Докладчик: Татьяна Полевич

множественности – надежность и достоверность данных

фотонейтронов по

активности и разделения

ядра ¹⁸¹Та методами наведенной

Исследование фоторасщепления

План выступления

- Введение. Эксперименты по фотоядерным реакциям
- Экспериментальные данные
- Новый критерий надежности
- Проверка данных
- Новый экспериментально-теоретический подход
- Сравнение оцененных данных с экспериментальными
- Выводы

ЭКСПЕРИМЕНТЫ

Получение фотонов:

- Квазимоноэнергетические аннигиляционные фотоны
- Тормозные фотоны

Определение множественности нейтронов:

- Метод кольцевых отношений (Ливермор, США [2])
- Энергетическая калибровка
 эффективности детектора (Сакле, Франция [1])
- Метод наведенной активности (Москва, Россия [10]; Бразилия [9])

[1] R.Bergere, H.Beil, A.Veyssiere. Photoneutron Cross Sections of La, Tb, Ho and Ta. Nucl.Phys., (1968).
 [2] R.L.Bramblett, J.T.Caldwell, G.F.Auchampaugh, S.C.Fultz. Photoneutron Cross Sections of ¹⁸¹Ta and ¹⁶⁵Ho. (1963).

[9] E.Wolynec, M.N.Martins. Discrepancies between Saclay and Livermore Photoneutron Cross Sections. (1987).

[10] Б.С.Ишханов, С.Ю.Трощиев. Дипольный гигантский резонанс в тяжелых деформированных ядрах. (2011).

Проблема: расхождения данных

$$\sigma(\gamma, xn) = \sigma(\gamma, n) + 2\sigma(\gamma, 2n) + 3\sigma(\gamma, 3n) + \dots$$

σ ^{инт} _C (γ,n)/σ ^{инт} _Л (γ,n)	1.68 (2180/1300)
σ ^{инт} _C (γ,2n)/σ ^{инт} _Л (γ,2n)	0.89 (790/881)
σ ^{инт} _C (γ,xn)/σ ^{инт} _Л (γ,xn)	1.22 (3760/3062)

Данные сильно различаются, в чем причина? Какие из них верные?

Проблема: расхождения данных

Саклэ: переброс нейтронов из реакции (ү, 2n) в (ү, n)

Проблема сечения (ү, n) Ливермора

- Саклэ [1]
- Ливермор [2]

Сечение Ливермора (ү,n) резко спадает после порога реакции (ү, 2n), малая ширина резонанса.

Переходные функции множественности как новый критерий надежности данных

$$F_{1}^{\text{reop}} = \sigma^{\text{reop}} (\gamma, n) / \sigma^{\text{reop}} (\gamma, xn)$$

$$F_{2}^{\text{reop}} = \sigma^{\text{reop}} (\gamma, 2n) / \sigma^{\text{reop}} (\gamma, xn)$$

$$F_{2}^{\text{reop}} = \sigma^{\text{reop}} (\gamma, 3n) / \sigma^{\text{reop}} (\gamma, xn)$$

 $F_2 = \frac{\sigma(\gamma, 2n)}{\sigma(\gamma, Xn)} = \frac{\sigma(\gamma, 2n)}{\sigma(\gamma, n) + 2\sigma(\gamma, 2n) + 3\sigma(\gamma, 3n) + \cdots}$

Преимущества функции F₂:

- физична при F₂≤0,5
- после порога (γ,2n) плавно возрастает до 0,5 и уменьшается после порога (γ,3n)
- Саклэ [1]
- Ливермор [2]
- Теория [10, 11]

Переходная функция множественности F₂

- Саклэ [1]
- Ливермор [2]
- Теория [10, 11]

Ливермор: сечение (у,2n) переопределено Саклэ: сечение (у,2n) недоопределено

Вопрос: что же делать?

Новый экспериментально-теоретичский подход

$$\sigma^{\text{оцен}}(\gamma, n) = F_1^{\text{теор}} \sigma^{\text{эксп}}(\gamma, xn) = \frac{\sigma^{\text{теор}}(\gamma, n)}{\sigma^{\text{теор}}(\gamma, xn)} \frac{\sigma^{\text{эксп}}(\gamma, xn)}{\sigma^{\text{теор}}(\gamma, xn)}$$

$$\sigma^{\text{oueh}}(\gamma, 2n) = F_2^{\text{teop}} \sigma^{\text{эксп}}(\gamma, xn) = \frac{\sigma^{\text{teop}}(\gamma, 2n)}{\sigma^{\text{teop}}(\gamma, xn)} \frac{\sigma^{\text{эксп}}(\gamma, xn)}{\sigma^{\text{teop}}(\gamma, xn)}$$

$$\sigma^{\text{oueh}}(\gamma, 3n) = F_3^{\text{teop}} \sigma^{\text{эксп}}(\gamma, xn) = \frac{\sigma^{\text{teop}}(\gamma, 3n)}{\sigma^{\text{teop}}(\gamma, xn)} \underline{\sigma^{\text{эксп}}(\gamma, xn)}$$

Не зависит от проблем разделения нейтронов по множественности!

Какое сечение выбрать в качестве σ^{эксп} (γ,xn)?

Выбор σ^{эксп} (γ,хп)

Данные Саклэ хорошо согласуются с теорией на всей шкале энергий

* Предел интегрирования Е^{инт} = 20 МэВ

Источник данных	σ ^{инт} , МэВ∙мбн	о ^{инт} с∕о ^{инт} , * отн.ед.	
квазимоноэне	ергетические фот	оны	
Саклэ [1]	$\textbf{3288.3} \pm \textbf{6.6}$	1	
Ливермор [2]	$\textbf{2667.6} \pm \textbf{49.5}$	1.24	
тормозное γ-излучение			
Ишханов и др.[3]	$\textbf{3112.3} \pm \textbf{54.3}$	1.05	
Беляев и др. [4]	3246.7 ± 7.7	1.01	
Богданкевич и др. [5]	3685.8 ± 41.5	0.89	
приближенные к Саклэ данные Ливермора			
Варламов и др. [6]	3369.4 ± 40.4	0.98	
теоретические расчеты			
Теория [7, 8]	$\textbf{3272.8} \pm \textbf{47.4}$	0.99	

Новые оцененные данные, сравнение с экспериментальными

	Реакция	σ ^{инт} оцен./ σ ^{инт} _{Саклэ}	^{σинт} оцен./ σ ^{инт} ливермор
a)	(γ,xn)	1	1.24
б)	(γ,sn) σ(γ,sn)=σ(γ,n)+ σ(γ,2n)+σ(γ,3n)	0.96	1.30
в)	(γ,n)	0.88	1.46
г)	(γ,2n)	1.16	1.05
д)	(γ,3n)		-

Предел интегрирования Е^{инт} = 25 МэВ

- Саклэ
- Ливермор
- Оцененные данные

Новые оцененные данные, сравнение с экспериментальными

Саклэ:

Вклад в (γ,хп) реакции (γ,п) переопределен на 12%
реакции (γ,2п) - недопределен на 16%;

Ливермор:

•Сечение (ү,хп)

недоопределено на 24%

•(γ,n) недоопределен на 46% •(γ,2n) — недоопределен всего на 5%;

	Реакция	б ^{инт} оцен./ б ^{инт} Саклэ	^{σинт} оцен.∕ σ ^{инт} ливермор
a)	(γ,xn)	1	1.24
б)	(γ,sn) σ(γ,sn)=σ(γ,n)+ σ(γ,2n)+σ(γ,3n)	0.96	1.30
в)	(γ,n)	0.88	1.46
г)	(γ,2n)	1.16	1.05
д)	(γ,3n)		-

Предел интегрирования Е^{инт} = 25 МэВ

Сравнение оцененных данных с результатами экспериментов по методу наведенной активности

Отношения	Эксперимент			Оценка
	Сакле [4]	Ливермор [5]	Наведенная активность [19]	Настоящая работа
сечений σ(γ,2n)/σ(γ,n)	0.36 (797.4/2189.5)	0.67 (887.0/1315.7)		0.49 (958.3/1956.3)
выходов Y(γ,2n)/Y(γ,n)	0.24	0.42	0.34 ± 0.07	0.33 *
сечений σ(γ,3n)/σ(γ,n)	0.063 (137.4/2189.5)			0.055 (107.3/1956.3)
выходов Y(γ,3n)/Y(γ,n)	0.02		0.023 – 0.025**)	0.018**

* наша оценка отношения выходов реакций по их сечениям.

** суммарный выход реакции ¹⁸¹Та(γ,3n)¹⁷⁸Та с образованием конечного ядра в основном и изомерном состояниях.

Выводы

- Оцененные сечения парциальных фотонейтронных реакций (ү,n), (ү,2n), и (ү,3n) на ядре ¹⁸¹Та лишены проблем разделения нейтронов по множественности
- Оцененные сечения согласуются с результатами экспериментов, использовавших метод наведенной активности
- Физически недостоверное поведение специально введенной переходной функции множественности F₂ = σ(γ,2n)/σ(γ,xn), полученной по данным Ливермора, обусловлено очень большой (46 %) недопределенностью числа нейтронов с множественностью 1
- Вследствие сечение реакции (γ, n), полученное в Ливерморе, ведет себя весьма нетипично и физически недостоверно
- Большая недоопределенность числа нейтронов с множественностью 1 в Ливерморе приводит к существенно меньшему (24 %) по сравнению с данными других экспериментов сечению реакции полного выхода нейтронов

Спасибо за внимание! Вопросы?

Параметры изотопов ядра Та

Реакция	T _{1/2}	Еү, кэВ
¹⁸¹ Τa(γ,n) ¹⁸⁰ Ta	8.154 час	93.326, 103.557
¹⁸¹ Ta(γ,2n) ¹⁷⁹ Ta	1.82 год	63, 65
¹⁸¹ Ta(γ,3n) ¹⁷⁸ Ta (g. st.) ¹⁸¹ Ta(γ,3n) ¹⁷⁸ Ta (m. st)	9.31 мин 2.36 час	1351, 1403 313.44, 325.56, 426.38

Список статей

- [1] R.Bergere, H.Beil, A.Veyssiere. Photoneutron Cross Sections of La, Tb, Ho and Ta. Nucl.Phys., A121 (1968) 463.
- [2] R.L.Bramblett, J.T.Caldwell, G.F.Auchampaugh, S.C.Fultz. Photoneutron Cross Sections of ¹⁸¹Ta and ¹⁶⁵Ho. Phys.Rev., 129 (1963) 2723.
- [3] Б.С.Ишханов, И.М.Капитонов, Е.В.Лазутин, И.М.Пискарев, О.П.Шевченко. Гигантский дипольный резонанс на ядре ¹⁸¹Та. Письма ЖЭТФ, 10 (1969) 30.
- [4] С.Н.Беляев, В.П.Синичкин. Прецизионный фотоядерный эксперимент по изучению промежуточной структуры ДГР на ядре ¹⁸¹Та. Динамика и оптимизация пучков. Труды Восьмого международного совещания, Саратов, 25 – 29 июня 2001 г. Издательство Саратовского ГУ, 2002, стр. 81.
- [5] О.В.Богданкевич, Б.И.Горячев, В.А.Запевалов. Расщепление гигантского резонанса в среднетяжелых ядрах. ЖЭТФ, 42 (1962) 1504.
- [6] В.В.Варламов, Песков Н.Н., Руденко Д.С., Степанов М.Е. Согласованная оценка сечений фотонейтронных реакций по данным, полученным в экспериментах на пучках квазимоноэнергетических аннигиляционных фотонов в Ливерморе (США) и Сакле (Франция). Вопросы атомной науки и техники. Серия: «Ядерные константы», 1-2 (2003) 48.
- [7] Б.С.Ишханов, В.Н.Орлин. Полумикроскопическое описание гигантского дипольного резонанса. ЭЧАЯ, 38 (2007) 460.
- [8] Б.С.Ишханов, В.Н.Орлин. Предравновесная модель фотоядерных реакций, базирующаяся на Ферми-газовых плотностях. Ядерная физика, 71 (2008) 517.
- [9] E.Wolynec, M.N.Martins. Discrepancies between Saclay and Livermore Photoneutron Cross Sections. Revista Brasileira Fisica, 17 (1987) 56.
- [10] Б.С.Ишханов, С.Ю.Трощиев. Дипольный гигантский резонанс в тяжелых деформированных ядрах. Вестник МГУ, Серия 3, № 4 (2011) 3.