Minimal Extension of the Standard Model of Particle Physics

Dmitry Gorbunov

Institute for Nuclear Research, Moscow, Russia

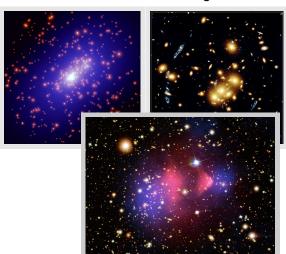
14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

- Motivation: Phenomena Observed but Unexplained within the SM
- 2 The vMSM Model: Content and Lagrangian
- The vMSM Model: Numbers in Sterile Neutrino Sector
- Conclusions

Ä

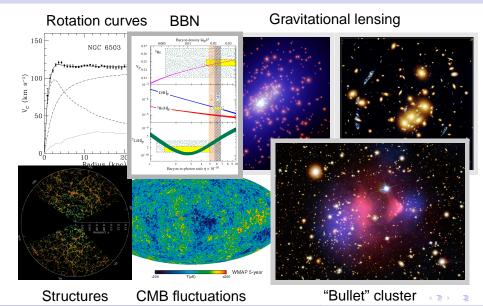
- Motivation: Phenomena Observed but Unexplained within the SM
- 2 The vMSM Model: Content and Lagrangian
- The vMSM Model: Numbers in Sterile Neutrino Sector
- 4 Conclusions

Neutrino Oscillations: Masses and Mixing



Baryons and Dark Matter in Astrophysics

Rotation curves



Gravitational lensing

"Bullet" cluster

Baryons and Dark Matter in Cosmology

Dmitry Gorbunov (INR)

Minimal Extension of the SM

21.08.2009. Moscow

Gauge fields (interactions) –
$$\gamma$$
, W^{\pm} , Z , g

Three generations of matter:
$$L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$$
, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) sterile neutrino as DM
 - Baryon asymmetry leptogenesis via sterile neutrino oscillations

- Dark energy (Ω_Λ)
- Inflation
- ► Strong CP
- Gauge hierarchy
- Quantum gravity

vMSM explains these

but does not address those

Gauge fields (interactions) – γ , W^{\pm} , Z, g

Three generations of matter:
$$L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$$
, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations
 - ▶ Dark matter (Ω_{DM}) sterile neutrino as DM
 - Baryon asymmetry leptogenesis via sterile neutrino oscillations

vMSM explains these but does not address those

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) sterile neutrino as DM
 - Baryon asymmetry leptogenesis via sterile neutrino oscillations

- Dark energy (Ω_Λ)
- Inflation
- Strong CP
- Gauge hierarchy
- Quantum gravity

vMSM explains these

but does not address those

Gauge fields (interactions) – γ , W^{\pm} , Z, g

Three generations of matter:
$$L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$$
, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) sterile neutrino as DM
 - Baryon asymmetry leptogenesis via sterile neutrino oscillations

- Dark energy (Ω_Λ)
- Inflation R², RH[†]H, ...
- Strong CP changing topology, ...
- Gauge hierarchy No scales!
- Quantum gravity

vMSM explains these

explained by Plank-scale physics?

- 1 Motivation: Phenomena Observed but Unexplained within the SM
- 2 The vMSM Model: Content and Lagrangian
- The vMSM Model: Numbers in Sterile Neutrino Sector
- Conclusions

VMSM Particle Content

36 quark states:

```
(u,d)_L, (c,s)_L, (t,b)_L and u_R, d_R, c_R, s_R, t_R, b_R, (u,d)_L, (c,s)_L, (t,b)_L and u_R, d_R, c_R, s_R, t_R, b_R, (u,d)_L, (c,s)_L, (t,b)_L and u_R, d_R, c_R, s_R, t_R, b_R
```

9+3 leptonic states:

$$(v_e,e)_L$$
, $(v_\mu,\mu)_L$, $(v_\tau,\tau)_L$ and N_1 , e_R , N_2 , μ_R , N_3 , τ_R

$$SU(3)\times SU(2)_L\times U(1)$$
 — 12 gauge bosons (8+3+1)

one Higgs doublet

Leptonic sector has similar structure as the quark sector

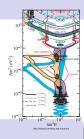
VMSM Particle Content

36 quark states:

```
(u,d)_L, (c,s)_L, (t,b)_L and u_R, d_R, c_R, s_R, t_R, b_R, (u,d)_L, (c,s)_L, (t,b)_L and u_R, d_R, c_R, s_R, t_R, b_R, (u,d)_L, (c,s)_L, (t,b)_L and u_R, d_R, c_R, s_R, t_R, b_R
```

9+3 leptonic states:

$$(v_e, e)_L$$
, $(v_\mu, \mu)_L$, $(v_\tau, \tau)_L$ and N_1 , e_R , N_2 , μ_R , N_3 , τ_R SU(3)×SU(2) $_L$ ×U(1) — 12 gauge bosons (8+3+1)


one Higgs doublet

Leptonic sector has similar structure as the quark sector

vMSM Lagrangian

- Let us try to use as little "new physics" as possible
- Require to get the correct neutrino oscillations
- Explain DM and baryon asymmetry of the Universe

Lagrangian

Most general renormalizable with 3 right-handed neutrinos N_I

$$\mathscr{L}_{vMSM} = \mathscr{L}_{MSM} + \overline{N}_I i \partial N_I - f_{I\alpha} H \overline{N}_I L_\alpha - \frac{M_I}{2} \overline{N}_I^c N_I + \text{h.c.}$$

Extra coupling constants:

3 Majorana masses M_i

Asaka, Blanchet, Shaposhnikov, 2005

15 new Yukawa couplings
(Dirac mass matrix $M^D = f\langle H \rangle$ has 3 Dirac masses,
6 mixing angles and 6 CP-violating phases)

Dmitry Gorbunov (INR)

v Masses and Mixings:

"seesaw" from $f_{I\alpha}H\overline{N}_IL_{\alpha}$

 $M_I \gg M^D = f v -$ says nothing about M_I !

dangerous: $\delta m_h^2 \propto M_I^2$

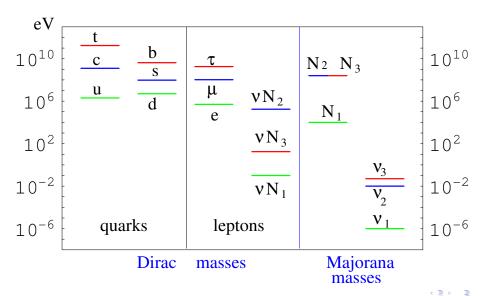
3 heavy neutrinos with masses M_1

similar to quark masses

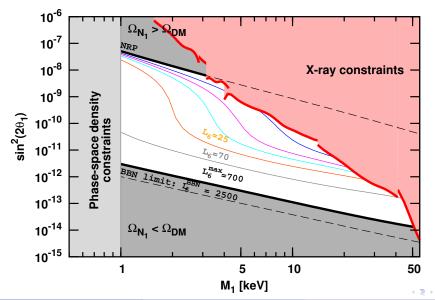
Light neutrino masses

$$M^{\nu} = -(M^D)^T \frac{1}{M_I} M^D \propto f^2 \frac{\nu^2}{M_I}$$

$$U^{T}M^{V}U = \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix}$$


Mixings: flavor state $v_{\alpha} = U_{\alpha i} v_i + \theta_{\alpha I} N_I^c$

$$\theta_{\alpha I} = \frac{(M^D)_{\alpha I}^{\mathsf{T}}}{M_I} \propto f \frac{V}{M_I} \ll 1$$


- Motivation: Phenomena Observed but Unexplained within the SM
- igl(2) The vMSM Model: Content and Lagrangian
- The vMSM Model: Numbers in Sterile Neutrino Sector
- Conclusions

Spectrum of vMSM

DM – lightest sterile neutrino N₁

BAU – heaviest sterile neutrinos $N_{2,3}$

- 1 Motivation: Phenomena Observed but Unexplained within the SM
- $extbf{ iny}$ The vMSM Model: Content and Lagrangian
- The vMSM Model: Numbers in Sterile Neutrino Sector
- Conclusions

Conclusions

- vMSM the simplest Standard Model extension with right handed neutrinos provides
 - active neutrino masses and mixing angles
 - 1-50 keV neutrino as DM
 - mechanism for baryon asymmetry generation
- Possible searches for Dark Matter keV sterile neutrino
 - X-ray observations indirect evidence
 - $0v\beta\beta$ decay very small rate, $m_v \lesssim 10^{-5}$ eV
 - Full kinematics measurement of beta decay in the laboratory ?
- Possible searches for "heavy" sterile neutrinos responsible for baryogenesis
 - ▶ sterile neutrino from K, D, B, τ decays with Br $\simeq 10^{-6} 10^{-10}$
 - sterile neutrino decays searches: CNGS, T2K, etc.

Model with $M_N < M_K$ can be fully explored experimentally

