# "Helicity quark distributions from DIS and SIDIS measured in COMPASS"

**D.Peshekhonov** 

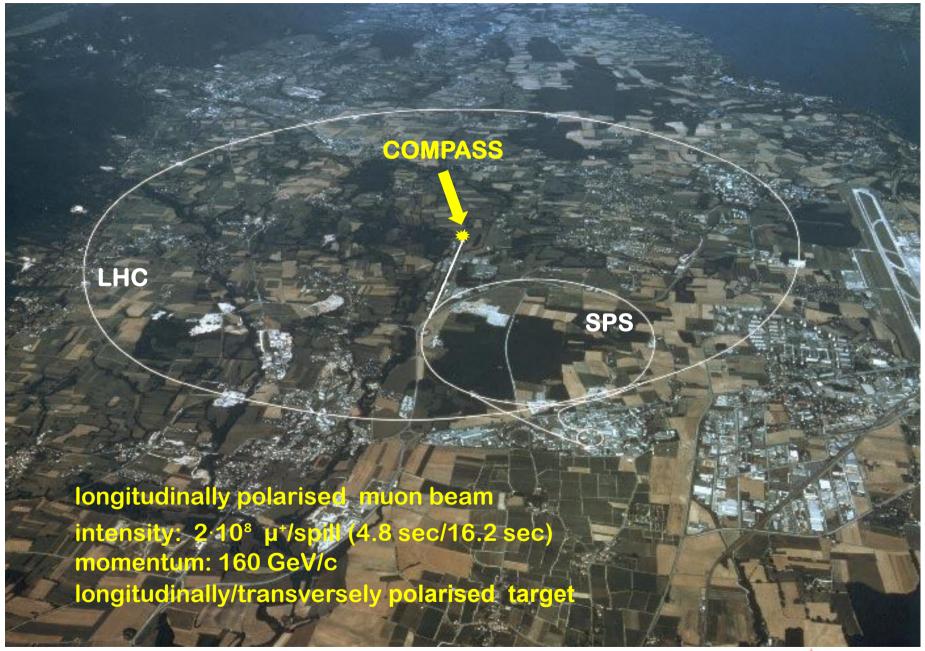
JINR, Dubna

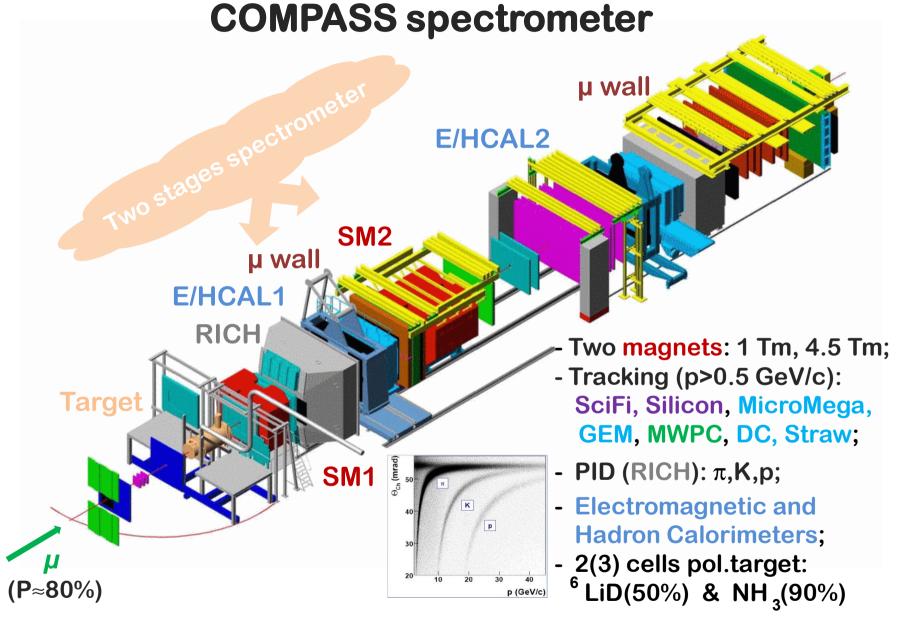
on behalf of the COMPASS collaboration



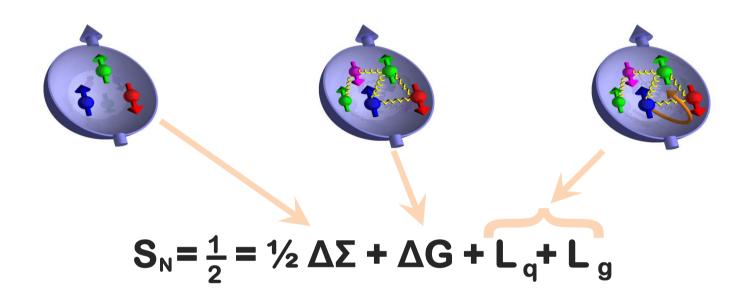
# COmmon Muon and Proton Apparatus for Structure and Spectroscopy

# NA58 experiment at CERN


~230 physicists from 11 countries


Czech Republic, Finland, France, Germany, India, Israel, Italy, Japan, Poland, Portugal and Russia

- Muon program (2002-2007)
   Deep Inelastic Scattering (DIS) of polarized 160 GeV/c muons on polarized deuterons and protons
- Hadron program (2008-2009)


190 GeV/c  $\pi$ , K , p beams search for exotics in diffractive excitation and central production, polarizability of  $\pi$ , K

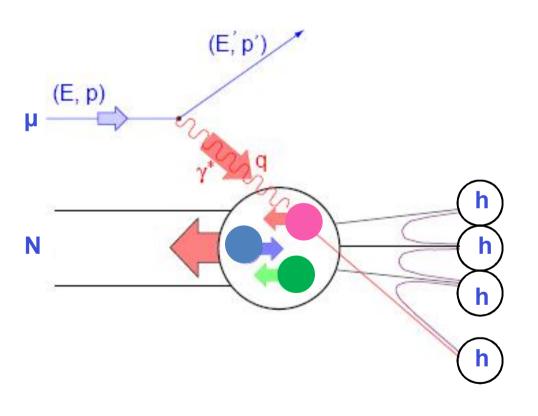






# Spin of the nucleon




#### Naive view:

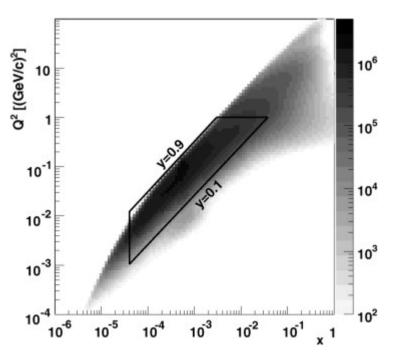
$$\Delta \Sigma = \Delta u_v + \Delta d_v = 1$$

#### **Complete description:**

- $\Delta\Sigma = \Delta u + \Delta d + \Delta s$  (for q and q)
- ·  $\Delta G$
- orbital angular momenta

# Deep inelastic scattering




#### **Kinematical variables:**

$$Q^{2} = -q^{2}$$

$$x = Q^{2}/2Mv$$

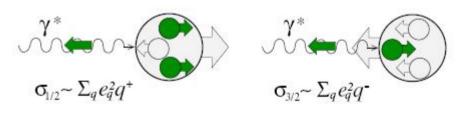
$$v = E-E'$$

$$y = v/E$$



# Deep inelastic scattering

quark densities in QPM:


$$q(x) = q^+(x) + q^-(x)$$

$$\Delta q(x) = q^+(x) - q^-(x)$$

- Longitudinal double-spin asymmetry:
- **Cross-sections** and

#### Structure functions:

$$\bar{\sigma}(x, Q^2) = aF_1(x, Q^2) + bF_2(x, Q^2)$$
  
 $\Delta \sigma(x, Q^2) = \alpha g_1(x, Q^2) + \beta g_2(x, Q^2)$ 



$$A^{\gamma N} \equiv A_1 = rac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = rac{\sum_q e_q^2 \Delta q}{\sum_q e_q^2 q}$$

Longitudinal spin asymmetry μN:

$$A^{\mu N} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} = \frac{\Delta\sigma}{\bar{\sigma}} \simeq DA_1$$

**D** – depolarization factor of  $\gamma$ 

Structure functions and PDF:

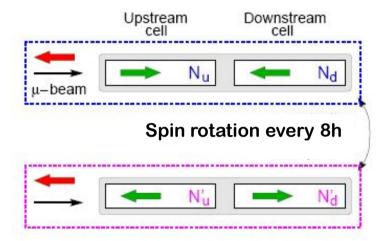
$$\Delta\sigma(x,Q^2) = \alpha g_1(x,Q^2) + \beta g_2(x,Q^2) \qquad F_1 = \frac{1}{2} \sum_q e_q^2 (q + \bar{q}), \quad g_1 = \frac{1}{2} \sum_q e_q^2 (\Delta q + \Delta \bar{q})$$

• Asymmetry  $A_1$  and structure function  $g_1$ :  $g_1 \approx A_1 \cdot F_1$ 

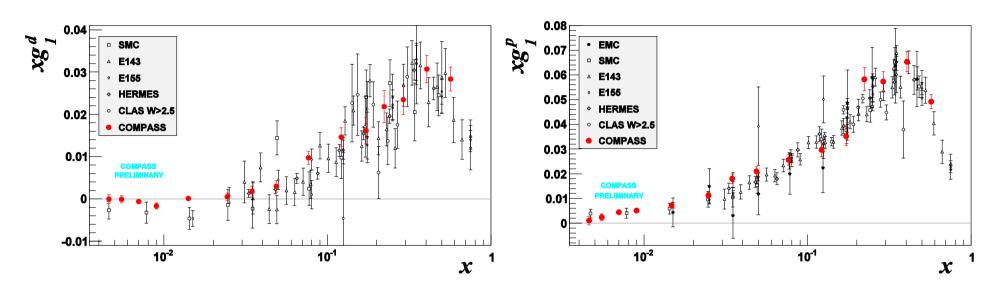
# **Asymmetry measurement**

• to be measured: 
$$A_{\parallel} = \frac{\sigma^{\uparrow \downarrow} - \sigma^{\uparrow \uparrow}}{\sigma^{\uparrow \downarrow} + \sigma^{\uparrow \uparrow}}$$

• measured values: 
$$N_u$$
,  $N_d$ ,  $N_u'$ ,  $N_d'$ 


• flux normalization: 
$$\frac{\Phi_u}{\Phi_d} = 1$$

acceptance: (constant ratio)


$$\frac{\imath_d'}{\imath_u'} = 1$$

- double ratio method:  $\delta = \frac{N_u \cdot N_d'}{N_u' \cdot N_d}$ 
  - $\Rightarrow$  solve for  $A_{exp}$  (2<sup>nd</sup> order equation)
  - ⇒ minimization of bias
- experimental asymmetry:  $A_{exp} = p_{\mu} p_{T} f A \parallel$

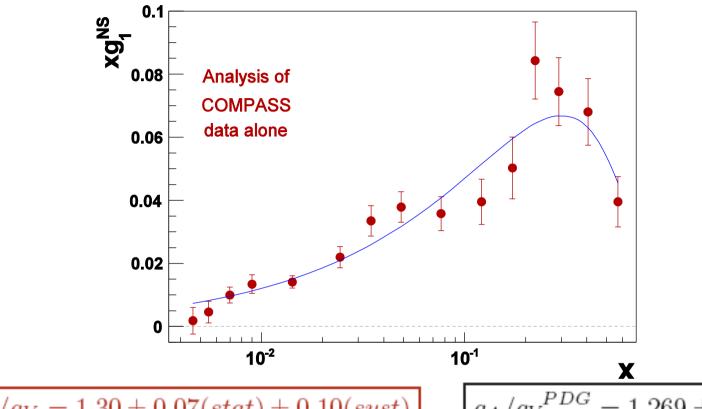
f - dilution factor



# Structure functions g<sub>1</sub><sup>d</sup> and g<sub>1</sub><sup>p</sup>



• The non-singlet spin structure function  $g_1^{NS}(x)$  can be evaluated


$$g_1^{NS}(x) = g_1^p(x) - g_1^n(x) = 2\left[g_1^p(x) - \frac{g_1^d(x)}{1 - 3/2\omega_D}\right],$$

• First moments provide a test of the Bjorken sum rule, a fundamental result of QCD derived using current algebra:

$$\Gamma_1^{NS} = \Gamma_1^p - \Gamma_1^n = \frac{1}{6} \left| \frac{g_A}{g_V} \right| C^{NS}$$
 or  $\Delta u - \Delta d = \left| \frac{g_A}{g_V} \right|$ 



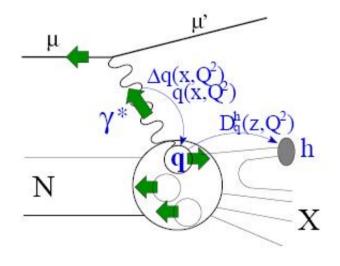
# Structure functions $g_1^{NS}$

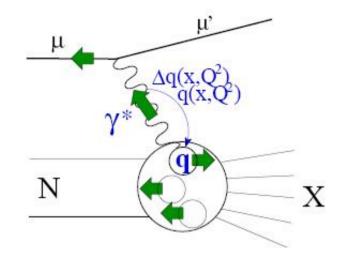


 $g_A/g_V = 1.30 \pm 0.07(stat) \pm 0.10(syst)$ 

 $= 1.269 \pm 0.003$ 

#### **Systematic error:**


- $\delta(Pb)$  is dominant : 5%  $\rightarrow \pm 0.065$
- <sup>6</sup>LiD: 7% due to f and Pt  $\rightarrow \pm 0.041$
- NH<sub>3</sub>: 3% due to f and Pt  $\rightarrow \pm 0.056$


10

# Full flavor separation analysis with LO QCD fit

#### Inclusive DIS

- Detected particle:  $\mu$ ,  $\mu'$
- $A_1 = \frac{\sum_q e_q^2(\mathbf{\Delta q(x)} + \mathbf{\Delta \bar{q}(x)})}{\sum_q e_q^2(q(x) + \bar{q}(x))}$
- only  $\Delta q + \Delta \bar{q}$  can be measured





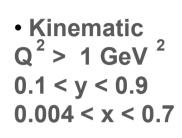
#### Semi-Inclusive DIS

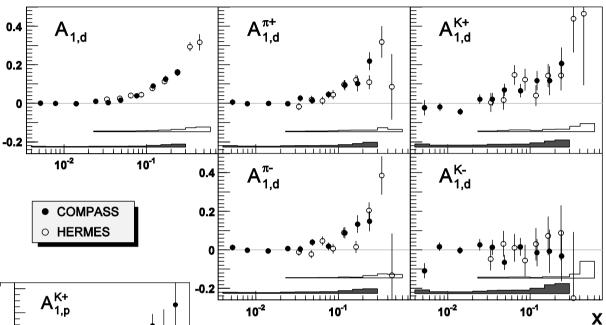
- Detected particle:  $\mu$ ,  $\mu'$ , h, ...
- $A_1^h = \frac{\sum_q e_q^2(\mathbf{\Delta q(x)}) \int \mathbf{D_q^h dz} + \mathbf{\Delta \bar{q}(x)} \int \mathbf{D_{\bar{q}}^h dz})}{\sum_q e_q^2(q(x)) \int D_q^h dz + \bar{q}(x) \int D_{\bar{q}}^h dz)}$
- $D_q^h \neq D_{\bar{q}}^h \Rightarrow$  quarks and anti-quarks separation

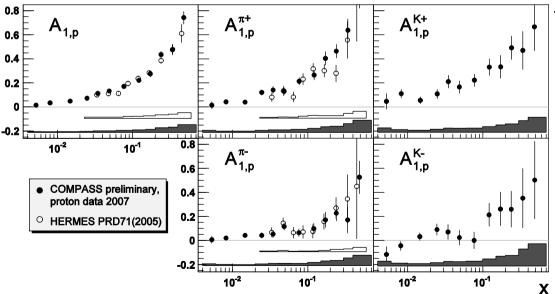
• LO QCD analysis (independent quark fragmentation)

$$\begin{array}{lll} A_{1,d} & = & \frac{5(\Delta \mathbf{u} + \Delta \mathbf{d}) + 5(\Delta \bar{\mathbf{u}} + \Delta \mathbf{d}) + 4\Delta \mathbf{s}}{5(u+d) + 5(\bar{u} + \bar{d}) + 2(s + \bar{s})} \\ A_d^h & = & \frac{(4D_u^h + D_d^h)(\Delta \mathbf{u} + \Delta \mathbf{d}) + (4D_{\bar{u}}^h + D_{\bar{d}}^h)(\Delta \bar{\mathbf{u}} + \Delta \bar{\mathbf{d}}) + 2(D_s^h + D_{\bar{s}}^h)\Delta \mathbf{s}}{(4D_u^h + D_d^h)(u+d) + (4D_{\bar{u}}^h + D_{\bar{d}}^h)(\bar{u} + \bar{d}) + 2(D_s^h s + D_{\bar{s}}^h \bar{s})} \\ A_{1,p} & = & \frac{4(\Delta \mathbf{u} + \Delta \bar{\mathbf{u}}) + (\Delta \mathbf{d} + \Delta \bar{\mathbf{d}}) + 2\Delta \mathbf{s}}{4(u + \bar{u}) + (d + \bar{d}) + (s + \bar{s})} \\ A_{1,p}^h & = & \frac{4(D_u^h \Delta \mathbf{u} + D_{\bar{u}}^h \Delta \bar{\mathbf{u}}) + (D_d^h \Delta \mathbf{d} + D_{\bar{d}}^h \Delta \bar{\mathbf{d}}) + (D_s^h + D_{\bar{s}}^h)\Delta \mathbf{s}}{4(D_u^h u + D_{\bar{u}}^h \bar{u}) + (D_d^h d + D_{\bar{d}}^h \bar{d}) + (D_s^h s + D_{\bar{s}}^h \bar{s})} \end{array}$$

Matrix form. 10 equations with 5 unknowns

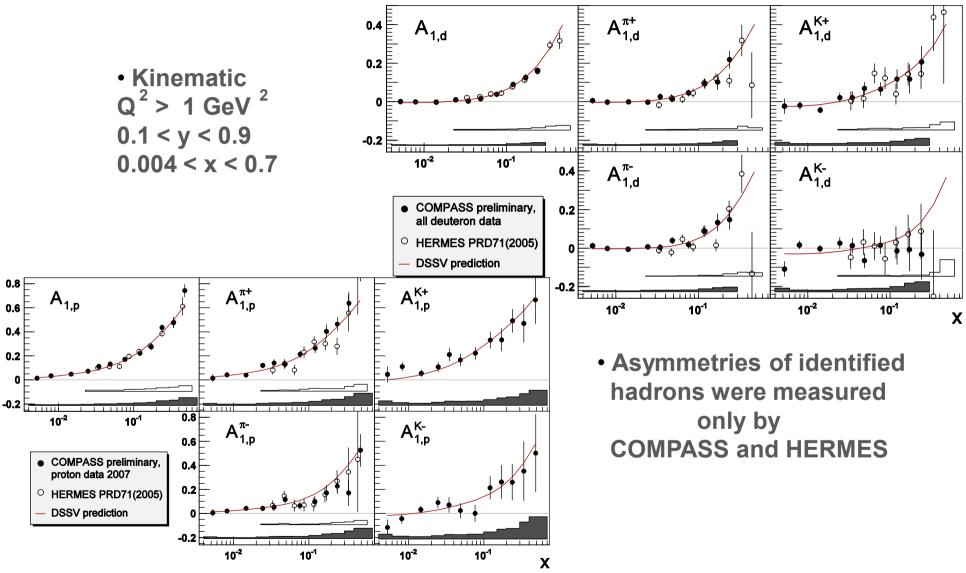

$$\vec{A} = \mathsf{B}\,\Delta\vec{q}, \quad \text{where} \quad \left\{ \begin{array}{l} \vec{A} = (A_1^d, A_d^{\pi+}, A_d^{\pi-}, A_d^{K+}, A_d^{K-}, \ A_1^p, A_p^{\pi+}, A_p^{\pi-}, A_p^{K+}, A_p^{K-}) \\ \Delta\vec{q} = (\Delta u, \Delta d, \Delta \bar{u}, \Delta \bar{d}, \Delta s) \end{array} \right.$$

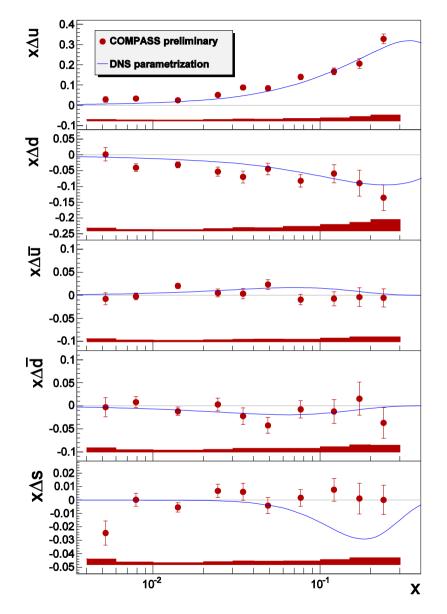

• LS estimation: uniqueness, unbiasedness and minimum variance of the solution


$$\chi^2 = (\vec{A} - \mathsf{B}\Delta\vec{q})^T \mathsf{Cov}_A^{-1} (\vec{A} - \mathsf{B}\Delta\vec{q}).$$



# Proton and deuteron asymmetries A<sub>1</sub>






 Asymmetries of identified hadrons were measured only by COMPASS and HERMES

# Proton and deuteron asymmetries A<sub>1</sub>





- MRST04 (for unpol.PDFs) and DSS (for FFs);
- $\circ$  Good agreement with global fit exept  $\Delta s$

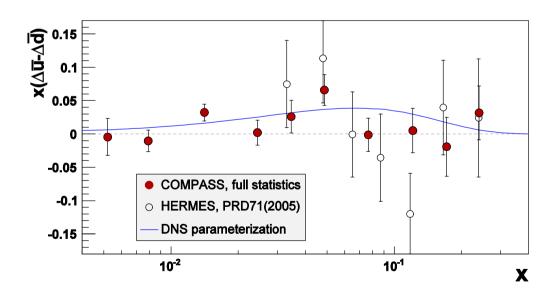
|                | Statistic (   | ·10 <sup>6</sup> ) |
|----------------|---------------|--------------------|
|                | <b>Proton</b> | deuteron           |
| Incl           | 92,5          | 135,1              |
| π+             | 13,3          | 22,8               |
| π-             | 11,8          | 20,5               |
| K <sup>+</sup> | 3,9           | 4,8                |
| K              | 2,6           | 3,3                |

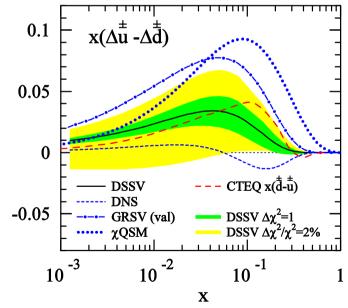
• Asymmetry between the unpolarized  $\bar{u}$  and  $\bar{d}$  distrib. is well established experimental fact

|              | $\langle Q^2 \rangle  [\text{GeV}^2]$ | $\int_0^1 [\bar{u} - \bar{d}] dx$ | Reference                                       |
|--------------|---------------------------------------|-----------------------------------|-------------------------------------------------|
| NMC/DIS      | 4                                     | $0.147 \pm 0.039$                 | M.Arneodo et al., Phys.Rev.D55(1994)R1          |
| HERMES/SIDIS | 2.3                                   | $0.16 \pm 0.03$                   | K.Ackerstaff et al., Phys.Rev.Lett.81(1998)5519 |
| FNAL E866/DY | 54                                    | $0.118\pm0.012$                   | R.S.Towell et al., Phys.Rev.D64(2001)052002     |

• Many non-perturbative models predicts a sizable asymmetry of the helicity densities

|             | Model                             | $\int_0^1 [\Delta \bar{u} - \Delta \bar{d}] dx$       | Reference                                                  |
|-------------|-----------------------------------|-------------------------------------------------------|------------------------------------------------------------|
|             | $\pi$ -meson                      | 0                                                     | A.W.Thomas, Phys.Lett.B126(1983)97                         |
|             | $\rho$ -meson                     | $\simeq$ -0.0007 to -0.027                            | R.J.Fries, A.Schafer, Phys.Lett.B443(1998)40               |
| Meson       |                                   | $=-6\int_{0}^{1} g^{p}(x)dx \simeq -0.7$              | K.G.Boreskov, A.B.Kaidalov, Eur.Phys.J.C10(1999)143        |
| cloud       | $\rho$ and $\pi$ - $\rho$ interf. | $\simeq$ -0.004 to -0.033                             | F.G.Cao, A.I.Signal, Eur.Phys.J.C21(2001)105               |
|             | $\rho$ -meson                     | < 0                                                   | S.Kumano, M.Miyama, Phys.Rev.D65(2002)034012               |
|             | $\pi$ - $\sigma$ interf.          | $\simeq 0.12$                                         | R.J.Fries, A.Schafer, C.Weiss, hep-ph/0204060              |
| Pauli-      | bag model                         | $\simeq 0.09$                                         | F.G.Cao, A.I.Signal, Eur.Phys.J.C21(2001)105               |
| blocking    | ansatz                            | $\simeq 0.3$                                          | M.Gluck at al., Phys.Rev.D63(2001)094005                   |
| blocking    |                                   | $=\frac{5}{3}\int_0^1 [\bar{d}-\bar{u}]dx \simeq 0.2$ | F.M.Steffens, Phys.Lett.B541(2002)346                      |
| Chirol      | uark soliton                      | 0.31                                                  | B.Dressler et al., hep-ph/9809487                          |
| Cimai-q     | dark soliton                      | $\simeq \int_0^1 2x^{0.12} [\bar{d} - \bar{u}] dx$    | M.Wakamatsu, T.Watabe, Phys.Rev.D62(2000)017506            |
| Instanto    | n                                 |                                                       | Dorokhov, hep-ph/0112332                                   |
| Statistical |                                   | $\simeq \int_0^1 [\bar{d} - \bar{u}] dx \simeq 0.12$  | C.Bourrely, J.Soffer, F.Buccella, Eur. Ph. J. C23(2002)487 |
|             |                                   | $ > \int_0^1 [\bar{d} - \bar{u}] dx > 0.12 $          | R.S.Bhalerao, Phys.Rev.C63(2001)025208                     |


taken from J.C.Peng "Flavor Structure of the nucleon sea", hep-ph/0301053


# Flavor symmetry breaking of the light sea

Presently  $\Delta \bar{u} - \Delta \bar{d}$  is accessible only via SIDIS processes

HERMES:  $\int_{0.023}^{0.3} (\Delta \bar{u} - \Delta \bar{d}) dx = 0.048 \pm 0.057 (stat) \pm 0.028 (syst)$ 

COMPASS:  $\int_{0.004}^{0.3} (\Delta \bar{u} - \Delta \bar{d}) dx = 0.052 \pm 0.035 (stat) \pm 0.013 (syst)$ 







#### Conclusion

- All COMPASS data with deuteron(2002-2006) and proton(2007) targets have been processed and analyzed;
- $g_1^{\text{NS}}$  was obtained from combined analysis of proton and deuteron data

$$g_{V} = 1.30 \pm 0.07(stat) \pm 0.10(syst)$$

confirm the validity of Bjorken sum rule;

- Full flavor separation analysis with LO QCD fit was done:
  - Good agreement of non-strange PDFs with results of previous QCD fits;
  - $\circ$  Shape of  $\Delta s(x)$  disagree significantly with previous fits;
  - Flavor asymmetry of the light sea quarks is observed.

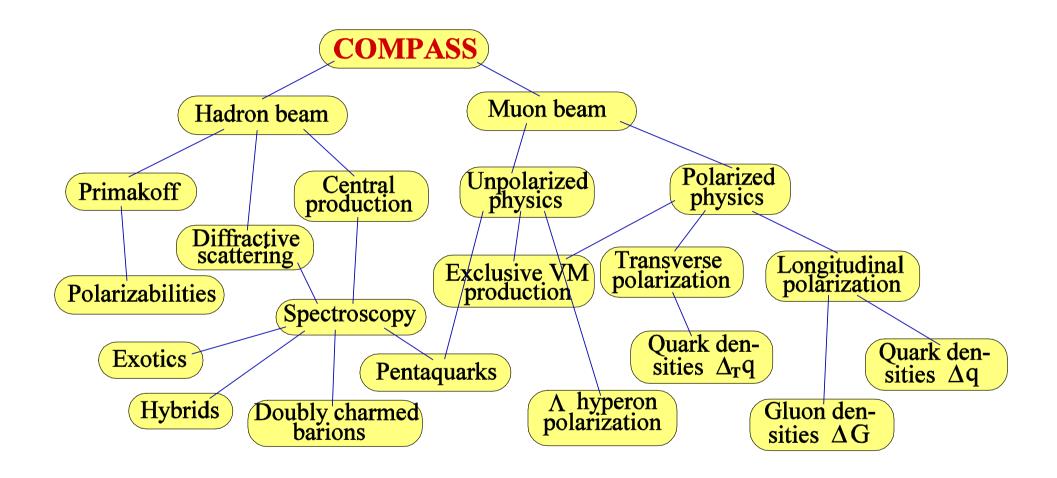
#### Spin budget of the nucleon

- Contribution of quarks to the nucleon spin  $\Delta\Sigma$  is well fixed by inclusive data  $\Delta\Sigma = 0.30 \pm 0.01 \pm 0.02$  (Q<sup>2</sup>=3 GeV<sup>2</sup>);
- QCD fit provides indirect way to determine  $\Delta G$ :  $|\Delta G| < 0.2 \div 0.3$

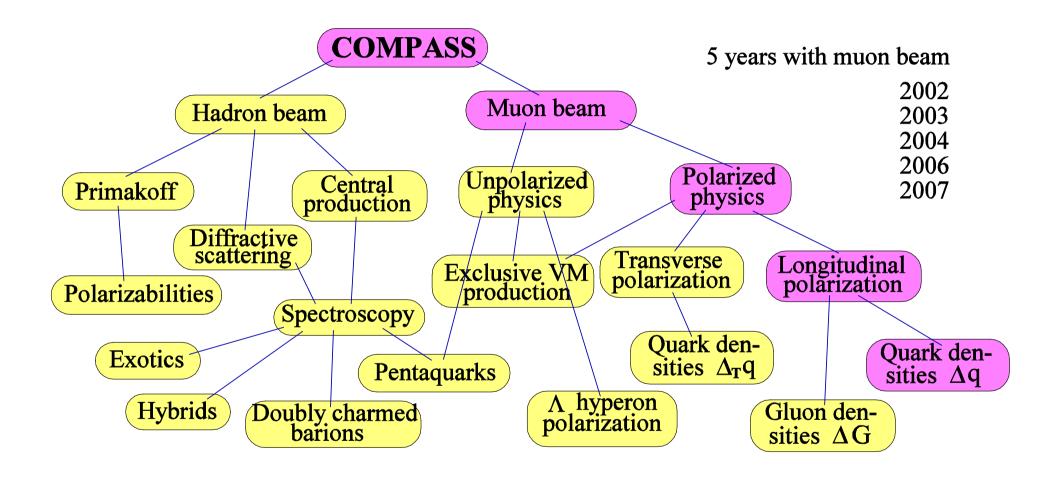
COMPASS

#### Spires

The year-by-year statistics (in millions)


|         | Proton target | Deuteron target |      |      |      |       |
|---------|---------------|-----------------|------|------|------|-------|
|         | 2007          | 2002            | 2003 | 2004 | 2006 | Total |
| Incl.   | 92.5          | 10.3            | 31.4 | 58.3 | 35.1 | 135.1 |
| $\pi^+$ | 13.3          | 1.7             | 5.4  | 9.8  | 6.0  | 22.8  |
| $\pi^-$ | 11.8          | 1.5             | 4.8  | 8.8  | 5.4  | 20.5  |
| $K^+$   | 3.9           | 0.2             | 1.0  | 1.9  | 1.7  | 4.8   |
| $K^-$   | 2.6           | 0.2             | 0.7  | 1.3  | 1.1  | 3.3   |

• Statistics of proton and deuteron data looks comparable. However:


|                  | $\overline{f}$ | $\bar{P}_t$ | $\bar{f} 	imes \bar{P}_t$ |
|------------------|----------------|-------------|---------------------------|
| $NH_3$           | 0.14           | 0.87        | 0.12                      |
| <sup>6</sup> LiD | 0.37           | 0.5         | 0.19                      |

ullet Statistical error of the proton data is a factor 2 larger

$$\frac{\delta A_d}{\delta A_p} = \frac{0.12}{0.19} \sqrt{\frac{92.5}{135.1}} = 0.52$$



21

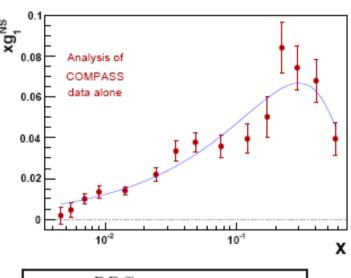


• Evolution of non-singlet distribution is decoupled from  $\Delta\Sigma$  and  $\Delta G$ 

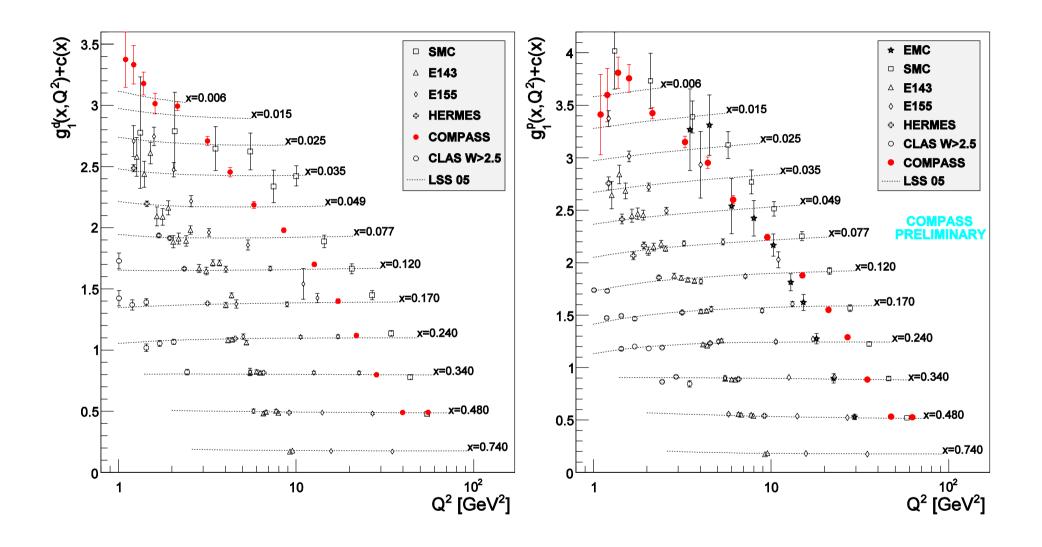
$$\begin{array}{cccc} \frac{d}{dt}\Delta q^{NS} & = & \frac{\alpha_s(t)}{2\pi}\,P_{qq}^{NS}\otimes\Delta q^{NS} \\ \frac{d}{dt}\left(\begin{array}{c} \Delta\Sigma \\ \Delta G \end{array}\right) & = & \frac{\alpha_s(t)}{2\pi}\left(\begin{array}{ccc} P_{qq}^S & 2n_fP_{qG}^S \\ P_{Gq}^S & P_{GG}^S \end{array}\right)\otimes\left(\begin{array}{c} \Delta\Sigma \\ \Delta G \end{array}\right) \end{array}\;, \quad t = \log\left(\frac{Q^2}{\Lambda^2}\right) \label{eq:delta_t}$$

• Parametrization of  $\Delta q_3(x)$ :  $\Delta q_3(x) = \left| \frac{g_A}{g_V} \right| x^{\alpha} (1-x)^{\beta}$ 

| $g_A/g_V$       | $\alpha$         | β             |  |
|-----------------|------------------|---------------|--|
| $1.30 \pm 0.07$ | $-0.24 \pm 0.07$ | $2.3 \pm 0.4$ |  |


#### Systematic error

 $\diamond \delta(P_b)$  is the dominant error:  $5\% \Rightarrow \pm 0.065$ 


 $\diamond$  <sup>6</sup>LiD: 7% due to f and  $P_t$ :  $\Rightarrow \pm 0.041$ 

 $\diamond$  NH<sub>3</sub>: 3% due to f and  $P_t$ :  $\Rightarrow \pm 0.056$ 

$$g_A/g_V = 1.30 \pm 0.07(stat) \pm 0.10(syst)$$



$$g_A/g_V^{PDG} = 1.269 \pm 0.003$$

