The status of the Double CHOOZ experiment.

Sergey Sukhotin – RRC "Kurchatov Institute" on behalf of Double CHOOZ collaboration.

S.Sukhotin - RRC "Kurchatov Institute"

Neutrino oscillations

	Ref. [1]		Ref. [2] (MINOS updated)	
parameter	best fit $\pm 1\sigma$	3σ interval	best fit $\pm 1\sigma$	3σ interval
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	$7.65^{+0.23}_{-0.20}$	7.05-8.34	$7.67^{+0.22}_{-0.21}$	7.07-8.34
$\Delta m^2 [10^{-3} eV^2]$	$+2.40^{+0.12}$	±(2.07-2.75)	-2.39 ± 0.12	-(2.02-2.79)
Δm_{31} [10 ev]	$\pm 2.40_{-0.11}$		$+2.49\pm0.12$	+(2.13-2.88)
$\sin^2 \theta_{12}$	$0.304\substack{+0.022\\-0.016}$	0.25-0.37	$0.321\substack{+0.023\\-0.022}$	0.26-0.40
$\sin^2 \theta_{23}$	$0.50\substack{+0.07 \\ -0.06}$	0.36-0.67	$0.47\substack{+0.07 \\ -0.06}$	0.33-0.64
$\sin^2 \theta_{13}$	$0.01\substack{+0.016\\-0.011}$	≤ 0.056	0.003 ± 0.015	≤ 0.049

Ref.[1] – T.Schwetz, M.Tortola and J.W.F.Valle, New J.Phys. 10(2008) [arXiv:0808.2016] Ref.[2] – M.C.Gonzalez-Garcia and M.Maltoni, Phys.Rept. 460 (2008) [arXiv:0704.1800]

50 years of the neutrino experiments at nuclear reactors.

Chooz experiment (1995-1998)

R = 1.01 ± 2.8% (stat.) ± 2.7% (syst.) $\overset{-}{\nu}_{e} \rightarrow \overset{-}{\nu}_{e}$

Disappearance experiment P=8.4GW. L=1.05 km. M=5 t @300 m.w.e.

@ Δm_{13}^2 = 2*10⁻³ eV² sin²(2θ₁₃) < 0.2 (90% C.L)

New concept of the reactor experiment: how to improve the results of CHOOZ

L.A.Mikaelyan and V.VSinev arXiv:hep-ex/9908047v1 11-Aug-1999 Talk given at the International Conference on Non-Accelerator New Physics, NANP-99, Dubna, (28/06-03/07)-1999.

The White Paper «A new reactor neutrino experiment to measure θ_{13} » hep-ex/0402041 (2002)

Double CHOOZ Proposal hep-ex/0606025 v2 20-June-2006

Two identical detectors

From CHOOZ to DoubleCHOOZ

R = N(meas.) / N(expect.) = 1.01 ± 2.8% (stat) ± 2.7% (syst)

Statistical error				
	CHOOZ	Double Chooz		
Target volume	5.55 m3	10.3 m3		
Data taking period	Few months	3-5 years		
Event rate	2700	Chooz-far 60000/3y		
Statistical error	2.8%	0.5%		

Systematic error

	сноог	Double Chooz
Reactor uncertainties v flux and reactor power	2.1%	
Number of protons	0.8%	0.2%
Detector Efficiency	1.5%	0.5%

$v_{\rm e}$ detection at reactor experiments

θ_{13} at reactors: a new experimental concept

Two independent sets of information: Normalisation + Spectrum distortion

Ratio Obs/Th

Backgrounds

Accidental:

- e+-like signal: radioactivity from materials and surrounding rock.
- n signal: n from cosmic µ spallation, thermalized in detector and captured on Gd.

Or another radioactivity event

Correlated:

- fast n (by cosmic μ) recoil on p (low energy) and captured on Gd
- long-lived (⁹Li, ⁸He) β-decaying isotopes induced by μ

DoubleCHOOZ Sensitivity

The Double Chooz Collaboration

France: APC Paris, CEA/Dapnia Saclay, Subatech Nantes, Strasburg Germany: Aachen, MPIK Heidelberg, TU München, EKU Tübingen, Hamburg Spain: CIEMAT Madrid

Japan: HIT, Kobe, Niigata, TGU, TIT, TMU, Tohoku Russia: RAS, RRC Kurchatov Institute USA: Alabama, ANL, Chicago, Columbia, Drexel, Illinois, Kansas, LLNL, LSU, Notre Dame, Sandia, Tennessee, UCD Brazil: CBPF, UNICAMP

Outer Veto Layout

Far Detector Construction

After refurbishment of the pit, the detector construction started in the second half of 2008.

Far Detector Construction

Far Detector Construction

Schedule

- Far detector construction will be completed at the end of 2009.
- Filling and comissioning begining of 2010.
- Outer veto will be installed in April 2010.
- From April 2010 one of the reactors will be off during 4 months (there will be a chance to get some weeks with both reactors OFF).
- Near Lab. construction will be started at 2010.
- Start of data taking with both detectors 2011.
- After 3 years $\rightarrow sin^2(2\Theta_{13}) < 0.035 \ (\Theta_{13} < 5^\circ)$ at 90% C.L.

Backup slides

Liquids

New DC Development:

-**Solvent:** 20% PXE (C₁₆H₁₈) + 80% Dodecane (C₁₂H₂₄) + PPO/Bis-MSB.

-**1** g/l Gd(dpm)₃ tris-(2,6-tetramethyl-3,5heptanedione) Gd(III)

A SINGLE Batch LS for both detectors

- Target Solvant delivered
- GC Solvant: 4 % PXE 46% Dod. 50% Oil
- 100 Kg Gd compound delivered
- Buffer Oil Ordered

3 iso-tanks ready for transportation, storage & filling

Detector Parts

• Outer veto: Panels of strips of coextruded plastic scintillator with wavelength shifting fiber.

Acrylic vessels:

-Target : 8 mm, γ catcher : 12 mm

I0" Hamamatsu tubes x 390

→ ~15 % coverage of inner det. - Goal $\sigma(E)/E$ ~7 % @ 1 MeV

Buffer vessel:

- 3mm stainless steel

Detector Signal

Electronics & DAQ

Calibration:

- Target fish-line & articulated arm
- γ-catcher and buffer guide tubes
- Embedded LEDs

Site in French Ardennes

