Cosmic Ray Studies with PAMELA Experiment

Piergiorgio Picozza INFN and University of Rome Tor Vergata

14th Lomonosov Conference on Elementary Particle Physics

MSU, Moscow August 19 – 25, 2009

Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics

-

PAMELA Collaboration

WiZard Russian Italian Missions

THE UNIVERSE ENERGY BUDGET

- Stars and galaxies are only ~0.5%
- Neutrinos are ~0.1-1.5%
- Rest of ordinary matter
 - (electrons, protons & neutrons) are 4.4%
- Dark Matter 23%
- Dark Energy 73%
- Anti-Matter 0%
- Higgs Bose-Einstein condensate ~10⁶²%??

stars

The SUSY Particle Spectrum

Standard Model

Particles			Sparticles			
Name	Symbol	Spin	Name	Symbol	Spin	
leptons	l, v	1/2	sleptons	$\tilde{l}_{R},\tilde{l}_{L},\tilde{v}_{L}$	0	
quarks	$q_{\rm L}, q_{\rm R}$	1/2	squarks	$\widetilde{q}_{\mathrm{L}}, \widetilde{q}_{\mathrm{R}}(\widetilde{b}_{1,2}, \widetilde{t}_{1,2})$	0	
photon Z boson light Higgs heavy Higgs pseudoscalar Higgs	Ϋ́Z h H A	1 1 0 0 0	neutralinos	$(\tilde{\chi}^0_1) \tilde{\chi}^0_2$, $\tilde{\chi}^0_3$, $\tilde{\chi}^0_4$	1/2	
W boson charged Higgs	W± H±	1 1	charginos	$\tilde{\mathbf{\chi}}_{1}^{\pm}, \tilde{\mathbf{\chi}}_{2}^{\pm}$	1/2	-
gluon	g	1	gluino	Ĩ	1/2	
graviton	G	2	gravitino	Ĝ	3/2	

 $\chi = N_1 \widetilde{\gamma} + N_2 \widetilde{Z}^0 + N_3 \widetilde{H}_1^0 + N_4 \widetilde{H}_2^0; \sum_{i=1}^4 |N_i|^2 = 1$

Astroparticle Physics [5A1312]

Will distort the antiproton positron and gamma spectra from purely secondary production

 $\begin{array}{c} \chi + \overline{\chi} \longrightarrow X + \gamma \\ + \psi \end{array} \quad \begin{array}{c} (\text{GLAST-FERMI} \\ \text{AMS-02}) \\ (\text{AMANDA / IceCube}) \\ + \overline{p} \\ + \overline{p} \\ + e^+ \\ + \overline{D} \end{array} \end{array}$

Another possible scenario: KK Dark Matter

Lightest Kaluza-Klein Particle (LKP): B⁽¹⁾

Bosonic Dark Matter: fermionic final states no longer helicity suppressed. e+e⁻ final states directly produced.

As in the neutralino case there are 1-loop processes that produces monoenergetic y y in the final state.

Decay Channels

PAMELA Instrument

GF ~21.5 cm²sr

Mass: 470 kg

Size: 130x70x70 cm³

Proton / positron selection

N 1/1E3 *S1* E \$2 Tracker CAS2 CASI <u>S</u>3 Calorimeter SATELLITE (CPIA SIDE ND

Proton

Design Performance							
Energy range							
Antiprotons	80 MeV - 190 GeV						
Positrons	50 MeV – 300 GeV						
Electrons	up to 500 GeV						
Protons	up to 1 TeV						
Electrons+positrons	up to 2 TeV (from calorimeter)						
Light Nuclei (He/Be/C)	up to 200 GeV/n						
AntiNuclei search	sensitivity of 3x10 ⁻⁸ in He/He						

- → Simultaneous measurement of many cosmic-ray species
- \rightarrow New energy range

→ Unprecedented statistics

Resurs-DK1 satellite

<u>Main task</u>: multi-spectral remote sensing of earth's surface

 Built by TsSKB Progress in Samara, Russia

Lifetime >3 years (assisted)

 Data transmitted to ground via high-speed radio downlink

 <u>PAMELA mounted</u> inside a pressurized container

Mass: 6.7 tonnes Height: 7.4 m Solar array area: 36 m² PAMELA Launch 15 June 2006

Bajkonur Cosmodrome (Kazakhstan)

Orbit Characteristics

- Low-earth elliptical orbit
- 350 610 km
- Quasi-polar (70° inclination)
- SAA crossed

•16 Gigabytes trasmitted daily to Ground-NTsOMZ Moscow

PAMELA Status

Today 1162 days in flight
data taking ~73% live-time

>14 TBytes of raw data downlinked

 >1.4 10⁹ triggers recorded and under analysis

Antiproton to proton ratio PRL 102, 051101 (2009)

Antiproton to proton ratio

Wino Dark Matter in a non-thermal Universe G. Kane, R. Lu, and S. Watson

arXiv:0906.4765v3 [astro-ph.HE]

Positron to all electron ratio Nature 458, 697, 2009

Positron to all electron ratio

PAMELA Positron Fraction

Hooper and Zurek arXiv:0902.0593v1

Kaluza-Klein dark matter

Majorana DM with **new** internal bremsstrahlung correction. NB: requires annihilation cross-section to be 'boosted' by >1000.

Astrophysical Explanation Pulsars

S. Profumo Astro-ph 0812-4457

 Mechanism: the spinning B of the pulsar strips e⁻ that accelerated at the polar cap or at the outer gap emit γ that make production of e[±] that are trapped in the cloud, further accelerated and later released at τ ~ 10⁵ years.

- Young (T ~10⁵ years) and nearby (< 1kpc) $E_{tot} \simeq 10^{46} \, {\rm erg}$
- If not: too much diffusion, low energy, too low flux.
- Geminga: 157 parsecs from Earth and 370,000 years old
- B0656+14: 290 parsecs from Earth and 110,000 years old
- Many others after Fermi/GLAST

Diffuse mature pulsars

Example: pulsars

Pulsars: Most significant contribution to high-energy CRE: **Nearby** (d < 1 kpc) and **Mature** (104 < T/yr < 106) Pulsars

D. Grasso et al. 0905.0636 [astro-ph.HE]

Example of fit to both Fermi and Pamela data with known (ATNF catalogue) nearby, mature pulsars and with a single,
 nominal choice for the e+/e- injection parameters

Interaction of high energy gamma-rays with star-light

F. A. Aharonian and A M Atoyan J. Phys. G: **Nucl.** Pan. Phys. **17 (1991) 1769-1778.**

A. Eungwanichayapant and F. A. Aharonian 0907.2971v1 [astro-ph.HE]

After discovery of TeV binaries like LS5039 and LSI 61 by HESS/Magic/VERITAS in which the powerful production of high and very high energy gamma-rays is accompanied by their absorption (which leads to the modulation of the gamma-ray signal), it is clear that these objects are also sources of electron-positron pairs.

Standard Positron Fraction Theoretical Uncertainties

T. Delahaye et al., arXiv: 0809.5268v3

_____ / ___/

Cosmic Rays Propagation in the Galaxy

Proton flux

Helium flux

Proton and Helium spectra, July 2006

preliminary

Nuclei identification

• Important input to secondary production + propagation models

- Secondary to primary ratios:
 - B / C
 - Be / C
 - Li / C
- Helium and hydrogen isotopes:
 - ³He / ⁴He
 - d / He

Truncated mean of multiple dE/dx measurements in different silicon planes

PAMELA preliminary results

Positron Fraction

Solar Modulation of galactic cosmic rays

• Study of charge sign dependent effects

Asaoka Y. et al. 2002, Phys. Rev. Lett. 88, 051101), Bieber, J.W., et al. Physi-cal Review Letters, 84, 674, 1999. J. Clem et al. 30th ICRC 2007

U.W. Langner, M.S. Potgieter, Advances in Space Research 34 (2004)

Charge dependent solar modulation

Positron Fraction

Radiation Belts

South Atlantic Anomaly

Secondary production from CR interaction with atmosphere

Study terrestrial magnetosphere Pamela World Maps: 350 – 650 km alt

36 MeV p, 3.5 MeV e-

Proton spectrum in SAA, polar and equatorial regions

Study terrestrial magnetosphere Ratio of sub-cutoff positron to electron fluxes

E, Ge∀

December 2006 Solar particle events

2006/12/13 00:21

X3.4 solar flare. Dec 13th largest CME since 2003, anomalous at sol min

December 13th 2006 He differential spectrum

GOES Space Environment Monitor

10⁻¹

⁵ 01 Matts/m, 10⁻⁷ 10⁻¹⁰ 10⁻¹⁰ 10⁻¹⁰

Thanks!

http:// pamela.roma2.infn.it