2} + \frac{1}{2} - \frac{1}$	0 ⁺ 1 ⁻ 1 ⁻ 1 ⁻	$\frac{1}{2}$ 0, $\frac{1}{2}$ 0, $\frac{1}{2}$ 0, $\frac{3}{2}$ 1	1 1 1 0 1 0 0 0	1412 1533 1533 1667 1667	_	$ \Delta(1232) P_{33} \Delta(1600) P_{33} \Delta(1620) S_{31} \Delta(1700) D_{33} \Delta(1750) P_{31} \Delta(1900) S_{31} $	**** *** *** ***	1230 - 1234 1500 - 1700 1600 - 1660 1670 - 1750 1708 - 1780 1840 - 1920	$\frac{3}{2}$ ($\frac{1}{2}$) $\frac{3}{2}$ + ($\frac{1}{2}$) $\frac{3}{2}$ + ($\frac{1}{2}$)	$1^{+} \frac{3}{2}$	$\frac{3}{2}$ 1 $\frac{3}{2}$ 1 $\frac{1}{2}$ 1 $\frac{1}{2}$ 1 $\frac{1}{2}$ 1 1 $\frac{1}{2}$ 1 1 $\frac{1}{2}$ 1	1 0 0 0	1236 1687 1600 1600 1857 1963
$N(1680) F_{15}$ $N(1700) D_{13}$		1680 - 1690 1650 - 1750	_		$\frac{1}{2}$ 0, $\frac{3}{2}$ 1				$\Delta(1905) \ F_{35}$	****	1855 - 1910	2 .		$\frac{\frac{2}{3}}{2}$ 1	0	1958
$N(1710) P_{11}$		1680 - 1740	Δ.		$\frac{1}{2}$ 0,				$\Delta(1910) P_{31}$	****	1860 - 1920	/,		$\frac{3}{2}$ 1		1958
$N(1720) P_{13}$		1700 - 1750	-		$\frac{1}{2}$ 0,				$\Delta(1920) P_{33}$	***	1900 - 1970	$\frac{3}{2}$ + $\frac{3}{2}$	-	$\frac{3}{2}$ 1	0	1958
$N(1875) D_{13}$		1820 - 1920			$\frac{1}{2}$ 0,		1866		$\Delta(1930) \ D_{35}$	***	1900 - 2000	$\frac{5}{2}^{-}$]	1- {	$\frac{3}{2}$ 1	0	2064
$N(1880) P_{11}$		1835 - 1905			$\frac{1}{2}$ 0,				$\Delta(1940) \ D_{33}$	**	1940 - 2060	$\frac{\bar{3}}{2}$]	1	$\frac{1}{2}$ 1	1	1963
$N(1895) S_{11}$		1880 - 1910			$\frac{1}{2}$ 0,		1866		$\Delta(1950) \ F_{37}$	****	1915 - 1950		2^{+} $\frac{2}{3}$	$\frac{2}{3}$ 1	0	1958
$N(1900) P_{13}$		1875 - 1935	Δ.	0^{+}	2	0			, , ,			<i>Z</i>	2	4		
missing 1		sing state		2+	$\frac{1}{2}$ 0,		1990									
$N(2000) F_{15}$	**	1950 - 2150	2	2^+	$\frac{1}{2}$ 0,	1 1	1990									

Nucleon Wave Function

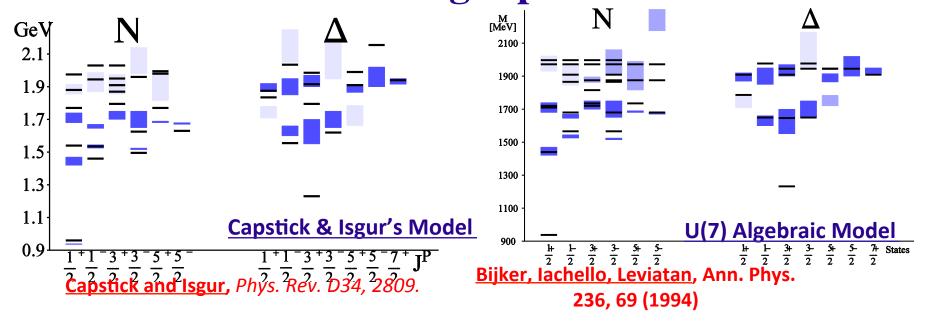

 The SI interaction allows scalar and axial-vector diquarks components in nucleon WF with probability:

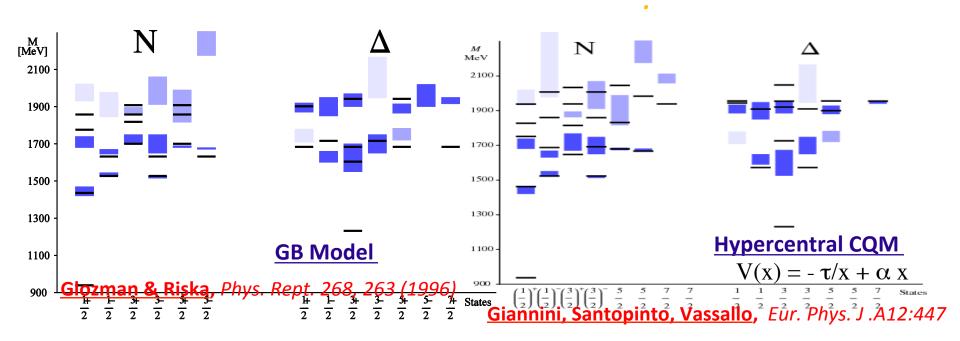
State	Scalar component	Axial-vector component				
N	53%	47%				
N(1440)	51%	49%				
Δ(1232)	0	100%				


 Important also in the calculation of several other observables: e.m. form factors, open-flavor decays, magnetic moments, ...

Ratio $\mu_p G_E^p/G_M^p$

De Sanctis, Ferretti, Santopinto, Vassallo, Phys. Rev. C 84, 055201 (2011)


Interacting Quark Diquark model, E. Santopinto, Phys. Rev. C 72, 022201(R) (2005)



Unquenching the quark model & Why Unquenching?

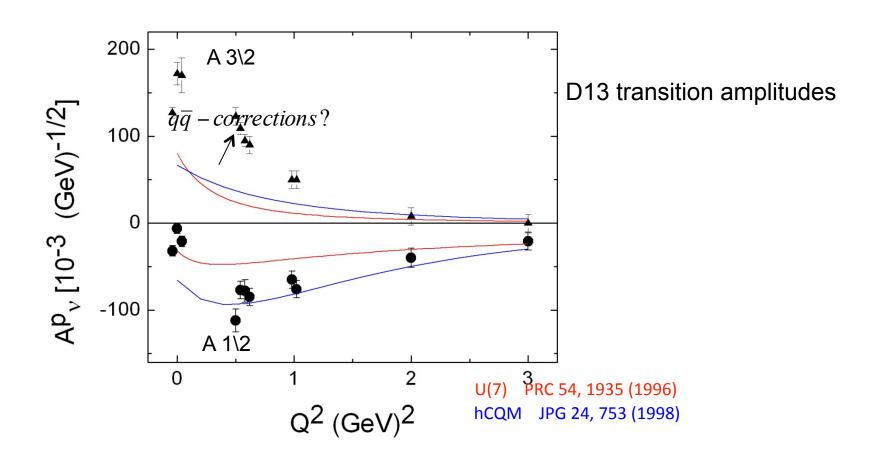
E. .Santopinto,. Bijker PRC 80, 065210 (2009), PRC 82, 062202 (2010); J. Ferrettii, Santopinto, Bijker Phys. Rev. C 85, 035204 (2012)

Non strange spectrum

Many versions of CQMs have been developed (IK, CI, GBE, U(7), hCQM,Bonn, etc.) non relativistic and relativistic While these models display peculiar features, they share the following main features: the effective degrees of freedom of 3q and a confining potential the underling O(3) SU(3) symmetry All of them are able to give a good description of the 3 and 4 stars

spectrum

Good description of the spectrum and magnetic moments

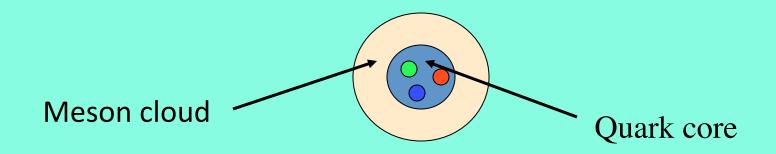

Predictions of many quantities:

strong couplins
photocouplings
helicity amplitudes
elastic form factors
structure functions

Based on the effective degrees of freedom of 3 constituent quarks

Is it a degrees of freedom problem?

$q\bar{q}$ corrections? important in the outer region


Considering also CQMs for mesons, CQMs able to reproduce the overall trend of hundred of data

- ... but they show very similar deviations for observables such as
- photocouplings
- helicity amplitudes,

please note

- the medium Q² behaviour is fairly well reproduced
- there is lack of strength at low Q² (outer region) in the e.m. transitions
- emerging picture:

quark core plus (meson or sea-quark) cloud

There are two possibilities:

phenomenological parametrization

microscopic explicit quark description

Two main approaches

• the physical nucleon N is made of a bare nucleon dressed by a surrounding meson cloud

$$|\tilde{N}\rangle = \Psi_{(3q)}^N |N(qqq)\rangle + \sum_{B,M} \Psi_{(3q)(q\bar{q})}^{(BM)} |B(qqq)M(q\bar{q})\rangle + \cdots$$

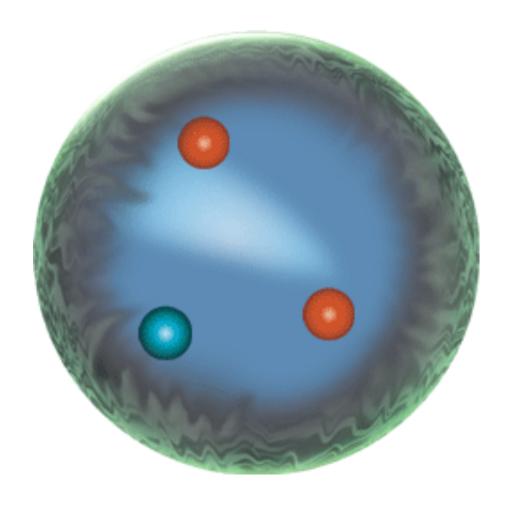
Problems of inconsistency

• Introducing higher Fock components

$$|\Psi\rangle = \Psi_{3q}|qqq\rangle + \Psi_{3qq\bar{q}}|3qq\bar{q}\rangle$$

Consistency ok

But: how many components?

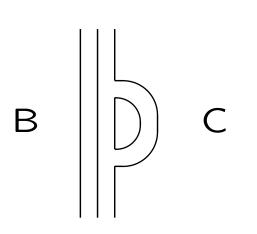

Necessity of unquenching the quark model

Exotic Degrees of Freedom

- Quark-antiquark pairs: pentaquarks, meson cloud models (Thomas, Speth, Kaiser, Weise, Oset, Brodsky, Ma, Isgur, ...)
- Higher-Fock components (Riska, Zou, ...)

$$\psi = \psi(q^3) + \alpha \psi(q^3 - q\bar{q})$$

Extend the CQM to include the effects of quark-antiquark pairs in a general and consistent way



Problems

- 1) find a quark pair creation mechanism QCD inspired
- 2) implementation of this mechanism at the quark level but in such a way to

do not destroy the good CQMs results

Unquenched Quark Model

Strange quark-antiquark pairs in the proton with h.o. wave functions

Tornqvist & Zenczykowski (1984) Geiger & Isgur, PRD 55, 299 (1997) Isgur, NPA 623, 37 (1997)

- Pair-creation operator with ³P₀ quantum numbers of vacuum
- Important: sum over a large tower of intermediate states to preserve the phenomenological success of CQM

Geiger & Isgur, PRD 55, 299 (1997)

It would be desirable to devise tests of the mechanisms underlying the delicate cancellations which conspire to hide the effects of the sea in the picture presented here. It also seems very worthwhile to extend this calculation to uu and dd loops. Such an extension could reveal the origin of the observed violations [38] of the Gottfried sum rule [39] and also complete our understanding of the origin of the spin crisis. From our previous calculations [4], the effects of "un-

Extensions

Bijker & Santopinto, PRC 80, 065210 (2009)

- Any initial baryon or baryon resonance
- Any flavor of the quark-antiquark pair
- Any model of baryons and mesons

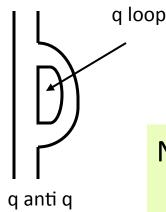
Formalism

$$|\psi_A\rangle = \mathcal{N}\left\{|A\rangle + \sum_{BClJ} \int d\vec{K} \, k^2 dk \, |BC\vec{K}k \, lJ\rangle \frac{\langle BC\vec{K}k \, lJ \, |T^{\dagger}| \, A\rangle}{M_A - E_B - E_C}\right\}$$

Three-quark configuration SU(3) flavor symmetry

Five-quark component Isospin symmetry

Pair-creation operator: $T^{\dagger} = T^{\dagger}(^{3}P_{0})$ L=S=1, J=0, color singlet, flavor singlet

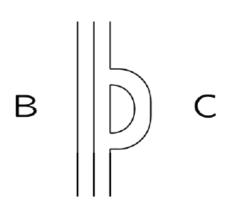

Unquenched Quark Model

- Harmonic oscillator quark model
- Sum over intermediate meson-baryon states includes for each oscillator shell all possible spin-flavor states
- Oscillator size parameters taken for baryons and mesons taken from literature (Capstick, Isgur, Karl)
- Smearing of the pair-creation vertex (Geiger, Isgur)
- Strength of ³P₀ coupling taken from literature on strong decays of baryons (Capstick, Roberts)
- No attempt to optimize the parameters

Unquenching the quark model

Mesons

P. Geiger, N. Isgur, Phys. Rev. D41, 1595 (1990) D44, 799 (1991)



Pair-creation operator with 3P0 quantum number

Note:

- sum over complete set of intermediate states necessary for preserving the OZI rule
- linear interaction is preserved after renormalization of the string constant

Unquenched Quark Model

Strange quark-antiquark pairs in the proton with h.o. wave functions

Torngvist & Zenczykowski (1984) Geiger & Isgur, PRD 55, 299 (1997) Isgur, NPA 623, 37 (1997)

 Pair-creation operator with ³P₀ quantum numbers of vacuum

The good magnetic moment results of the CQM are preserved by the UCQM

Bijker, Santopinto, Phys. Rev. C80:065210, 2009.

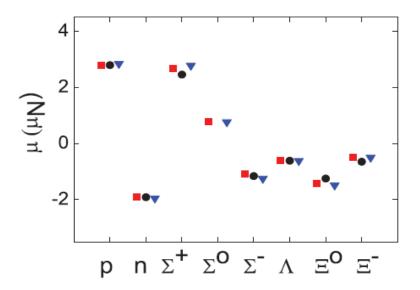
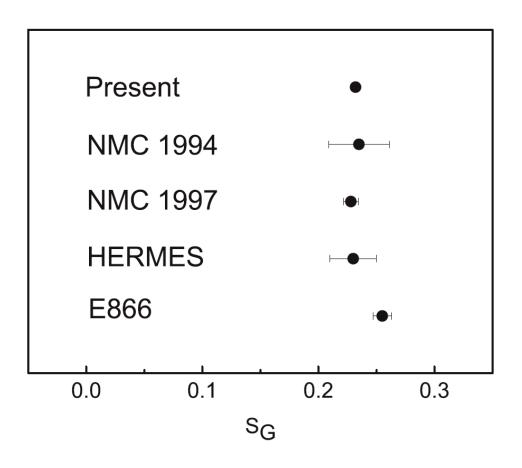


FIG. 3. (Color online) Magnetic moments of octet baryons: experimental values from the Particle Data Group [34] (circles), CQM (squares), and unquenched quark model (triangles).

Flavor Asymmetry

Gottfried sum rule

$$S_G = \int_0^1 dx \frac{F_{2p}(x) - F_{2n}(x)}{x} = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \left[\bar{d}(x) - \bar{u}(x) \right]$$


$$S_G \neq \frac{1}{3} \Rightarrow N_{\bar{d}} \neq N_{\bar{u}}$$

$$S_G = 0.2281 \pm 0.0065$$

$$\int_0^1 dx \left[\bar{d}(x) - \bar{u}(x) \right]$$
$$= 0.16 \pm 0.01$$

Proton Flavor asymmetry

Santopinto, Bijker, PRC 82,062202(R) (2010)

Flavor asymmetry of the octect baryons in the UCQM

Santopinto, Bijker, PRC 82,062202(R) (2010)

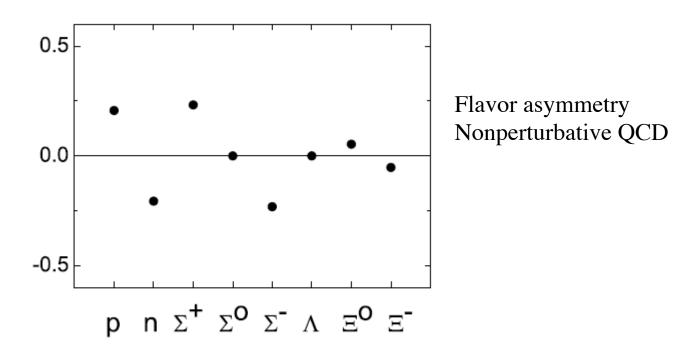


Figure 1. Flavor asymmetry of octet baryons

Pauli blocking (Field & Feynman, 1977) too small Pion dressing of the nucleon (Thomas et al., 1983) Meson cloud models

Flavor asymmetries of octect baryons

Santopinto, Bijker, PRC 82,062202(R) (2010)


TABLE III. Relative flavor asymmetries of octet baryons.

Model	$\mathcal{A}(\Sigma^+)/\mathcal{A}(p)$	$\mathcal{A}(\Xi^0)/\mathcal{A}(p)$	Ref.
Unquenched CQM	0.833	-0.005	present
Chiral QM	2	1	Eichen
Balance model	3.083	2.075	
Octet couplings	0.353	-0.647	YJ Zhang
			Alberg

$$\Sigma^{\pm} p \rightarrow \ell^{+} \ell^{-} + X$$
 (e.g., at CERN).

3. Proton Spin Crisis

1980's

Naive parton model 3 valence quarks

$$\frac{1}{2} = \frac{1}{2}(\Delta u + \Delta d)$$

 $\Delta d = -0.427$

 $\Delta s = -0.085$

0.842

1990's

sea quarks and gluons

 $\Delta u + \Delta d + \Delta s$) $+ \Delta G + \Delta L$

QCD: contributions from

.. and orbital angular

2000's

$$= 0.330 \pm 0.039$$

 $\Delta \Sigma = 0.330 \pm 0.039$ HERMES, PRD 75, 012007 (2007) COMPASS, PLB 647, 8 (2007)

momentum

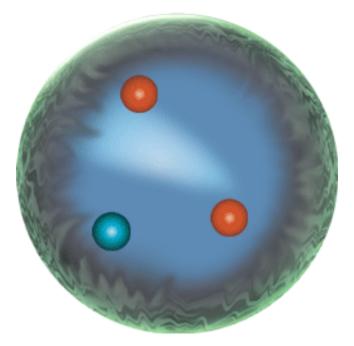
Genova 2012

 $\Delta u = 1$

Proton Spin

- COMPASS@CERN: Gluon contribution is small (sign undetermined)
- Unquenched quark model

Ageev et al., PLB 633, 25 (2006) Platchkov, NPA 790, 58 (2007)


		CQM	Unquenched QM			
			Valence	Sea	Total	
\overline{p}	ΔΣ	1	0.378	0.298	0.676	
	$2\Delta L$	0	0.000	0.324	0.324	
	$2\Delta J$	1	0.378	0.622	1.000	

- More than half of the proton spin from the sea!
- Orbital angular momentum

Suggested by Myhrer & Thomas, 2008, but not explicitly calculated

4. Strangeness in the Proton

- The strange (anti)quarks come uniquely from the sea: there is no contamination from up or down valence quarks
- The strangeness distribution is a very sensitive probe of the nucleon's properties
- Flavor content of form factors
- New data from Parity Violating Electron Scattering experiments: SAMPLE, HAPPEX, PVA4 and GO Collaborations

"There is no excellent beauty that hath not some strangeness in the proportion" (Francis Bacon, 1561-1626)

Genova 2012 100

Quark Form Factors

• Charge symmetry $G^{u,p} = G^{d,n} \equiv G^u$ $G^{d,p} = G^{u,n} \equiv G^d$

$$G^{u,p} = G^{d,n} \equiv G^u$$
 $G^{d,p} = G^{u,n} \equiv G^o$
 $G^{s,p} = G^{s,n} \equiv G^s$

Quark form factors

$$G^u = \left(3 - 4\sin^2\Theta_W\right)G^{\gamma,p} - G^{Z,p}$$
 $G^d = \left(2 - 4\sin^2\Theta_W\right)G^{\gamma,p} + G^{\gamma,n} - G^{Z,p}$
 $G^s = \left(1 - 4\sin^2\Theta_W\right)G^{\gamma,p} - G^{\gamma,n} - G^{Z,p}$

Kaplan & Manohar, NPB 310, 527 (1988) Musolf et al, Phys. Rep. 239, 1 (1994)

Static Properties

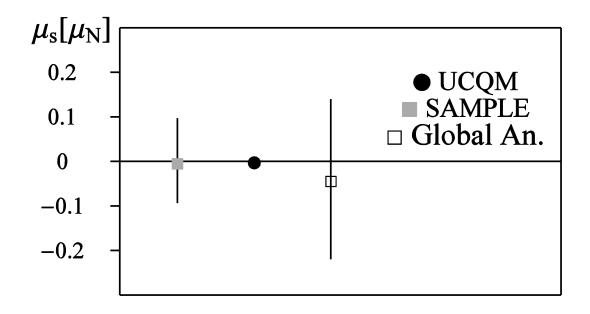
$$G_E(0) = e$$

Electric charge

$$G_M(0) = \mu$$

Magnetic moment

$$\left| \left\langle r^2 \right\rangle_E = -6 \left. \frac{dG_E}{dQ^2} \right|_{Q^2 = 0}$$

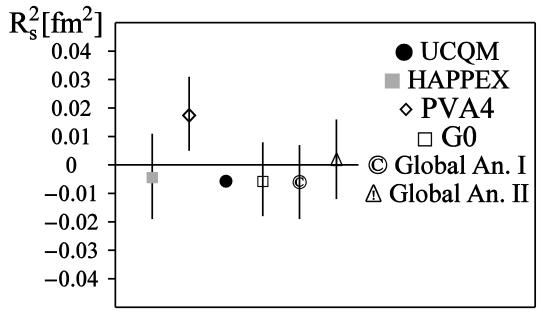

Charge radius

$$\left\langle r^2 \right\rangle_M = -\frac{6}{\mu} \left. \frac{dG_M}{dQ^2} \right|_{Q^2 = 0}$$

Magnetic radius

Strange Magnetic Moment

$$\vec{\mu}_s = \sum_i \mu_{i,s} \left[2\vec{s}(q_i) + \vec{\ell}(q_i) - 2\vec{s}(\bar{q}_i) - \vec{\ell}(\bar{q}_i) \right]$$

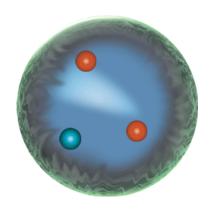


Jacopo Ferretti, Ph.D. Thesis, 2011 Bijker, Ferretti, Santopinto, Phys. Rev. C **85**, **035204** (**2012**)

Genova 2012 103

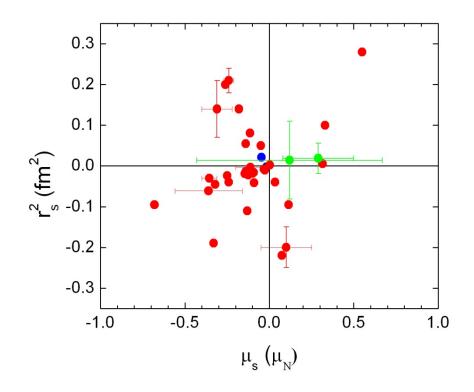
Strange Radius

$$R_s^2 = \sum_{i=1}^5 e_{i,s} (\vec{r}_i - \vec{R}_{CM})^2$$



Jacopo Ferretti, Ph.D. Thesis, 2011

Bijker, Ferretti, Santopinto, Phys. Rev. C 85, 035204 (2012)


Strange Proton

 Strange radius and magnetic moment of the proton

- Theory
- Lattice QCD
- Global analysis PVES
- Unquenched QM

$$\mu_s = -6 \cdot 10^{-4} (\mu_N)$$

 $\langle r^2 \rangle_s = -4 \cdot 10^{-3} (\text{fm}^2)$

Unquenching the quark model for the MESONS & Why Unquenching?

Santopinto, Galatà, Ferretti, Vassallo

UQM: Meson Self Energies & couple channels

Hamiltonian:

$$H = H_0 + V$$

- H₀ act only in the bare meson space and it is chosen the Godfray and Isgur model
- V couples |A> to the continuum |BC>
- Dispersive equation

$$\Sigma(E_a) = \sum_{BC} \int_0^\infty q^2 dq \, \frac{\left| V_{a,bc}(q) \right|^2}{E_a - E_{bc}}$$

- from non-relativistic Schrödinger equation
- Bare energy E_a (H_0 eigenvalue) satisfies:

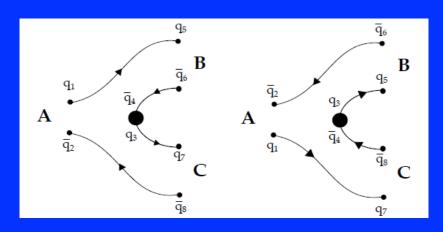
$$M_a = E_a + \Sigma(E_a)$$

M_a = physical mass of meson A

 $\Sigma(E_a)$ = self energy of meson A

UQM: Meson Self Energies -- UQM I

• Coupling $V_{a,bc}(q)$ in $\Sigma(E_a)$ calculated as:


Sum over a complete set of accesibl ${
m SU}_{
m f}(5) \otimes {
m SU}_{
m spin}(2)$

$$V_{a,bc}(q) = \sum_{\ell J} \langle BC\vec{q}\,\ell J | T^{\dagger} | A \rangle$$

ground state (1S) mesons

Coupling calculated in the ³P₀ model

• Two possible diagrams contribute:

Self energy in the UQM:

$$\Sigma(E_a) = \sum_{BC\ell J} \int_0^\infty q^2 dq \; \frac{\left| \langle BC\vec{q}\,\ell J | \, T^\dagger \, |A\rangle \right|^2}{E_a - E_b - E_c}$$

Godrey and Isgur model as bare mass

- Bare energies E_a calculated in the relativized G.I.Model for mesons
- Hamiltonian:

$$H = \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + V_{\text{conf}} + V_{\text{hyp}} + V_{\text{SO}}$$

Confining potential:

$$V_{\text{conf}} = -\left(\frac{3}{4}c + \frac{3}{4}br - \frac{\alpha_s(r)}{r}\right)\vec{F}_1 \cdot \vec{F}_2$$

Hyperfine interaction:

$$V_{\text{hyp}} = -\frac{\alpha_s(r)}{m_1 m_2} \left[\frac{8\pi}{3} \vec{S}_1 \cdot \vec{S}_2 \ \delta^3(\vec{r}) + \frac{1}{r^3} \left(\frac{3 \ \vec{S}_1 \cdot \vec{r} \ \vec{S}_2 \cdot \vec{r}}{r^2} - \vec{S}_1 \cdot \vec{S}_2 \right) \right] \ \vec{F}_i \cdot \vec{F}_j$$

Spin-orb.:

$$V_{\text{SO,cm}} = -\frac{\alpha_s(r)}{r^3} \left(\frac{1}{m_i} + \frac{1}{m_j} \right)$$

$$\left(\frac{\vec{S}_i}{m_i} + \frac{\vec{S}_j}{m_j} \right) \cdot \vec{L} \quad \vec{F}_i \cdot \vec{F}_j$$

$$V_{\text{so,cm}} = -\frac{\alpha_s(r)}{r^3} \left(\frac{1}{m_i} + \frac{1}{m_j} \right) \\ \left(\frac{\vec{S}_i}{m_i} + \frac{\vec{S}_j}{m_j} \right) \cdot \vec{L} \quad \vec{F}_i \cdot \vec{F}_j$$

$$V_{\text{so,tp}} = -\frac{1}{2r} \frac{\partial H_{ij}^{conf}}{\partial r} \left(\frac{\vec{S}_i}{m_i^2} + \frac{\vec{S}_j}{m_j^2} \right) \cdot \vec{L}$$

UQM or couple channel Quark Model

Parameters of the relativized QM fitted to

$$M_a = E_a + \Sigma(E_a)$$

Recursive fitting procedure

 M_a = calculated physical masses of q bar-q mesons → reproduce experimental spectrum [PDG]

Intrinsic error of QM/UQM calculations: 30-50 MeV

UQM: charmonium with self-energy corr.

Parameters of the UQM (³P₀ vertices)

Parameter	Value
γ_0	0.510
α	$0.500~{ m GeV}$
r_q	0.335 fm
m_n	$0.330~{ m GeV}$
m_s	0.550 GeV
m_c	1.50 GeV

fitted to:

State	DD	DD^*	D* D*	D_sD_s	$D_sD_s^*$	$D_s^*D_s^*$	Total	Exp.
$\eta_c(3^1S_0)$	_	38.8	52.3	_	_	_	91.1	_
$\Psi(4040)(3^3S_1)$	0.2	37.2	39.6	3.3	_	_	80.3	80 ± 10
	_		_		_	_	64.6	_
	97.7	_	_	_	_	_	97.7	_
	27.2		_	_	_	_	37.0	_
$\Psi(3770)(1^3D_1)$						_	27.7	27.2 ± 1.0
	1.7	_	_	_	_	_	1.7	_
		62.7	46.4	_	8.8	_	117.9	_
$\Psi(4160)(2^3D_1)$			39.4	2.1	5.6	_	58.7	103 ± 8
$c\bar{c}(2^3D_2)$			49.3	_	11.3	_	104.1	_
$c\bar{c}(2^3D_3)$	17.2	58.3	48.1	3.6	2.6	_	129.8	_

UQM: charmonium spectrum with self-energy corr. Ferretti, Galata' and Santopinto, Phys. Rev. C 88, 015207 (2013)

State	J^{PC}	DĐ	<i>D̄D*</i> <i>DĐ</i> *	Ū*D*	$D_s \bar{D}_s$	$D_s \bar{D}_s^* \\ \bar{D}_s D_s^*$	$D_s^* \bar{D}_s^*$	$\eta_c\eta_c$	$\eta_c J/\Psi$	$J/\Psi J/\Psi$	$\Sigma(E_a)$	E_a	M_a	$M_{exp.}$				
$\begin{array}{c} \eta_c(1^1S_0) \\ J/\Psi(1^3S_1) \\ \eta_c(2^1S_0) \\ \Psi(2^3S_1) \\ h_c(1^1P_1) \\ \chi_{c0}(1^3P_0) \\ \chi_{c1}(1^3P_1) \\ \chi_{c2}(1^3P_2) \\ h_c(2^1P_1) \\ \chi_{c0}(2^3P_0) \\ \chi_{c1}(2^3P_1) \\ \chi_{c2}(2^3P_2) \\ c\bar{c}(1^1D_2) \\ \Psi(3770)(1^3D_1) \\ c\bar{c}(1^3D_2) \end{array}$	0 ⁻⁺ 1 0 ⁻⁺ 1 1 ⁺⁻ 0 ⁺⁺ 1 ⁺⁺ 2 ⁺⁺ 1 ⁺⁻ 0 ⁺⁺ 1 ⁺⁺ 2 ⁺⁺ 2 ⁻⁺ 1 2	-17 - -23	-34 -27 -52 -42 -59 - -54 -40 -55 - -30 -42 -99 -40 -106	-31 -41 -54 -48 -72 -53 -57 -76 -86 -66 -54 -62 -84 -61		-8 -6 -9 -7 -11 - -9 -8 -12 - -11 -8 -12 -2 -11	-8 -10 -8 -10 -10 -15 -11 -10 -8 -13 -9 -10 -16 -11	- - - 0 - 0 - 0	 -2 -1 -2 -1 	-2 -1 -1 -3 -2 -2 -2 -1 -1 -1	-83 -96 -111 -134 -130 -125 -129 -137 -152 -124 -117 -121	3233 3699 3774 3631 3555 3623 3664 4029 3987 4025	3430 3494 3527 3877	3097 3637 3686 3525 3415 3511 3556 - - 3872				
$c\bar{c}(1^3D_3)$	3	-25 72	-49	-88	-4	-8	-10		(Ge 4 3 2 2		_ =	= - -		X(38	372)	_	 _	

UQM: charmonium with self-energy corr.

Ferretti, Galata' and Santopinto, Phys. Rev. C 88

- Experimental mass: 3871.68 ± 0.17 MeV [PDG]
- Several predictions for X(3872)'s mass. Here: c bar-c + continuum effects

$\chi_{c1}(2^3P_1)$'s m	Reference	
3908		This paper
4007.5		° [20]
3990	. [1]	
3920.5		
3896	[3]	1261

- [1] Ferretti, Galata' and Santopinto, Phys. Rev. C 88, 015207 (2013);
- [2] Eichten et al., Phys. Rev. D 69,(2004)
- [3] Kalashnikova, Phys. Rev. D 72, 034010 (2005)
- [4] Eichten et al., Phys. Rev. D 73, 014014 (2008)
- [5] Pennington and Wilson, Phys. Rev. D 76, 077502 (2007)

Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson-meson continuum Ferretti, Galatà, Santopinto, Phys. Rev. C88 (2013) 1, 015207

- UCQM results used to study the problem of the X(3872) mass, meson with $J^{PC} = 1^{++}$, $2^{3}P_{1}$ quantum numbers
- Experimental mass: 3871.68 ± 0.17 MeV [PDG]
- X(3872) very close to D bar-D* decay threshold
- Possible importance of continuum coupling effects?
- Several interpretations: pure c bar-c
 - D bar-D* molecule
 - tetraquark
- c bar-c + continuum effects
 nessary to study strong and radiative decays to uderstand
 the situation

Radiative decays

Ferretti, Galatà, Santopinto, Phys. Rev. D90 (2014) 5, 054010

Transition	$E_{\gamma} \; [{ m MeV}]$	$\Gamma_{c\bar{c}} \; [{ m KeV}]$ present paper				$\Gamma_{c\bar{c}+D\bar{D}^*}$ [KeV] Ref. [60]	$\Gamma_{exp.}$ [KeV] PDG [43]
$X(3872) \rightarrow J/\Psi \gamma$	697	11	8	64 - 190	125 - 251	2 - 17	pprox 7
$X(3872) \rightarrow \Psi(2S)\gamma$	181	70	0.03			7 - 59	pprox 36
$X(3872) \rightarrow \Psi(3770)\gamma$	101	4.0	0				
$X(3872) \to \Psi_2(1^3 D_2) \gamma$	34	0.35	0				

[7] Swanson: molecular interpretation

[9] Oset: moleacular interpretation

[59]-[60] Faessler: molecular; ccbar+molecular

The Molecular model does not predict radiative decays into $\Psi(3770)$ and $\Psi_2(1^3D_2)$ - \rightarrow Possible way to distinguish between the two interpretations

Quasi two-body decay $X(3872) \rightarrow D^0(\bar{D}^0\pi^0)_{\bar{D}^{0*}}$

Ferretti, Galatà, Santopinto, Phys. Rev. D90 (2014) 5, 054010

$$\Gamma_{\bar{D}^{0*}} < 2.1 \text{ MeV}$$
 $\Gamma_{\bar{D}^{0*}} = 0.1 \text{ MeV}$

$$\Gamma_{X(3872)\to D(\bar{D}\pi)_{\bar{D}^*}} = 0.50 - 0.62 \text{ MeV} , \quad M_{X(3872)} = 3871.85 \text{ MeV}$$

$$\Gamma_{X(3872)\to D(\bar{D}\pi)_{\bar{D}^*}} = 0.54 - 0.75~{\rm MeV}~,~~M_{X(3872)} = 3871.95~{\rm MeV}$$

Experimental results:

$$\Gamma_{X(3872)\to D^0\bar{D}^{0*}} = 3.9^{+2.8+0.2}_{-1.4-1.1} \text{ MeV}$$

PDG Aushev et al. [Belle Coll.], Phys. Rev. D 81, 031103 (2010)

$$\Gamma_{X(3872)\to D^0\bar{D}^{0*}} = 3.0^{+1.9}_{-1.4} \pm 0.9 \text{ MeV}$$

PDG Aubert et al. [BABAR Coll.], Phys. Rev. D 77011102(2008)

- Prompt production from CDF collaboration in highenergy hadron collisions incompatible with a molecular interpretation
- meson-meson molecule: large (a few fm) and fragile
- See: Bignamini et al., Phys. Rev. Lett. 103, 162001 (2009); Bauer,
 Int. J. Mod. Phys. A 20, 3765 (2005)

Bottomonium spectrum (in a couple channel calculations)

Ferretti, Santopintio, Phys.Rev. D90, 094022 (2014)

Parameters of the UQM (³P₀ vertices)

Parameter	Value
γ_0	0.732
α	$0.500~{ m GeV}$
r_q	0.335 fm
m_n	$0.330~{ m GeV}$
m_s	$0.550~{ m GeV}$
m_c	1.50 GeV
m_b	4.70 GeV

Pair-creation strength γ₀ fitted to:

$$\Gamma_{\Upsilon(4S)\to B\bar{B}} = 2\Phi_{A\to BC} \left| \langle BC\vec{q}_0 \, \ell J | T^{\dagger} \, | A \rangle \right|^2$$

$$= 2\Phi_{\Upsilon(4S)\to B\bar{B}}$$

$$\left| \langle B\bar{B}\vec{q}_0 \, 11 | T^{\dagger} \, | \Upsilon(4S) \rangle \right|^2$$

$$= 21 \text{ MeV} ,$$

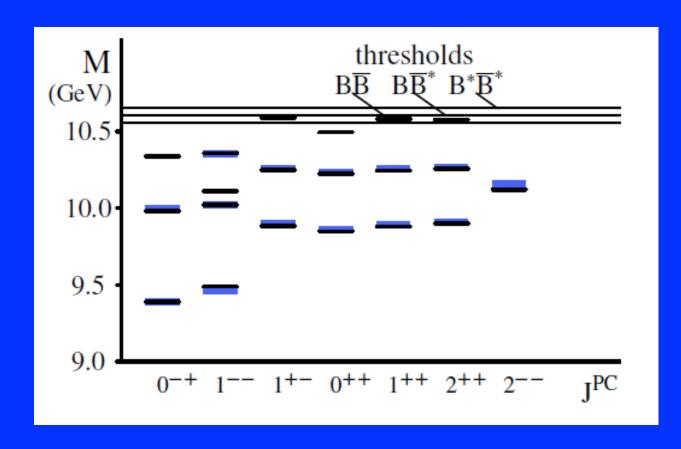
Bottomonium Strong Decays

Ferretti, Santopinto, Phys.Rev. D90 094022 (2014)

• Two-body strong decays. Results:

State	Mass [MeV]	J^{PC}	$B\overline{B}$	<i>BB</i> * <i>BB</i> *	B*B*	B_sB_s	$B_s B_s^* \\ \bar{B}_s B_s^*$	$B_s^*B_s^*$
$\Upsilon(4^3S_1)$	10.595 $10579.4 \pm 1.2^{\dagger}$	1	21	_	_	_	_	_
$\chi_{b2}(2^3F_2)$	10585	2^{++}	34	_	_	_	_	_
$\Upsilon(3^3D_1)$	10661	1	23	4	15	_	_	_
$\Upsilon_2(3^3D_2)$	10667	$2^{}$	_	37	30	_	_	_
$\Upsilon_{2}(3^{1}D_{2})$	10668	2^{-+}	_	55	57	_	_	_
$\Upsilon_3(3^3D_3)$	10673	3	15	56	113	_	_	_
$\chi_{b0}(4^3P_0)$	10726	0^{++}	26	_	24	_	_	_
$\Upsilon_3(2^3G_3)$	10727	$3^{}$	3	43	39	_	_	_
$\chi_{b1}(4^3P_1)$	10740	1++	_	20	1	_	_	_
$h_b(4^1P_1)$	10744	1+-	_	33	5	_	_	_
$\chi_{b2}(4^3P_2)$	10751	2^{++}	10	28	5	1	_	_
$\chi_{b2}(3^3F_2)$	10800	2^{++}	5	26	53	2	2	_
$\Upsilon_3(3^1F_3)$	10803	3^{+-}	_	28	46	_	3	_
$\Upsilon(10860)$	$10876 \pm 11^{\dagger}$	1	1	21	45	0	3	1
$\Upsilon_{2}(4^{3}D_{2})$	10876	$2^{}$	_	28	36	_	4	4
$\Upsilon_2(4^1D_2)$	10877	2^{-+}	_	22	37	_	4	3
$\Upsilon_3(4^3D_3)$	10881	3	1	4	49	0	1	2
$\Upsilon_3(3^3G_3)$	10926	3	7	0	13	2	0	5
$\Upsilon(11020)$	$11019 \pm 8^{\dagger}$	1	0	8	26	0	0	2
,								

Bottomonium spectrum (in couple channel calculations)


Ferretti, Santopintio, Phys.Rev. D90, 094022 (2014)

State	J^{PC}	$B\overline{B}$	<i>BB</i> * <i>BB</i> *	B^*B^*	$B_s \bar{B}_s$	$B_s \bar{B}_s^* \\ \bar{B}_s B_s^*$	$B_s^* \bar{B}_s^*$	B_cB_c	$B_c B_c^* \\ \bar{B}_c B_c^*$	$B_c^*B_c^*$	$\eta_b\eta_b$	$\eta_b \Upsilon$	ΥΥ	$\Sigma(E_a)$	E_a	M_a	M_{exp} .
$\eta_b(1^1S_0)$	0_{-+}	_	-26	-26	_	-5	-5	_	-1	-1	_	_	0	-64	9455	9391	9391
$\Upsilon(1^3S_1)$	1	-5	-19	-32	-1	-4	-7	0	0	-1	_	0	_	-69	9558	9489	9460
$\eta_b(2^1S_0)$	0_{-+}	_	-43	-41	_	-8	-7	_	-1	-1	_	_	0	-101	10081	9980	9999
$\Upsilon(2^3S_1)$	1	-8	-31	-51	-2	-6	-9	0	0	-1	_	0	_	-108	10130	10022	10023
$\eta_b(3^1S_0)$		_	-59	-52	_	-8	-8	_	-1	-1	_	_	0	-129	10467	10338	_
$\Upsilon(3^3S_1)$		-14	-45	-68	-2	-6	-10	0	0	-1	_	0	_	-146	10504	10358	10355
$h_b(1^1P_1)$		_	-49	-47	_	-9	-8	_	-1	-1	_	0	_	-115	10000	9885	9899
$\chi_{b0}(1^3P_0)$			_	-69	-3	_	-13	0	_	-1	0	_	0	-108	9957	9849	9859
$\chi_{b1}(1^3P_1)$	1++	_	-46	-49	_	-8	-9	_	-1	-1	_	_	0	-114	9993	9879	9893
$\chi_{b2}(1^3P_2)$	2^{++}	-11	-32	-55	-2	-6	-9	0	-1	-1	0	_	0	-117	10017	9900	9912
$h_b(2^1P_1)$			-66	-59	_	-10	-9	_	-1	-1	_	0	_	-146	10393	10247	10260
$\chi_{b0}(2^3P_0)$			_	-85	-4	_	-14	0	_	-1	0	_	0	-137	10363	10226	10233
$\chi_{b1}(2^3P_1)$			-63	-60	_	-9	-10	_	-1	-1	_	_	0	-144	10388	10244	10255
$\chi_{b2}(2^3P_2)$	2^{++}	-16	-42	-72	-2	-6	-10	0	0	-1	0	_	0	-149	10406	10257	10269
$h_b(3^1P_1)$			-18	-73	_	-11	-10	_	-1	-1	_	0	_	-114	10705	10591	_
$\chi_{b0}(3^3P_0)$			_	-160	-6	_	-15	0	_	-1	0	_	0	-186	10681	10495	_
$\chi_{b1}(3^3P_1)$	1++	_	-25	-74	_	-11	-10	_	0	-1	_	_	0	-121	10701	10580	_
$\chi_{b2}(3^3P_2)$			-16	-79	-3	-8	-12	0	0	-1	0	_	0	-138	10716	10578	_
$\Upsilon_2(1^1D_2)$			-72	-66	_	-11	-10	_	-1	-1	_	_	0	-161	10283	10122	_
$\Upsilon(1^3D_1)$			-22	-90	-3	-3	-16	0	0	-1	_	0	_	-159	10271	10112	_
$\Upsilon_{2}(1^{3}D_{2})$			-70	-68	_	-10	-11	_	-1	-1	_	0	_	-161	10282	10121	10164
$\Upsilon_{3}(1^{3}D_{3})$				-78	-3	-8	-11	0	-1	-1	_	0	_	-163	10290	10127	_
-0(0)																	

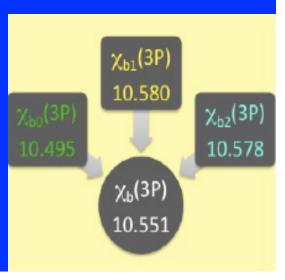
Bottomonium

Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022

Results:

Couple Channels corrections to Bottomonium, the $\chi_h(3P)$ system

Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022

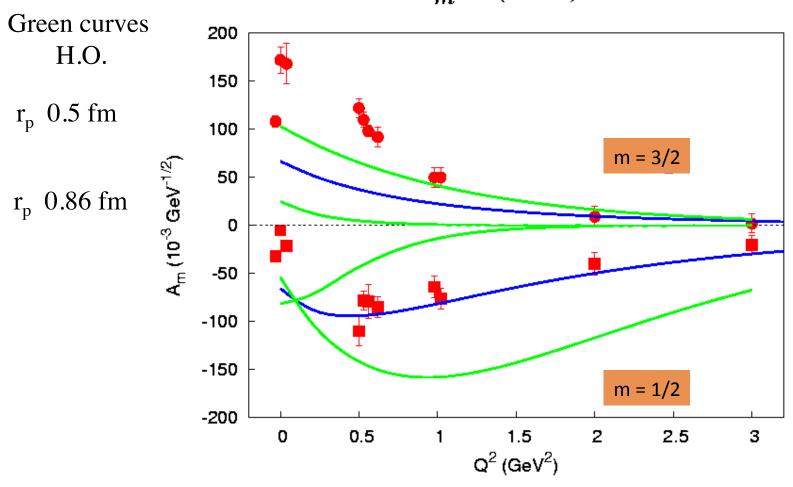

- Results used to study some properties of the $\chi_b(3P)$ system, meson multiplet with N=3, L=1 quantum numbers
- $\chi_b(3P)$ states close to first open bottom decay thresholds
- Possible importance of continuum coupling effects?
- Pure c bar-c and c bar-c + continuum effects interpretations
- Necessary to study decays (strong, e.m., hadronic, ...) to confirm one interpretation

•

Couple Channels corrections to Bottomonium, the $\chi_h(3P)$ system

Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022

- Some experimental results for the mass barycenter of the system:
- $M[\chi_b(3P)] = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \text{ GeV}$
- Aad et al. [ATLAS Coll.], Phys. Rev. Lett. 108, 152001 (2012)
- $M[\chi_b(3P)] = 10.551 \pm 0.014 \text{ (stat.)} \pm 0.017 \text{ (syst.)} \text{ GeV}$
- Abazov et al. [D0 Coll.], Phys. Rev. D 86, 031103 (2012)
- Mass barycenter in the UQM:



Main points

- Unquenching quark model:we have constructed the formalism in an explicit way, also thanks to group theory tecniques. Now, it can be applied to any quark model.
- We think we have maked up the problems of quark models adding the coupling with the continuum, thus opening the possibilty of many, many applications

• Future: application to open problems in hadron structure and spectroscopy: helicity amplitudes, strong decays, and so on.

$A_m^p\ N(1520)D13$

Blue curves hCQM r_p 0.5 fm

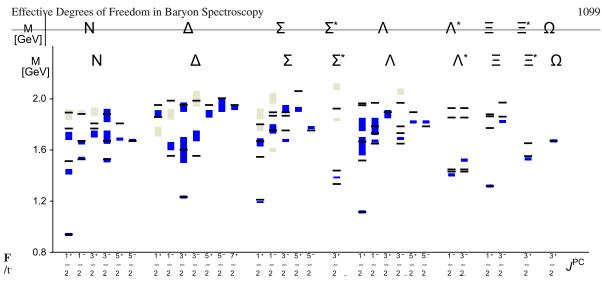


Fig. 1 The calculated masses (black lines) from Refs. [2,6] are compared to three-/four-star resonances (dark boxes) and one-/two-star resonances (pale boxes) from PDG [38]. We include theoretical predictions up to an energy of 2 GeV_{\pm} and one-/two-star resonances (pale boxes) from PDG [38]. We include theoretical predictions up to an energy of 2 GeV_{\pm} and 2 GeV_{\pm} are 2 GeV_{\pm} .

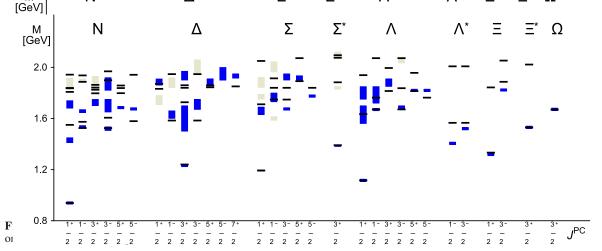


Fig. 2 The hypercentral QM results (black lines) of Refs. [40,41] are compared to three-/four-star resonances (dark boxes) and one-/two-star resonances (pale boxes) from PDG [38]