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ADD model
The simplest model with large extra dimensions was
suggested by Arkani-Hamed, Dimopoulos and Dvali (ADD) as
solution to the hierarchy problem. The weakness of gravity in
four dimensions is explained by the presence of n extra
dimensions compactified on a torus large compared to the
electroweak scale, while the fundamental mass parameter M∗

(higher-dimensional Planck mass) is taken of the order of
1 TeV. Assuming that the extra space is flat, the
D-dimensional Einstein action can be related to the
4-dimensional one by
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where V is the volume of the n-torus, so GD = V G4, or in
terms of masses,

M 2
Pl = M ∗(n+2) V.
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Denoting V = (2πR)n one finds the compactification radius
R for fixed value of M∗ = 1 TeV :

l∗ = V 1/n ∼ 1030/n−17 cm

n R

1 1.5 × 1013 cm
2 0.5 mm = 1/(10−4eV)

4 3 × 10−8 mm = 3/(20KeV)

6 10−10 mm = 1/(1MeV)

The case n = 1 is excluded, but n = 2 gives l∗ ∼ 1mm. This
is enormous with respect not only to electroweak scale, but
also to atomic scale, so such large extra dimensions have
to be seen in the low energy processes not to say about
direct mechanical tests of the Newton law.
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Static force
Two test masses m1,m2 at a distance small with respect to
the compactification radius r ≪ R feel a gravitational potential
following from Gauss’s law in (4 + n) dimensions:

V (r) ∼ m1m2

Mn+2
∗

1

rn+1
, (r ≪ R)

with the Tev-scale gravitational constant. Gravity is strong in
this case. But being placed at large distances r ≫ R, they
feel four-dimensional potential, since the gravitational flux
lines joining them do not penetrate into the extra dimensions:

V (r) ∼ m1m2

Mn+2
∗ Rn

1

r
, (r ≫ R)

Gravity is weakened by the ratio (R/r)n, so our effective 4
dimensional gravitational coupling is reproduced in view of
the ratio M 2

Pl ∼ M 2+n
∗

Rn. Therefore an observed weakness of
gravity is explained by the Gauss law: only a small fraction of
the gravitational flux lines propagates along the brane.
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Linearized theory
Expanding the D-dimensional metric gMN = ηMN + κDhMN

we get Fierz-Pauli lagrangian in D-dimensional Minkowski
space, with n ≡ D − 4 of spatial dimensions forming a torus
T n with equal radii R

L = −1

4
hMN�hMN +

1

4
h�h − 1

2
hMN∂M∂Nh +

1

2
hMN∂M∂P hP

N

− κD

2
hMNTMN ,

where M,N, .. = 0, 1, 2, ..., D − 1. The Minkowski metric is
ηMN = diag(1,−1,−1, ...), h ≡ ηMNhMN ≡ hM

M and
� ≡ ηMN∂M∂N . The gravitational field hMN is coupled in a
universal way to a conserved matter stress-tensor TMN

(∂NTMN = 0). The latter is further assumed to be localized on
the brane by some confinement mechanism
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Momentum quantization

Consider first vacuum case TMN = 0. Metric functions
depend on

xM = (xµ, yi), µ = 0, . . . , 3, i = 1, . . . n,

and must be periodic under translations yj → yj + 2πR, which
leads to quantization of the momentum in compact directions

hMN(xP ) =

+∞
∑
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· · ·
+∞
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Graviton polarizations can be split in the Kaluza-Klein spirit

hMN = V −1/2
n





hµν + ηµνφ Aµj

Aiν 2φij



 ,

φ ≡ φii, µ, ν = 0, 1, 2, 3 and i, j = 5, 6, · · · , 4 + n
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Massless modes
Different polarization states for zero modes (~n = 0) give rise
to massless fields: 4D graviton , n massless graviphotons
A0

µi, massless radion φ0 and n(n + 1)/2 massless moduli φ0
ij.

These fields which have no momentum in the compactified
dimensions are confined to the brane. The trace of the scalar
matrix, the radion φ0 describes fluctuations of the torus. It is
supposed that there must exist a mechanism giving it the
mass, which stabilize the volume of the compact space. The
lagrangian for the massless modes reads

Lni=0 =
1

4

(

∂µhνρ∂µhνρ − ∂µh∂µh − 2hµhµ + 2hµ∂µh

)

−
n

∑
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4
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∂µφij∂µφij ,

where Fµνi = ∂µAνi − ∂νAµi
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Massive modes
Fourier components with ~n 6= 0 can be suitably rearranged to
form an infinite tower of massive 4D spin two fields h~n

µν , n − 1

towers of massive vector fields A~n
µi and n(n − 1) towers of

massive scalars φ~n
ij , with the remaining ’could be’ massive

vectors and scalars eliminated by D-dimensional coordinate
transformations. This rearrangement is similar to
spontaneous symmetry breaking. Like in the Higgs
mechanism, the massless spin-2 graviton fields absorb the
spin-1 and spin-0 fields and become massive. The massive
fields obey the equations

(� + m2
~n) (h~n

µν −
1

2
ηµνh

~n) = 0,

(� + m2
~n) A~n

µi = 0, (� + m2
~n) φ~n

ij = 0,

where � is 4D d’Alembert operator and m2
~n = 4π2~n2

R2 .
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Coupling to matter
D-dimensional gravity strongly couples to bulk fields in a
universal way. However, for the matter occupying only the
brane one gets the four-dimensional Newton coupling. In 4d
terms the lowest order interaction lagrangian reads

−κ4

2

∫

d4x(hµνTµν + φT µ
µ) ,

where Tµν is the 4d stress-tensor. Rewriting this in terms of
physical massive modes one finds

−κ4

2

∑

~n

∫

d4x(hµν,~nTµν + ωφ~nT µ
µ) .

Note that the vector KK modes A~n
µi fully decouple and the

scalar KK modes φ~n
ij only couple through their trace φ~n, the

dilaton mode. Although each individual graviton couples very
weakly to ordinary matter, their large number may enhance to
an observable scale the effects due to both the virtual
graviton exchange and emission of real KK gravitons.
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Emission of KK gravitons
Radiation is the most efficient tool to probe extra dimensions.
Emission of light KK gravitons may lead to drastic and
inadmissible modification of certain astrophysical and
cosmological patterns thus providing restrictions to LED
scenarios. First are the effects of KK graviton emission in hot
stars such as the Sun, red giants and supernova SN1987A.
Excessive energy losses in the stars can alter the stellar
evolution. Emission of the KK gravitons (gKK) is due to:

γ + γ → gKK , photon-photon annihilation;

e− + e+ → gKK , electron-positron annihilation;

γ + e− (Ze) → e− (Ze) + gKK , gravi-Compton scattering;

e− + Ze → e− + Ze + gKK , gravi-bremsstrahlung in a
static electric field of the nuclei;
N + N → N + N + gKK , nucleon-nucleon
bremsstrahlung.
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SN cooling and related effects
The dominant graviton emission process from a SN core is
nucleon-nucleon bremsstrahlung. The requirement that KK
gravitons do not carry away more than half of the energy
emitted by the supernova SN1987A gives the bounds
M∗ > 13TeV for n = 2 and M∗ > 1TeV for n = 3. Further
evolution of these gravitons leads to more stringent bounds.
After being created, KK gravitons are quasi-stable except for
their slow, gravitational-strength, decay into photons,
neutrinos, and other standard particles. Therefore, the
decays of KK gravitons produced in all cosmic SNe will
contribute to the measured diffuse cosmic γ-ray background,
providing more restrictive limits than the SN 1987A
energy-loss argument. Measurements by the EGRET satellite
imply M∗ > 34TeV for n = 2 and M∗ > 3TeV for n = 3. Limits
on gamma-rays from all the neutron-star sources imply
M∗ > 180TeV for n = 2 and M∗ > 10TeV for n = 3.
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Even more stringent restriction follow from the secondary
effects due to KK gravitons. The decay products of the
gravitons forming the halo can hit the surface of the neutron
star, providing a heat source. The low measured luminosities
of some pulsars imply M∗ > 670TeV for n = 2 and
M∗ > 22TeV for n = 3. These are the most restrictive bounds
which probably make n = 2 case uninteresting as a solution
of the hierarchy problem.

Astrophysical constraints set very strong bounds on M∗ for
n < 4 in some cases even ruling out the possibility to observe
any signature of KK gravitons at the LHC. But it has to be kept
in mind, however, that these constraints refer to soft KK
gravitons lighter than 100 MeV. They disappear in more
sophisticated models in which the graviton spectrum is
bounded from below at this value.
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Emission of gravitons at colliders
KK gravitons may be produced at colliders both in leptonic
and hadronic collisions. Since the produced gravitons interact
with matter only on 4D gravitational scale, they will remain
undetected leaving a “missing energy” signature. Such events
were searched for in the processes

e+ + e− → γ + missing, e+ + e− → Z + missing

at LEP and
p + p̄ → γ + missing, p + p̄ → jet + missing

at Tevatron. The combined LEP limits are M∗ > 1.4 TeV for
n = 2, M∗ > .8 TeV for n = 3, M∗ > .5 TeV for n = 4,
M∗ > .3 TeV for n = 5 and M∗ > .2 TeV for n = 6.
Experiments at LHC will improve this sensitivity. Theoretical
predictions for hadron machines have uncertainties, and can
be applied only at subplanckian energies

√
s ≪ M∗, where

s = (p1 + p2)
2
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Transplanckian regime
Physics at

√
s ∼ M∗ can be described only by the full

underlying quantum gravity or string theory. However, for the
transplanckian energies

√
s ≫ M∗ the semiclassical

description is possible. Since an effective gravitational
coupling grows with energy, gravity becomes dominant. On
the other hand, it can be argued that at ultrahigh energies,
particle scattering not only becomes dominated by gravity, but
in addition it involves only classical gravitational dynamics.
Indeed, in the usual 4D theory quantum gravity effects should
not, by definition, be important in the classical limit ~ → 0.
This, in terms of the two relevant lengths, i.e. the Planck
length lPl = (~G4/c

3)1/2 = ~/MPlc and the gravitational radius
associated with the energy of the collision rg = G4

√
s/c4,

implies that the classicality condition lPl ≪ rg, is equivalent to
the condition

√
s ≫ MPlc

2 of transplanckian energies.
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In the ADD scenario the D-dimensional Planck length l∗
(marking quantum gravity effects) and the gravitational radius
r∗g (classical) are, correspondingly

l∗ =

(

~GD

c3

) 1

n+2

∼ ~

M∗c
, r∗g =

(

GD

√
s

c4

)
1

n+1

.

The above reasoning remains essentially the same and
shows that in the transplanckian regime

√
s ≫ M∗c

2

scattering is also classical, at least for some range of
momentum transfer. Indeed, from this condition it follows

λDB ≪ l∗ ≪ r∗g

where
λDB =

~c√
s

is De Broglie wavelength of collision, marking QFT effects.
No black holes LHC? – p. 15/24



The novel feature which is due to extra dimensions is the
existence of one more scale parameter

bc ∼
(

GDs

~c5

) 1

n

∼ r∗g

(

r∗g
λDB

) 1

n

,

which does not exists for n = 0. In the limit of vanishing
Planck constant ~ → 0 this quantity does to infinity, so the
classical region is bounded from above by b < bc. For b > bc,
the ordinary QFT become important, while quantum gravity
effects are still negligible.
Another restriction on the feasibility of calculations is the
weak gravitational field approximation b ≫ r∗g , otherwise one
has to use the fully non-linear Einstein theory. This, however,
poses not only technical problems, but also the problem of
the overall consistency of the ADD model beyond the
linearized level. Fortunately, the weak field condition b ≫ r∗g
automatically imply the classicality condition b ≪ bc since in
the transplanckian region r∗g ≪ λDB. No black holes LHC? – p. 16/24



Black hole production
One of the most amazing predictions of theories with LEDs is
that one could actually form black holes from particle
collisions at the LHC. Black holes are formed when the mass
of an object is within the horizon size corresponding to the
mass of the object. If the center-mass energy and the impact
parameter of the collision are such that the D = 4 + n
dimensional gravitational radius is larger than the impact
parameter

ds2 = (1 − M

M 2+n
∗ r1+n

)dt2 − dr2

(1 − M
M2+n

∗
r1+n

)
+ r2d2Ω,

the horizon size is given by

rH ∼
(

M

M∗

) 1

1+n 1

M∗

.

.
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Then the collided particles will form a black hole with mass
MBH =

√
s, and the cross section as we have seen is roughly

the geometric cross section corresponding to the horizon size
of a given collision energy

σ ∼ πr2
H ∼ 1

M 2
Pl

(
MBH

M∗

)
2

n+1

The cross section would thus be of order 1/TeV2 ∼ 400 pb,
and the LHC would produce about 107 black holes per year!
These black holes would not be stable, but decay via Hawking
radiation. This has the features that every particle would be
produced with an equal probability in a spherical distribution.
In the SM there are 60 particles, out of which there are 6
leptons, and one photon. Thus about 10 percent of the time
the black hole would decay into leptons, 2 percent of time into
photons, and 5 percent into neutrinos, which would be
observed as missing energy. These would be very specific
signatures of black hole production at the LHC.
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The widely accepted picture consists in the four-stage
process of formation and evaporation of BHs in colliders,

formation of a closed trapped surface (CTS) in the
collision of shock waves modeling the head-on particle
collision,
the balding phase, during which the BH emits
gravitational waves and relaxes to the Myers-Perry BH,

Hawking evaporation and superradiance phase in which
the experimental signatures are supposed to be
produced, and

the quantum gravity stage, where more fundamental
theory like superstrings is important. This scenario was
implemented in computer codes to simulate the BH
events in LHC, where they are expected to be produced
at a rate of several per second, and in ultra high energy
cosmic rays.
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Transplankian radiation
Radiation is the main inelastic process which will accompany
transplanckian scattering. For b < bc its main features can be
understood classically. During recent years radiation in
presence of uncompactified LED was extensively studied
within the classical theory (Kosyakov ’99; D.G. ’01; Kazinski
et al. ’02; Lemos et al. ’03; D.G. and Spirin ’04-’09,
etc.).Bremsstrahlung in transplanckian collisions in the ADD
model was recently considered by D.G., Kofinas, Tomaras
and Spirin (0908.0675 [hep-ph]).Bremsstrahlung is
substantially enhanced due to exchange of KK modes and
emission of light massive gravitons. The cross-section
exhibits rapid increase with the number of extra-dimensions
and may serve an efficient tool to test theories with large n.
Radiation emitted in the KK modes is invisible and provides a
new channel of the missing energy processes at colliders.
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The radiated energy in the rest frame one one of the particles
reads

Erad = C̃D
m2m′2

κ
6
D

b3d+3
γd+3

with a known dimension-dependent coefficient. Qualitatively
the dependence on b and γ can be understood estimating the
number of light KK modes participating in interaction and
radiation. To pass to the CM frame, one calculates the
relative energy loss (radiation efficiency) ǫ ≡ Erad/E, and
expresses the result in terms of the Lorentz factor in the CM
frame via (for m = m′) γ2

cm = (1 + γ)/2:

ǫ = Cd

(rS

b

)3(d+1)

γ2d+1
cm .
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The two new features of this expression are: (a) the large
factor γ2d+1

cm due to the large number of light KK modes
involved both in the gravitational force and in the radiation,
and (b) the growing with d coefficient:

d 1 2 3 4 5 6

Cd 10.1 184 3359 6 · 104 1.06 · 106 1.8 · 107

rS 3.45 1.88 1.46 1.29 1.21 1.17

bc 196 7.90 3.15 2.11 1.72 1.53

rS and bc in TeV−1 evaluated for M∗ ≃ 1TeV and
√

s ≃ 14TeV.
The classical description of small angle ultrarelativistic
scattering is valid for impact parameters in the region
rS < b < bc , where
bc ≡ π−1/2 [Γ(d/2)GDs/~c5]

1/d ∼ rS (rS/λB)1/d is the scale
beyond which (for d 6= 0) classical notion of trajectory is lost
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Another restriction comes from the quantum bound on the
radiation frequency ~ωcr < mγ, which is equivalent to
b > λC ≡ ~/(mc). For d 6= 0 the two conditions overlap
provided λC < bc. To estimate ǫ set b = λC to obtain
ǫ = Bd(sm/M 3

∗
)d+2 (Bd = 7.4, .8, .6, .9, 1.9, 5.6, 21 for

d = 0, 1, . . . , 6). Thus, a simple condition for strong radiation
damping is

sm & M 3
∗

, (1)

which may well hold for heavy particles and nuclei with LHC
energies and cosmic rays. For example, for

√
s = 14 TeV and

m = .2 TeV all conditions are met for d = 1, 2, and at the
quantum boundary b = λC one has ǫ1 ≃ 5 × 104, ǫ2 ≃ 106. For
protons in LHC, λC > bc, our formula does not apply for d 6= 0.
For d = 0 and b = λC it gives ǫ = .25.
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Conclusions

Our analysis shows that Kaluza-Klein bremsstrahlung may
lead to strong radiation damping in transplanckian
collisions. Therefore,

One may have to include the reaction force in the study
of BH production, which might even exclude the
formation of a CTS. Incidentally, there are indications
that gravitational collapse of an oscillating string does
not take place, once gravitational radiation is taken into
account.

Our results also imply that bremsstrahlung is a strong
process leading to missing energy signatures in
transplanckian collisions, which may further constrain
the ADD parameters
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