Recent results from BABAR

Wolfgang Gradl for the BABAR collaboration

Institut für Kernphysik

XIV. Lomonosov Conference Moscow, 19th August 2009

Flavour physics

- Understand flavour structure of Standard Model
- Measure properties of weak interaction, i.e. flavour-changing interactions of quarks
 - CP violation
 - Test CKM mechanism
 - Over-constrain CKM matrix
- Test Standard Model predictions
- Search for New Physics in deviations from SM predictions

This talk

Concentrate on angles of the Unitarity Triangle

Introduction

BABAR CP violation

Angles of the Unitarity Triangle $\sin 2\beta$

 $b \rightarrow sq\overline{q}$ penguins α

Summary, Outlook

BABAR at the B-factory PEP-II

- e^+e^- -collider running primarily at $\sqrt{s} = m(\Upsilon(4S)) = 10.58 \text{ GeV}$
- Asymmetric beam energies, $\beta \gamma \sim 0.56$ to separate *B* decay vertices
- \blacksquare High luminosity: $\mathcal{L} \sim \mathcal{O}(10^{34})\,\text{cm}^{-2}\text{s}^{-1}$
- Data taking stopped in April 2008

• $\mathcal{L}_{int} = 531 \text{ fb}^{-1}$ 465 million $B\overline{B}$ 120 million $\Upsilon(3S)$ 100 million $\Upsilon(2S)$ 1.7 billion $e^+e^- \rightarrow q\overline{q}$

Unitarity Triangle and CP violation

Unitarity Triangle and CP violation

$$\underbrace{\begin{array}{c} \begin{array}{c} q_{i} \end{array}}_{V_{i}} & & \\ & & \\ \end{array} \\ \underbrace{\begin{array}{c} q_{i} \end{array}}_{V_{ij}} & & \\ & & \\ \end{array} \\ \underbrace{\begin{array}{c} & & \\ \\ & \\ \end{array} \\ \\ & & \\ \end{array} \\ \underbrace{\begin{array}{c} 1 - \frac{\lambda^{2}}{2} & \lambda & A\lambda^{3}(\rho - i\eta) \\ \\ & -\lambda & 1 - \frac{\lambda^{2}}{2} & A\lambda^{2} \\ \\ & A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{array} }_{A\lambda^{3}} \end{array} }_{A\lambda^{3}(\rho - i\eta)$$

 Assuming unitarity of V_{CKM} (universality of weak interaction):

$$V_{td}V_{tb}^* + V_{cd}V_{cb}^* + V_{ud}V_{ub}^* = 0$$

- → triangle in complex $(\overline{\rho}, \overline{\eta})$ plane $\overline{\rho} \equiv (1 - \lambda^2/2)\rho$
- apex at $\overline{\rho} + i\overline{\eta} \equiv (V_{ud}V_{ub}^*)/(V_{cd}V_{cb}^*)$
- Kobayashi & Maskawa 1973: Non-zero phase in CKM matrix generates CP violation: η ≠ 0 ⇔ Unitarity triangle is not flat (Nobel Prize 2008)

Time-dependent CP asymmetries

• Neutral *B* mesons oscillate between B^0 and \overline{B}^0 .

$$\left\langle \overline{B}^{0} | \mathcal{H} | \underline{B}^{0} \right\rangle = \overset{b}{\underset{d}{\longrightarrow}} \overset{t}{\underset{b}{\longrightarrow}} \overset{t}{\underset{b}{\longrightarrow}} \overset{d}{\underset{b}{\longrightarrow}} + \text{long distance}$$

- Mass eigenstates $|B_{\rm H,L}\rangle = p \left| \frac{B^0}{\rho} \right\rangle \pm q \left| \overline{B}{}^0 \right\rangle; \ q/p \simeq e^{-2i\beta}$
- Decay into common final state f:

- If f is CP eigenstate: interference between two decay paths
- ▶ V_{CKM} complex ■ B^0 and \overline{B}^0 decays have different weak phase
- Phase difference due to mixing: 2β
- ► Leads to lifetime dependent differences $\Gamma(\underline{B}^{0}|_{t=0} \rightarrow f|_{t}) \neq \Gamma(\overline{B}^{0}|_{t=0} \rightarrow f|_{t})$

$$\mathcal{A}_{cp}(\Delta t) = \frac{\Gamma(\Delta t) - \overline{\Gamma}(\Delta t)}{\Gamma(\Delta t) + \overline{\Gamma}(\Delta t)} = -\eta_f \frac{\mathbf{S}_f}{\mathbf{S}_f} \sin \Delta m_d \Delta t - \frac{\mathbf{C}_f}{\mathbf{C}_f} \cos \Delta m_d \Delta t$$

CP violating asymmetry in $B^0 \rightarrow (c\overline{c})K^0$

- Measure S and C in $b \rightarrow c\overline{c}s$ decays ('Golden mode')
- Experimentally clean $(J/\psi \rightarrow \ell \ell, K_s^0 \rightarrow \pi^+ \pi^-)$
- Theoretically clean:
 - dominated by single (tree) amplitude
 - gluonic (loop) penguin small & with same weak phase

• SM expectation: Only phase from $B^0 - \overline{B}^0$ mixing

$$\begin{array}{rcl} \mathcal{C} &<& 10^{-3} & (\text{no direct } \mathcal{CPV}) \\ \mathcal{S} &=& -\eta_f \sqrt{1-\mathcal{C}^2} \sin 2\beta \approx -\eta_f \sin 2\beta \end{array}$$

W. Gradl - Recent results from BABAR

$B ightarrow (c \bar{c}) K^0$

BABAR's full data sample:

465M *BB* events, Phys. Rev. D **79**, 072009 (2009)

- Reconstruct charmonium $c\bar{c}$ as J/ψ , $\psi(2S)$, χ_{c1} , η_c
- $K_s^0 \to \pi^+ \pi^-, \pi^0 \pi^0$
- K⁰_L as neutral cluster, with some quality criteria
- Large, pure samples: e.g. $B^0 \rightarrow J/\psi K_s^0$ with 6750 events
- $K^{*0} \rightarrow K_s^0 \pi^0$:
 - ignore angular information ignore dilution due to mix of *CP*-odd and *CP*-even final states, 'effective' η_f^{eff}

 $\sin 2\beta$ from $B^0 \rightarrow (c\bar{c})K^0$

$$\beta \equiv \arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$$

Precise measurement of β

Still limited by statistics

$$\sin 2\beta = 0.672 \pm 0.023$$

 $\beta = (21.1 \pm 0.9)^{\circ}$

$\sin 2\beta$ from $b \rightarrow q\overline{q}s$ penguins

Standard model and penguin only:

$$S_f = -\eta_f \sin 2\beta$$

- Sensitive to New Physics in loop
- 'Golden mode' $B^0 \rightarrow \phi K_s^0$
- Need SM correction to naïve expectation mode by mode
- Theory prefers $\Delta S > 0$
- Experiments seem to favour
 ΔS < 0

W. Gradl - Recent results from BABAR

		• •		P	RELIMINARY
b→ccs	World Avera	ge			0.67 ± 0.02
Ŷ	BaBar			0.26	0.26 ± 0.03
\$	Belle		·		0.67 +0.22
Ŷ	BaBar		++	0.57 :	± 0.08 ± 0.02
» ع`	Belle		-	0.64 :	± 0.10 ± 0.04
×	BaBar			C	.90 +0.18 +0.03
×.	Belle			0.30 :	± 0.32 ± 0.08
° × ×	BaBar		·	• 0.55 :	± 0.20 ± 0.03
°#	Belle			0.67 :	± 0.31 ± 0.08
Ŷ	BaBar			0.35 +0.26	± 0.06 ± 0.03
5	Belle			0.64 +0.19 -0.25 =	± 0.09 ± 0.10
y s	BaBar			0.5	5 +0.26 ± 0.02
3	Belle		• • • •	0.11 :	± 0.46 ± 0.07
y s	BaBar			- -	0.60 +0.16
÷	Belle		→	-	0.60 +0.16
f ₂ K ₅	BaBar	-	•	0.48 ± 0.52 :	± 0.06 ± 0.10
f _x K _a	BaBar		•	0.20 ± 0.52 :	± 0.07 ± 0.07
¥.	BaBar	•		-0.72 :	± 0.71 ± 0.08
0. 1	Belle -		-	-0.43 :	$\pm 0.49 \pm 0.09$
φ π ⁶⁹ K _S	BaBar				0.97 +0.03
π ⁺ π K _s M	vnBaBar			0.01 ± 0.31 :	± 0.05 ± 0.09
Ť	BaBar			•••• 0.86 :	$\pm 0.08 \pm 0.03$
t	Belle		-	-0.68 ± 0.1	5 ± 0.03 ^{+0.21} _{-0.13}
b→qqs	Naïve avera	ge			0.62 ± 0.04
-2	-1	()		2
			sin 2	2β from	$b ightarrow c \overline{c} s$

 $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})$ HEAG

- Was more exciting 2 years ago
- Limited by statistics; needs next-generation experiments

Measuring $\alpha \equiv \arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$

Process involving both *B*-mixing (β) and $b \rightarrow u$ transition (γ):

$$\alpha = \pi - \beta - \gamma.$$

e.g. $B^0 \to \pi^+\pi^-$, $B^0 \to \rho^+\rho^-$

Complication: penguin amplitudes not negligible, different weak phase and (unknown) relative strong phase δ

 $\delta = \delta_P - \delta_T$, P/T different for each final state

Measure effective α_{eff} , and

$$C_{hh} \propto \sin \delta;$$
 $S_{hh} = \sqrt{1 - C_{hh}^2 \sin 2\alpha_{eff}}$

Need to constrain
$$|\alpha_{\rm eff} - \alpha|$$

W. Gradl - Recent results from BABAR

Isospin analysis to constrain $\alpha_{\rm eff} - \alpha$

- Time dependent $\pi^+\pi^-$ or $\rho^+\rho^-$ *CP* asymmetry \blacksquare measure $\alpha_{\rm eff}$
- Use SU(2) isospin to relate amplitudes of all $\pi\pi$ ($\rho\rho$) modes and constrain $\alpha_{\text{eff}} - \alpha$ Gronau & London, Phys. Rev. Lett. **65**, 3381

$$\frac{\mathcal{A}^{+-}}{\sqrt{2}} + \mathcal{A}^{00} = \mathcal{A}^{+0} = e^{2i\gamma}\overline{\mathcal{A}}^{-0}$$

α from $B \rightarrow \rho \rho$

BABAR Phys. Rev. D **78** 071104 (2008) $\mathcal{B}(B^0 \to \rho^0 \rho^0) = (0.92 \pm 0.32 \pm 0.14) \times 10^{-6}$ $f_L = 0.75^{+0.11}_{-0.14} \pm 0.14$ $S_L^{00} = 0.3 \pm 0.7 \pm 0.2$, $C_L^{00} = 0.2 \pm 0.8 \pm 0.3$ $\begin{array}{l} \mbox{Belle Phys. Rev. D 78 111102 (2008)} \\ \mathcal{B}(B^0 \to \rho^0 \rho^0) = (0.4 \pm 0.4 \substack{+0.2 \\ -0.3}) \times 10^{-6} \\ < 1.0 \times 10^{-6} \ \mbox{@90\% $C.L.$} \end{array}$

BABAR, 424 fb⁻¹, Phys. Rev. Lett. **102**, 141802 $\mathcal{B}(B^+ \to \rho^+ \rho^0) = (23.7 \pm 1.4 \pm 1.4) \times 10^{-6}$

 $B^0 \rightarrow \rho^0 \rho^0$ small rightarrow isospin triangle flattened, decreases ambiguity due to $\alpha_{\rm eff} - \alpha$

α from $B \rightarrow a_1 \pi$

- Measure α_{eff} in $B^0 \to a_1(1260)^{\pm}\pi^{\pm}$: $\alpha_{\text{eff}}(a_1\pi) = 79^{\circ} \pm 7^{\circ}$ BABAR, Phys. Rev. Lett. **98**, 181803 (2007)
- Use SU(3)-flavour symmetry to constrain penguin contribution P/Tand obtain bound on $|\alpha_{eff} - \alpha|$ Gronau & Zupan, Phys. Rev. D 73, 057502
- Need branching fractions for all decays in the same SU(3) flavour multiplet with J^{PC} = 1⁺⁺:
 - $B \rightarrow a_1 \pi \checkmark (BABAR, Belle)$
 - $B \rightarrow a_1 K \checkmark (BABAR)$
 - $B \rightarrow K_{1A}\pi$ (BABAR preliminary)
- Derive bound on $|\alpha_{\rm eff} \alpha| < 11^{\circ} (68\% C.L.)$
- Using solution near 90°, α from $B \rightarrow a_1 \pi$:

$$\alpha_{\mathsf{a}_1\pi} = (\mathsf{79} \pm \mathsf{7} \pm \mathsf{11})^\circ$$

W. Gradl - Recent results from BABAR

Summary on α

Combine measurements from *CP* violation in $B^0 \rightarrow \pi\pi, \rho\rho, (\rho\pi)^0$. $a_1\pi$ not yet included.

Testing the Standard Model

http://ckmfitter.in2p3.fr

http://www.utfit.org

Testing the Standard Model

• α and β constrain Unitarity Triangle to 5°

Poor precision on over-constraint:

$$\alpha + \beta + \gamma = (180^{+27}_{-30})^{\circ}/(191 \pm 14)^{\circ}$$

- CKM describes measurements well
- Still plenty of room for New Physics

Conclusions and summary

- CKM picture of CP violation seems to describe data well
- Most measurements limited by statistics need next-generation Flavour facility (LHCb, SuperB / Belle-II)
- \blacksquare Some tensions, but all below 3σ
- Still room for new physics, but effects likely to be subtle
- BABAR data taking ended, strong analysis effort ongoing
- More BABAR (and Belle) results on Monday

W. Gradl - Recent results from BABAR

Extra slides

PEP-II performance and the BABAR data sample

peak luminosity $12.069 \times 10^{33} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

- data taking stopped 8 April 2008
- integrated luminosity 531 fb⁻¹

Measuring Δt

Detecting a signal

Largest backgrounds from $e^+e^-
ightarrow q\overline{q}$

jet-like qq

Use event shape for background suppression:

Kinematic variables identify B:

$$\Delta E = E_B^* - E_{\text{beam}}^* \sim 0$$

$$m_{\text{ES}} = \sqrt{E_{\text{beam}}^* - p_B^{*2}} \sim m_B$$

$$\widehat{\nabla} = \sqrt{E_{\text{beam}}^* - p_B^{*2}} \sim m_B$$

$$\widehat{\nabla} = m_{\text{ES}} = m_{\text{ES}} (\text{GeV})$$

spherical $b\bar{b}$

200

Angular analysis: $B \rightarrow VV$

■ $J^P: 0^- \to 1^- 1^-$

• With enough statistics, full angular analysis possible:

$$\frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\cos\theta_{1}\mathrm{d}\cos\theta_{2}\mathrm{d}\phi} \propto \left|\sum_{m=-1,0,1}H_{m}Y_{1,m}(\theta_{1},\phi)Y_{1,-m}(\theta_{2},\phi)\right|^{2}$$

$$f_L \equiv \frac{|H_0|^2}{|H_0|^2 + |H_{+1}|^2 + |H_{-1}|^2}$$

In transversity basis:

$$\begin{array}{rcl} {\cal A}_{0} & = & {\cal H}_{0} \\ {\cal A}_{\parallel} & = & \frac{1}{\sqrt{2}} ({\cal H}_{+1} + {\cal H}_{-1}) \\ {\cal A}_{\perp} & = & \frac{1}{\sqrt{2}} ({\cal H}_{+1} - {\cal H}_{-1}) \end{array}$$

W. Gradl - Recent results from BABAR

Polarisation puzzle

■ Expectation vor B → VV decays:

$$f_L = 1 - rac{m_V^2}{m_B^2} \sim 1$$

Polarizations of Charmless Decays

- $\blacksquare \ B \to \rho \rho \text{ seem to fit}$
- $b \rightarrow s$ penguin dominated modes ϕK^* and $K^{*0} \rho^+$ show $f_L \sim 0.5$
- So: tree-dominated $f_L \sim 1$ penguin-dominated $f_L \sim 0.5$?
- VT decays add confusion
- $f_L(B \to a_1^+ a_1^-) = 0.31 \pm 0.24$ BABAR, arXiv:0907.1776
- Mechanism creating this behaviour?

Charm mixing and CP violation

HFAG preliminary

- Mixing established at > 10σ, combining all measurements
- Individual measurements $\sim 4\sigma$

No evidence of CPV in mixing

Lifetime ratio: y_{CP}

• Compare τ for Cabbibo-favoured $D^0 \to K\pi$ and Cabbibo-suppressed $D^0 \to h^+h^-$ decays

$$y_{CP} = \frac{\tau_{K\pi}}{\tau_{hh}} - 1$$
$$\Delta y = \frac{\tau_{K\pi}}{\tau_{hh}} \left(\frac{\tau_{hh}^{D^0} - \tau_{hh}^{\bar{D}^0}}{\tau_{hh}^{D^0} + \tau_{hh}^{\bar{D}^0}} \right)$$

BABAR tagged analysis:

Phys. Rev. D 78,011105 (2008)

Lifetime ratio: BABAR untagged

• Do not tag flavour of D^0 : larger signal, more background \Rightarrow comparable sensitivity

• $y_{CP} = [1.12 \pm 0.26_{\text{stat}} \pm 0.22_{\text{sys}}]\%$

BABAR 384 fb⁻¹, arXiv:0908.0761,

submitted to PRD-RC

- Statistically independent of previous tagged BABAR analysis
 - Combined:

 $y_{C\!P} = [1.16 \pm 0.22_{\rm stat} \pm 0.18_{\rm sys}]\%$

Excludes no-mixing hypothesis at 4.1σ