Fourteenth Lomonosov Conference Moscow, August 19-25, 2009

Leptogenesis

Pasquale Di Bari (University of Southampton & INFN-Padova)

Cosmological observations

<u>CMBR</u> anisotropies

<u>Clusters of galaxies</u>

Large Scale Structure

SLOAN DIGITAL SKY SURVEY

<u>Supernovae type Ia</u>

+ many others (weak lensing, BAO, Ly-a,)

ACDM: a cosmological SM ?

(Tegmark et al. 2005)

Parameter	WMAP 3 years + SDSS	Description
Ω_0	$1.003^{+0.010}_{-0.009}$	Density parameter
	$\Omega_0=1$ (Flat Universe prior)	
h	$0.730^{+0.019}_{-0.019}$	Present expansion rate
q_0	-0.66 ± 0.1	Deceleration parameter
t_0 (Gyr)	13.76 ± 0.15	Age of the Universe
$T_{0}\left(K ight)$	2.725 ± 0.001	CMB temperature
$\Omega_{\rm B}$	0.0416 ± 0.0019	Baryon Density
$\Omega_{ m CDM}$	0.197 ± 0.016	Cold Dark Matter Density
Ω_{Λ}	0.761 ± 0.017	Dark Energy Density
w	$-0.941^{+0.087}_{-0.101}$	Dark Energy Equation of State
n_s	$0.948^{+0.014}_{-0.018}$	Scalar index
$\sum_i m_{ u_i}$	$< 0.94 \mathrm{eV}(95\% CL)$	Sum of neutrino masses

Thermal history of the Universe

Puzzles of Modern Cosmology

- 1. Dark matter
- 2. Matter antimatter asymmetry
- 3. Inflation

Leptogenesis

- 4. Accelerating Universe
- \Rightarrow clash between the SM and \land CDM !

Matter-antimatter asymmetry of the Universe

- Symmetric Universe with matter- anti matter domains ? Excluded by CMB + cosmic rays (Cohen, De Rujula, Glashow '96) $\Rightarrow \eta_B^{CMB} = (6.2 \pm 0.15) \times 10^{-10} \gg \overline{\eta}_B$ (barring the possibility of anti-matter "hidden" in compact objects: talk by Dolgov)
- Pre-existing ? It conflicts with inflation ! (Dolgov '97)
 - ⇒ dynamical generation (baryogenesis) (Sakharov '67)
- A Standard Model Solution ?

 $\eta_B^{SM} <<< \eta_B^{CMB} \qquad \text{by far too low !}$

New Physics is needed!

Models of Baryogenesis

- From phase transitions:
 - -Electroweak Baryogenesis:
 - * in the SM
 - * in the MSSM

.

- Affleck-Dine:

*

- at preheating
- Q-balls
-

- From Black Hole evaporation
 - Spontaneous Baryogenesis

- From heavy particle decays:
 - GUT Baryogenesis
 - LEPTOGENESIS

Neutrino masses: $m_1 < m_2 < m_3$

neutrino mixing data

2 possible schemes: normal or inverted

$$m_3^2 - m_2^2 = \Delta m_{\text{atm}}^2 \text{ or } \Delta m_{\text{sol}}^2 \quad m_{\text{atm}} \equiv \sqrt{\Delta m_{\text{atm}}^2 + \Delta m_{\text{sol}}^2} \simeq 0.05 \,\text{eV}$$
$$m_2^2 - m_1^2 = \Delta m_{\text{sol}}^2 \text{ or } \Delta m_{\text{atm}}^2 \quad m_{\text{sol}} \equiv \sqrt{\Delta m_{\text{sol}}^2} \simeq 0.009 \,\text{eV}$$

Neutrinos are much lighter than all other fermions !

A minimal extension of the SM

• Adding right-handed neutrinos with Yukawa couplings h and a Majorana mass term M after spontaneous symmetry breaking $\Rightarrow m_D = v h$ ($v \equiv \langle \phi_0 \rangle$)

$$\mathcal{L}_{\rm mass}^{\nu} = -\frac{1}{2} \, \left[\left(\bar{\nu}_L^c, \bar{\nu}_R \right) \left(\begin{array}{cc} 0 & m_D^T \\ m_D & M \end{array} \right) \left(\begin{array}{c} \nu_L \\ \nu_R^c \end{array} \right) \right] + h.c. \label{eq:Lagrangian}$$

In the see-saw limit ($M \gg m_D$) the spectrum of mass eigenstates splits in 2 sets:

(U is the leptonic mixing matrix U_{PMNS} !)

• 3 new heavy RH neutrinos N_1, N_2, N_3 with masses $M_{
m D} \ll M_1 \leq M_2 \leq M_3$

The see-saw orthogonal matrix

- parameter counting: 6 + 3 + 6 + 3 = 18
 - experiments \Rightarrow information on the 9 'low energy' parameters in $m_{\nu} = -U D_m U^T$:
- the 9 parameters in Ω and in M_i escape conventional investigation: the dark side !

$$\Omega(\omega_{21},\omega_{31},\omega_{32}) = R_{12}(\omega_{21}) R_{13}(\omega_{31}) R_{23}(\omega_{32}) ,$$

where

$$R_{12} = \begin{pmatrix} \sqrt{1 - \omega_{21}^2} & -\omega_{21} & 0 \\ \omega_{21} & \sqrt{1 - \omega_{21}^2} & 0 \\ 0 & 0 & 1 \end{pmatrix} , R_{13} = \begin{pmatrix} \sqrt{1 - \omega_{31}^2} & 0 & -\omega_{31} \\ 0 & 1 & 0 \\ \omega_{31} & 0 & \sqrt{1 - \omega_{31}^2} \end{pmatrix} , R_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - \omega_{32}^2} & -\omega_{32} \\ 0 & \omega_{32} & \sqrt{1 - \omega_{32}^2} \end{pmatrix}$$

"Vanilla" Leptogenesis

(Fukugita, Yanagida '86)

Let us start from the simplest scenario ("vanilla" leptogenesis)

1) Flavor effects are neglected

If $\epsilon_i \neq 0$ a lepton asymmetry is generated from N_i decays and partly converted into a baryon asymmetry by sphaleron processes if $T_{reh} \gtrsim 100 \text{ GeV}$! (Kuzmin, Rubakov, Shaposhnikov, '85)

$$N_{B-L}^{\text{fin}} = \sum_{i=1}^{3} \varepsilon_{i} \kappa_{i}^{\text{fin}} \Rightarrow \eta_{B} = a_{\text{sph}} \frac{N_{B-L}^{\text{fin}}}{N_{\gamma}^{\text{rec}}}$$

efficiency factors \simeq # of N_i decaying out-of-equilibrium

Total CP asymmetries

(Flanz, Paschos, Sarkar'95; Covi, Roulet, Vissani'96; Buchmüller, Plümacher'98)

2) Hierarchical heavy RH neutrino spectrum

$$M_2\stackrel{>}{\sim}$$
3 M_1

(Blanchet, PDB '06)

3) N₃ does not interfere with N₂-decays:

$$(m_D^{\dagger} m_D)_{23} = 0$$
 (PDB '05)

Under the last two assumptions

$$\Rightarrow |\varepsilon_{2,3}| \ll |\varepsilon_1|$$

In the end an unflavored N₁-dominated scenario holds:

$$\Rightarrow N_{B-L}^{\text{fin}} = \sum_{i} \varepsilon_{i} \kappa_{i}^{\text{fin}} \simeq \varepsilon_{1} \kappa_{1}^{\text{fin}}$$

It does not depend on the leptonic mixing matrix U!

4) Semi-hierarchical heavy neutrino spectrum

$$M_3 \simeq M_2 \stackrel{>}{\sim} 3 M_1$$

\Rightarrow Upper bound on ϵ_1

(Davidson, Ibarra '02;Buchmüller,PDB,Plümacher'03;Hambye et al '04;PDB'05)

$$\varepsilon_1 \leq \overline{\varepsilon}(M_1) \frac{m_{\text{atm}}}{m_1 + m_3} f_{\text{max}}(m_1)$$

$$\overline{\varepsilon}(M_1) \simeq 10^{-6} \left(\frac{M_1}{10^{10} \,\mathrm{GeV}} \right) \,,$$

$$0 \leq f_{\max}(m_1) \leq 1$$

Main lessons from vanilla leptogenesis

1)The early Universe seems to "know" neutrino masses with leptogenesis: a first interesting concordance

(Buchmüller, PDB, Plümacher '04)

$$\eta_B \simeq 0.01 \,\varepsilon_1(m_1, M_1, \Omega) \,\kappa_1^{\text{fin}}(K_1)$$
 $K_1 \equiv \frac{\Gamma_{N_1}}{H(T = M_1)} \sim \underbrace{\frac{m_{\text{sol}, \text{atm}}}{m_{\star} \sim 10^{-3} \,\text{eV}}}_{m_{\star} \sim 10^{-3} \,\text{eV}} \sim 10 \div 50$

The measured neutrino mass scales in neutrino oscillations are such that

the wash-out is strong enough to guarantee independence of the initial conditions

Main lessons from vanilla leptogenesis

2) Neutrino mass bounds

... but not too strong to prevent successful leptogenesis !

$$\varepsilon_1 \le \varepsilon_1^{\max}(m_1, M_1) \simeq 10^{-6} \frac{M_1}{10^{10} \,\text{GeV}} \Rightarrow \eta_B < \eta_B^{\max}(m_1, M_1)$$

Upper bound on m_1 : $m_1 \leq 0.12 \text{ eV}$ (Buchmüller, PDB, Plümacher '03; Giudice, Raidal, Strumia, Riotto '04) Lower bound on M_1 : $M_1 \geq 3 \times 10^9 \text{ GeV}$ (Davidson, Ibarra; Buchmüller, PDB, Plümacher '02) Lower bound on T_{reh} : $T_{reh} \geq 10^9 \text{ GeV}$ (Buchmüller, PDB, Plümacher '04)

10^{10¹⁰¹} 10⁰ 10.3 102 10" 1016 m, < 0.12 eV 1015 1015 1014 1014 1013 1013 ≥ 10¹² 1012 1011 1011 1010 1010 M_e ≳ 3x10^e GeV 10⁹ 10⁹ T_{__t} ≥ 10° GeV 10* 10* 10.3 10* m, (eV)

 $\eta_B^{\max}(m_1, M_1) \ge \eta_B^{CMB}$

3) A second interesting concordance

Neutrino oscillations data represent a strong positive test for leptogenesis not only in a qualitative way but also quantitavely !

A very hot Universe for leptogenesis ?

Beyond vanilla leptogenesis beyond the hierarchical limit adding flavor to vanilla leptogenesis N₂ - leptogenesis

Flavor effects

(Nardi, Nir, Roulet, Racker '06; Abada, Davidson, Losada, Josse-Michaux, Riotto'06)

Flavor composition:

$$|l_1\rangle = \sum_{\alpha} \langle l_{\alpha} | l_1 \rangle | l_{\alpha} \rangle \quad (\alpha = e, \mu, \tau) \qquad P_{1\alpha} \equiv |\langle l_{\alpha} | l_1 \rangle|^2$$

$$|\bar{l}_1'\rangle = \sum_{\alpha} \langle l_{\alpha} |\bar{l}_1'\rangle |\bar{l}_{\alpha}\rangle \qquad \bar{P}_{1\alpha} \equiv |\langle \bar{l}_{\alpha} |\bar{l}_1'\rangle|^2$$

It does not play any ole only for

$$\bar{P}_{1\alpha} \equiv |\langle l_{\alpha} | l_{1} \rangle|^{2}$$
$$\bar{P}_{1\alpha} \equiv |\langle \bar{l}_{\alpha} | \bar{l}_{1} \rangle|^{2}$$
$$M_{1} \stackrel{\geq}{\sim} \mathcal{O}(10^{12} \,\text{GeV})$$

but for $M_1 \leq 10^{12} \text{ GeV} \implies \tau$ -Yukawa interactions ($\bar{l}_{L\tau} \phi f_{\tau\tau} e_{R\tau}$)

are fast enough to break the coherent evolution of $|l_1\rangle$ and $|\overline{l'_1}\rangle \implies |l_1\rangle$ and $|\overline{l'_1}\rangle$ "tend" to be projected on a 2-flavor basis: along the τ and a coherent over-position of μ +e

For $M_1 \lesssim 10^9$ GeV the μ -Yukawas are also in equilibrium \Rightarrow 3-flavor regime

$$\Rightarrow N_{B-L}^{\text{fin}} = \sum_{i,\alpha} \varepsilon_{i\alpha} \kappa_{i\alpha}^{\text{fin}}$$

$$\xrightarrow{\text{heavy neutrino}} \text{lepton flavor index}$$

1) Low energy phases can be the only source of CP violation! (Blanchet, PDB, '06; Pascoli, Petcov, Riotto, '08; Anisimov, Blanchet, PDB '08)

Assume that all CP violation stems from low energy phases:

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} \times \operatorname{diag}(e^{i\frac{\Phi_1}{2}}, e^{i\frac{\Phi_2}{2}}, 1),$$

This implies that the total CP asymmetries vanish and :

 $N_{B-L}^{\text{fin}} \sim N_{\text{fl}} \varepsilon_1 \kappa_1^{\text{fin}} + \frac{\Delta P_{1\alpha}}{2} \left[\kappa_{1\tau}^{\text{fin}} - \kappa_{1,e+\mu}^{\text{fin}}\right]$

Assume that even the Majorana phases vanish \implies the only possible source of CP violation for leptogenesis is then the same we could observe in neutrino oscillations and that is described by $\sin \Theta_{13} \sin \delta$: would such a source be sufficient to have successful leptogenesis ? YES ! (though with severe restrictions on the RH neutrino mass spectrum)

NOTE: (un-)discovery of CP violation in neutrino oscillations would not (dis-)prove leptogenesis but it would however certainly represent an additional strong experimental support (or a missed opportunity)!

N₂-dominated scenario

(PDB'05)

For a special choice of $\Omega = R_{23}$

$$\Omega \simeq R_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \Omega_{22} & \sqrt{1 - \Omega_{22}^2} \\ 0 & -\sqrt{1 - \Omega_{22}^2} & \Omega_{22} \end{pmatrix}$$

3 things happen simultaneously:

• $\varepsilon_1 = 0 \Rightarrow$ no asymmetry from N_1 -decays

•
$$\varepsilon_2 \lesssim \varepsilon^{\max}(m_1, M_2)$$

 \Rightarrow asymmetry from N_2 -decays

•
$$K_1 = m_1/m_{\star}$$
 AND IF $m_1 \lesssim m_{\star} \simeq 10^{-3} \text{ eV}$
 \Rightarrow negligible wash-out from N_1 -inverse decays

$$\Rightarrow \quad N_{B-L}^{\text{fin}} = \sum_i \, \varepsilon_i \, \kappa_i^{\text{fin}} \simeq \varepsilon_2 \, \kappa_2^{\text{fin}}$$

The lower bound on M_1 disappears and is replaced by a lower bound on M_2 ... that however still implies a lower bound on T_{reh} ! $10^3 \text{ GeV} = M_1$

Thanks to flavor effects the domain of applicability extends much beyond the particular choice $\Omega = R_{23}$! (Vives '05; Blanchet, PDB '06; Nardi,Nir '07; Blanchet, PDB '08)

N₂-flavored leptogenesis

(Vives '05; Blanchet, PDB '06; Nardi, Nir '07; Blanchet, PDB '08)

$$N^{\rm f}_{B-L} \simeq \varepsilon_{2e} \, \kappa(K_{2e+\mu}) \, e^{-\frac{3\pi}{8} K_{1e}} + \varepsilon_{2\mu} \, \kappa(K_{2e+\mu}) \, e^{-\frac{3\pi}{8} K_{1\mu}} + \varepsilon_{2\tau} \, \kappa(K_{2\tau}) \, e^{-\frac{3\pi}{8} K_{1\tau}} \, .$$

Thanks to flavor effects the domain of applicability extends much beyond the particular choice $\Omega = R_{23}$!

Testing Models of New Physics with Leptogenesis

2 examples:

- 1. GUT's
- 2. Flavor symmetries

(Steve King at Neutrino Telescopes '09)

(Steve King at Neutrino Telescopes '09)

Leptogenesis and SO(10) models

Using the parameterization:

(PDB, Riotto '08)

 $m_D = V_L^{\dagger} D_{m_D} U_R, \quad \lambda_{D1} = \alpha_1 m_u, \ \lambda_{D2} = \alpha_2 m_c, \ \lambda_{D3} = \alpha_3 m_t,$

and assuming `SO(10)-inspired relations': V_L =1 and $\alpha_i = \mathcal{O}(1)$. $\implies M_1 \sim 10^5 \text{GeV}, M_2 \sim 10^{10} \text{GeV}, M_3 \sim 10^{14-16} \text{GeV}$

⇒ the asymmetry produced from the lightest RH neutrino is negligible and the N₂-dominated scenario is realized !

The green points correspond to $\eta_B > \eta_B^{CMB}$ at 2σ :

Flavor Symmetries

Some basic features

- Assume that the theory is invariant under transformations of a flavour symmetry group G (discrete or continuous) • ...and that this is spontaneously broken to a subgroup H through the VEV 's of a set of scalar fields φ (flavons) • $\eta = \langle \varphi \rangle / \Lambda \ll 1$
- flavor symmetries can well embed the see-saw mechanism !
- In this case the matrices M and m_D become functions of n and in the limit $\eta \rightarrow 0$ they have special forms enforced by the symmetry. For example defining $m_D^{\dagger} m_D = \mathcal{Y} \langle \phi \rangle^2$ one has:

$$\Omega_N^{\dagger}(g) \, \mathcal{Y}^0 \, \Omega_N(g) = \mathcal{Y}^0$$

Example: A_4 -symmetry \implies approximate tri-bimaximal mixing after symmetry breaking (Ma 0)

Leptogenesis in A4 x Z_3 x U(1)_{FN}

(Manohar, Jenkins ´08; Bertuzzo, Di Bari, Feruglio, Nardi '09; Hagedorn, Molinaro, Petcov ´09)

NORMAL ORDERING

INVERTED ORDERING

Successful leptogenesis is realized for the natural values of the parameters without any tuning + the scale of masses (and of T_{reh}) can be lowered (lowering y) Some tuning is needed and the scale of masses (and of T_{reh}) is necessarily very high

Beyond the minimal scenario?

Many extensions have been explored that can potentially produce signals at colliders, in cosmic rays,

- Non-thermal leptogenesis
- Supersymmetric
- \implies LFV, EDM's get enhanced and give additional constraints
- type I+type II (or type III) see-saw
- extra-gauge interactions
- \implies TeV RH neutrinos get produced (and detected) more efficiently
- light (KeV) RH neutrinos

•••••

 \implies can explain DM, X-ray background, pulsars kicks

...on the other hand in all these extensions of the minimal seesaw the nice matching between observed neutrino masses and matter-antimatter asymmetry is spoiled to some extent

Final remarks

- current information on neutrino masses is in very nice agreement with leptogenesis expectations !
 Wish list for leptogenesis :
- definitive exclusion of quasi-degenerate light neutrinos
- discovery of CP violation in neutrino oscillations
- discovery of 00vß
- emergence of correlations among different data that can be explained by leptogenesis + some model of new physics
- discovery of heavy neutrinos ?
 dangers :
- quasi-degenerate light neutrinos
- viable electroweak barogenesis
- $T_{reh} \lesssim 100 \text{ GeV}$

There is no upper bound on m₁ in the fully flavoured regime !

Is the fully flavoured regime suitable to answer the question ?

No ! There is an intermediate regime where a full quantum kinetic description is necessary ! (Blanchet,PDB,Raffelt '06)