Dmitry V.Naumov (on behalf of NOMAD Collaboration)

JINR

LOMONOSOV CONFERENCE ON ELEMENTARY PARTICLE PHYSICS. 21/08/2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

└─NOMAD Experiment

Outline

1 NOMAD Experiment

- 2 Recent and Ongoing Analyses
 - Total cross-section
 - Quasi-Elastic cross-section
 - Coherent π^0 production
 - Dimuons
 - NC/CC measurement
 - Fragmentation and Fracture functions

- π^0 Production in ν -Interactions
- Other ongoing analyses

3 Summary

└NOMAD Experiment

Neutrino Oscillation MAgnetic Detector Neutrino beam

- Primary goal: $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations with $\Delta m^2 \geq 5eV^2$ (best cosmological guess at that time)
- Data taking 1994-1998
- Neutrino and Anti-Neutrino modes
- Two dedicated detectors: CHORUS and NOMAD
- NOMAD was 835 m from the *Be* target and 620 m from the decay region

ション ふゆ く は マ く ほ マ く む マ

└NOMAD Experiment

Neutrino Oscillation MAgnetic Detector Neutrino beam

- $\bullet \nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$
- $1 < E_{\nu} < 300 \text{ GeV}$
- π[±] and K[±] by the SPY experiment constrained neutrino flux predictions

	$\langle E_{\nu} \rangle$	Rel.Abund.
$ u_{\mu}$	23.6	1.000
$\overline{ u}_{\mu}$	22.7	0.07
$\nu_{\rm e}$	37.0	0.01
$\overline{\nu}_{\mathrm{e}}$	33.2	0.003

NOMAD Experiment

Neutrino Oscillation MAgnetic Detector The detector

- Drift Chamber Target - 2.7 tons, $\rho = 0.1g/cm^3$
- Front Calorimeter Target - 17.7 tons
- Aluminium Coil
- |**B**| = **0.4** Tesla

▲ロト ▲園ト ▲ヨト ▲ヨト 三百一のへで

└NOMAD Experiment

Neutrino Oscillation MAgnetic Detector The detector

- $\blacksquare \ \frac{\sigma_{\mathbf{p}}}{\mathbf{p}} \approx \frac{0.05}{\sqrt{\mathbf{L}}} \oplus \frac{0.008 \times \mathbf{p}}{\sqrt{\mathbf{L}^5}}$
- Full event kinematics reconstruction
- Over 1.7 millions
 ν-interactions recorded in
 Drift Chambers
- Over 2 millions ν-interactions recorded in Al-coil
- Over 20 millions
 ν-interactions recorded in
 Fe-scintillator calorimeter

Best current limit on

 $\nu_{\mu} \rightarrow \nu_{\tau}$

Record statistics and excellent resolution

lead to a wide physics research program:

- More than 20 papers
- More than 700 citations
- Several ongoing precision analyses

└NOMAD Experiment

Neutrino Oscillation MAgnetic Detector The detector

- $\blacksquare \ \frac{\sigma_{\mathbf{p}}}{\mathbf{p}} \approx \frac{0.05}{\sqrt{\mathbf{L}}} \oplus \frac{0.008 \times \mathbf{p}}{\sqrt{\mathbf{L}^5}}$
- Full event kinematics reconstruction
- Over 1.7 millions
 ν-interactions recorded in
 Drift Chambers
- Over 2 millions ν-interactions recorded in Al-coil
- Over 20 millions
 ν-interactions recorded in
 Fe-scintillator calorimeter

Best current limit on

 $\nu_{\mu} \rightarrow \nu_{\tau}$

- Record statistics and excellent resolution lead to a wide physics research program:
 - More than 20 papers
 - More than 700 citations
 - Several ongoing precision analyses

└NOMAD Experiment

Neutrino Oscillation MAgnetic Detector The detector

- $\blacksquare \ \frac{\sigma_{\mathbf{p}}}{\mathbf{p}} \approx \frac{0.05}{\sqrt{\mathbf{L}}} \oplus \frac{0.008 \times \mathbf{p}}{\sqrt{\mathbf{L}^5}}$
- Full event kinematics reconstruction
- Over 1.7 millions
 ν-interactions recorded in
 Drift Chambers
- Over 2 millions ν-interactions recorded in Al-coil
- Over 20 millions
 ν-interactions recorded in
 Fe-scintillator calorimeter

Best current limit on

 $\nu_{\mu} \rightarrow \nu_{\tau}$

- Record statistics and excellent resolution lead to a wide physics research program:
 - More than 20 papers
 - More than 700 citations
 - Several ongoing precision analyses

Lecent and Ongoing Analyses

Outline

1 NOMAD Experiment

- 2 Recent and Ongoing Analyses
 - Total cross-section
 - Quasi-Elastic cross-section
 - Coherent π^0 production
 - Dimuons
 - NC/CC measurement
 - Fragmentation and Fracture functions

- π^0 Production in ν -Interactions
- Other ongoing analyses

3 Summary

Recent and Ongoing Analyses

Precision measurements

Completed precision measurements

- Total $\nu_{\mu}N$ charged current cross-section in $2.5 < E_{\nu} < 40$ GeV
- $\nu_{\mu}n \rightarrow \mu^{-}p$ QEL cross-section (talk by Jean-Michel)
- Coherent π^0 production in neutral current νN interactions

Ongoing precision measurements

- Measurement of strange sea and charm mass in $\mu^+\mu^-$ production
- First Measurement of $\sigma(NC)/\sigma(CC)(E_{had})$ in $1 < E_{had} < 100 \text{ GeV}$
- π^0 Production in ν -Interactions
- First Measurement of η Production in ν -Interactions
- π^{\pm} production yields and measurement of fragmentation and fracture functions
- Plus More

Recent and Ongoing Analyses

-Total cross-section

Total ν_{μ} CC cross-section

- E_{μ} -scale error constrained by K_S^0 mass < 0.2%
- E_{had} -scale error $\sim 0.6\%$
- Cross-section error is dominated by rel.flux error
- 4% for $2.5 < E_{\nu} < 10$ GeV
- 2.6% for $10 < E_{\nu} < 40$ GeV

Phys. Lett. B 660, 19 (2008) [arXiv:0711.1183 [hep-ex]].

Recent and Ongoing Analyses

└─Quasi-Elastic cross-section

QEL $\nu_{\mu}n \rightarrow \mu^{-}p$ cross-section

୍ର୍ବ୍

└─Recent and Ongoing Analyses

 $_$ Coherent π^0 production

Coherent π^0 production in νN NC interactions

π^0 (Coherent and not only) in ν N NC - main background (up to 60%) for ν_e appearance in LBL experiments

• Select events with only two γ s (no μ , no other tracks)

うつう 山田 エル・エー・ 山田 うらう

- Require γ s to convert in DC $\gamma \rightarrow e^+e^-$
- Use Data to predict the background
- Measure cross-section

Recent and Ongoing Analyses

 \square Coherent π^0 production

Coherent π^0 production in νN NC interactions Coherent π^0 candidate

Red crosses \times used in the reconstructed tracks, **black** \times are not used.

Recent and Ongoing Analyses

 $_$ Coherent π^0 production

Coherent π^0 production in νN NC interactions

Experiment	Nucleus	$\langle E \rangle$	$\sigma(Coh\pi^0)$	$Coh\pi^0/\nu_\mu CC$
		GeV	$10^{-40} cm^2/\mathcal{A}$	10^{-3}
Aachen-Padova	27	2	(29 ± 10)	
Gargamelle	30	2	(31 ± 20)	
CHARM	20	30	(96 ± 42)	
SKAT	30	7	(79 ± 28)	(4.3 ± 1.5)
15 BC	20	20	(0.20 ± 0.04)	
MiniBooNE	CH2	1.2	N/A	N/A
NOMAD	12.8	24.3	(72.6 ± 10.6)	(3.21 ± 0.46)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Recent and Ongoing Analyses

Dimuons

All the dimuon data

	Exp.	Publ.	Stat. $(N_{\mu\mu})$	E_{ν} (GeV)
$\underline{\nu N}$				
	CDHS	Jun 1982	660	$30 - 250 \ (> 100)$
	NuTeV	Feb 2001	5102	$20 - 400 \ (157.8)$
	CCFR	Feb 2001	5030	30 - 600 (> 100)
	CHORUS	Apr 2008	8910	10 - 240 (27)
	NOMAD		$\sim 17 \mathrm{k} \mathrm{exp.}$	$6 - 300 \ (24.3)$
$\bar{\nu}N$				
	CDHS	Jun 1982	171	$30 - 250 \ (> 100)$
	NuTeV	Feb 2001	1458	$20 - 400 \ (157.8)$
	CHORUS	Feb 2001	1060	30 - 600 (> 100)
	CHORUS	Apr 2008	430	10 - 240 (27)

The NOMAD experiment has the highest statistics and is closer to the charm production threshold

- └─Recent and Ongoing Analyses
 - L_{Dimuons}

Charm dimuon distributions

¥

Lecent and Ongoing Analyses

Dimuons

Expected NOMAD uncertainties

I can not show you the results yet...

<u>NOMAD uncertainties</u>

	Value (%)
Stat.	$\simeq 5.0 - 6.0$
Syst.	$\lesssim 2.5$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Recent and Ongoing Analyses

└─NC/CC measurement

$\sigma(NC)/\sigma(CC)$ as a function of E_{had}

- 2.5% for $E_{had} > 5$ GeV
- 5% for $E_{had} \sim 2$ GeV
- Corresponds to $Y_{B_i} > 0.04$
- Will improve background predictions for LBL

Recent and Ongoing Analyses

Fragmentation and Fracture functions

Charged Pions

π production. Fragmentation and fracture functions

- The lowest z is 30 times smaller than that of HERMES
- The plots include only 1/4 of the total NOMAD statistics.
- We will measure $D_q^{\pi}(z)$ and fracture functions with best accuracy.

Recent and Ongoing Analyses

 $-\pi^0$ Production in ν -Interactions

Inclusive π^0

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = • • • • • • •

- Recent and Ongoing Analyses
 - └Other ongoing analyses

Other ongoing analyses

- Differential $\nu_{\mu}N$ charged current DIS cross-section
- Checking the NuTeV Dimuon Anomaly
- Measurement of nuclear effects from $\sigma(\nu_{\mu}Fe)/\sigma(\nu_{\mu}C)$ in the same experiment

- Checking ν_{μ}/ν_{e} universality
- Inclusive η^0 production

∟_{Summary}

Outline

1 NOMAD Experiment

- 2 Recent and Ongoing Analyses
 - Total cross-section
 - Quasi-Elastic cross-section
 - Coherent π^0 production
 - Dimuons
 - NC/CC measurement
 - Fragmentation and Fracture functions

- π^0 Production in ν -Interactions
- Other ongoing analyses

3 Summary

∟_{Summary}

Summary

- The NOMAD experiment accumulated the highest resolution $\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e}/\bar{\nu}_{e}$ data in 2.5 < E_{ν} < 300 GeV. The analyses are still ongoing
- A number of precision measurements performed
- A list of ongoing analyses
- A rich physics can be extracted from:
- Over 1.7 millions ν-interactions recorded in Drift Chambers
- Over 2 millions ν -interactions recorded in Al-coil
- Over 20 millions ν-interactions recorded in Fe-scintillator calorimeter

∟_{Summary}

Summary

- The NOMAD experiment accumulated the highest resolution $\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e}/\bar{\nu}_{e}$ data in 2.5 < E_{ν} < 300 GeV. The analyses are still ongoing
- A number of precision measurements performed
- A list of ongoing analyses
- A rich physics can be extracted from:
- Over 1.7 millions *v*-interactions recorded in Drift Chambers
- Over 2 millions ν -interactions recorded in Al-coil
- Over 20 millions ν-interactions recorded in Fe-scintillator calorimeter

∟_{Summary}

Summary

- The NOMAD experiment accumulated the highest resolution $\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e}/\bar{\nu}_{e}$ data in 2.5 < E_{ν} < 300 GeV. The analyses are still ongoing
- A number of precision measurements performed
- A list of ongoing analyses
- A rich physics can be extracted from:
- Over 1.7 millions ν-interactions recorded in Drift Chambers
- Over 2 millions ν -interactions recorded in Al-coil
- Over 20 millions ν-interactions recorded in Fe-scintillator calorimeter

∟_{Summary}

Summary

- The NOMAD experiment accumulated the highest resolution $\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e}/\bar{\nu}_{e}$ data in 2.5 < E_{ν} < 300 GeV. The analyses are still ongoing
- A number of precision measurements performed
- A list of ongoing analyses
- A rich physics can be extracted from:
- Over 1.7 millions ν-interactions recorded in Drift Chambers
- Over 2 millions ν -interactions recorded in Al-coil
- Over 20 millions *v*-interactions recorded in Fe-scintillator calorimeter

∟_{Summary}

Summary

- The NOMAD experiment accumulated the highest resolution $\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e}/\bar{\nu}_{e}$ data in 2.5 < E_{ν} < 300 GeV. The analyses are still ongoing
- A number of precision measurements performed
- A list of ongoing analyses
- A rich physics can be extracted from:
- Over 1.7 millions ν-interactions recorded in Drift Chambers
- Over 2 millions ν -interactions recorded in Al-coil
- Over 20 millions *v*-interactions recorded in **Fe-scintillator** calorimeter

∟_{Summary}

Summary

- The NOMAD experiment accumulated the highest resolution $\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e}/\bar{\nu}_{e}$ data in 2.5 < E_{ν} < 300 GeV. The analyses are still ongoing
- A number of precision measurements performed
- A list of ongoing analyses
- A rich physics can be extracted from:
- Over 1.7 millions ν-interactions recorded in Drift Chambers
- Over 2 millions ν -interactions recorded in Al-coil
- Over 20 millions *v*-interactions recorded in **Fe-scintillator** calorimeter