CUORE: neutrinoless double beta decay with bolometers

SERGIO DI DOMIZIO

UNIVERSITÀ & INFN GENOVA

On behalf of the CUORE Collaboration

14th Lomonosov Conference on Elementary Particle Physics Moscow State University, August 20th 2009

 $v_{\rm e}$ v_{μ} v_{τ}

DBD is a rare process in which a nucleus changes its atomic number by 2 units

```
\beta\beta2\nu: (A,Z) \rightarrow (A,Z+2)+2e^{-}+2\bar{\nu}
```

- Allowed by SM
- Observed for several isotopes

$\beta\beta0\nu$: (A,Z) \rightarrow (A,Z+2)+2e⁻

- Forbidden in SM
- Requires Majorana neutrinos
- $\Delta L = 2$
- Never observed

Observation of ββ0v would prove with no doubt that neutrinos are Majorana particles

(Schechter and Valle, 1982)

Inference on neutrino mass requires assumptions on the decay mechanism

Simplest assumption: light Majorana v exchange

14th Lomonosov Conference on Elementary Particle Physics

Light Majorana neutrino exchange

 $m_{_{\beta\beta}}$ can be expressed as a function of the mass of the lightest neutrino using the measured values of the mixing angles and of the two mass splittings

08/20/2009

14th Lomonosov Conference on Elementary Particle Physics

CUORE and CUORICINO

CUORE and CUORICINO use the bolometric technique to search for $\beta\beta0\nu$ in ¹³⁰Te

CUORE will be able to span the inverted mass-hierarchy region

CUORICINO is a small prototype that took data in the years 2003-2008

HALL A Cuore & Cuoricino

Experiments located underground at the Laboratori Nazionali del Gran Sasso 3400 m w.e. rock shield against CR

HALL C Cuore R&D cryogenic facility

08/20/2009

14th Lomonosov Conference on Elementary Particle Physics

ββ0v experimental features

Signature:

monochromatic line at the Q-value of the decay

Sensitivity:

 $T_{1/2}$ corresponding to the minimum number of detectable events above background

Key features:

- good energy resolution
- •big mass
- low background

Working Principle:

measure the temperature rise of the energy absorber

Typical ouptut signal: 100 μ V per MeV of released energy

08/20/2009

14th Lomonosov Conference on Elementary Particle Physics

CUORE and **CUORICINO** use TeO₂ crystals: source = detector

- High isotopic abundance: 34%
- High Q-value: 2527 keV
- Easy to grow big crystals with low radioactive contaminations
- good mechanical properties at low temperature
- Low heat capacity

 $^{130}\text{Te} \rightarrow ^{130}\text{Xe} + 2\text{e}^{-1}$

$\mathbf{Q}_{\beta\beta}$ ſe)

- $\cdot 2530.3 \pm 2.0 \text{ keV}$
- $\bullet 2527.01 \pm 0.32 \text{ keV}$
- $\bullet 2527.518 \pm 0.013 \text{ keV}$

arXiv:0902.2376 (2009)

PRL 102, 212502 (2009)

08/20/2009 14th Lomonosov Conference on Elementary Particle Physics

62 TeO₂ crystals Total mass: 42 Kg (11.8 Kg in ¹³⁰Te)

- 11 floors of 4 crystals
- •Mass: 790 g
- •Dimensions: 5x5x5 cm³
- not enriched

- 2 floors of 9 crystals
- •Mass: 330g
- •Dim: 3x3x6 cm³
- •2 enriched in ¹²⁸Te (82%)
- •2 enriched in ¹³⁰Te (75%)

Internal (600 mK):

→1cm low activity Pb (A < 4 mBq/Kg in ²¹⁰Pb) External:

→20cm Pb

- →20cm Borated Polyethylene
- →Anti-Rn box: Nitrogen overpressure

08/20/2009

14th Lomonosov Conference on Elementary Particle Physics

14th Lomonosov Conference on Elementary Particle Physics

CUORICINO sensitivity is comparable to the one obtained with HPGe semiconductor detectors (Heidelberg-Moscow)

CUORICINO sensitivity is comparable to the one obtained with HPGe semiconductor detectors (Heidelberg-Moscow)

Background contributions

- •⁶⁰Co from cosmogenic activation: negligible
- •Multi-Compton from ²⁰⁸Tl (²³²Th cont. in cryostat shields): ~40%
- •Degraded α from crystal surfaces: ~10%
- •Degraded α from Cu holders surfaces: ~50%
- Muon-induced background: negligible

Improved cleaning procedures tested in the HALL C R&D facility

- reduction by a factor 4 on Crystal surf. contaminations
- Reduction by a factor 2 on Cu frames surf. contaminations

Projection to CUORE (goal: 10⁻² c/keV/kg/y)

Component	Bkg in DBD region [10 ⁻² c/keV/kg/y]
Environmental γ	< 0.1
Apparatus γ	< 0.1
Crystal bulk	< 0.01
Crystal surface	< 0.3
Cu frames bulk	< 0.1
Cu frames surface	~ 2 ÷ 4
Neutrons	< 0.01
Muons	< 0.01

CUORE

- •Hut construction started
- •Copper procured
 - → Cryostat
 - Detector holders
- •Crystal production is ongoing
 - ~100 xtals already stored underground at LNGS
- •Dilution refrigerator is being built

CUORE-0

The first tower of CUORE will be assembled and operated in 2010

- Will be hosted in the CUORICINO cryostat
- Same mechanical design of the CUORE towers
- Test of the detector assembling procedure

CUORE data taking is foreseen to start in 2012

- Bolometers are a powerful technique for the search of Double Beta Decay
- **CUORICINO** has demonstrated the feasibility of **CUORE** and has set a limit on the $\beta\beta0\nu$ decay time of ^{130}Te
- **CUORE** will be able to span part of the inverted mass-hierarchy region
- **CUORE** construction is ongoing: data taking is foreseen in 2012