New results on rare processes by DAMA at Gran Sasso: searches for processes violating the Pauli Exclusion Principle in Sodium

and Iodine with DAMA/LIBRA



XIV Lomonosov Conference Moscow, Russia August 2009



# DAMA: an observatory for rare processes @LNGS

DAMA/LXe

DAMA/R&D

DAMA/NaI

DAMA/LIBRA

low bckg DAMA/Ge for sampling meas.

http://people.roma2.infn.it/dama

### DAMA/LXe: results on rare processes

**Dark Matter Investigation** 

- Limits on recoils investigating the DMp-129Xe elastic scattering by means of PSD
- Limits on DMp-<sup>129</sup>Xe inelastic scattering
- Neutron calibration
- <sup>129</sup>Xe vs <sup>136</sup>Xe by using PSD  $\rightarrow$  SD vs SI signals to increase the sensitivity on the SD component



#### Other rare processes:

- Electron decay into invisible channels
- Nuclear level excitation of <sup>129</sup>Xe during CNC processes
- N, NN decay into invisible channels in <sup>129</sup>Xe
- Electron decay:  $e^- \rightarrow v_e \gamma$
- 2β decay in <sup>136</sup>Xe
- 2β decay in <sup>134</sup>Xe
- Improved results on 2β in <sup>134</sup>Xe,<sup>136</sup>Xe
- CNC decay  $^{136}Xe \rightarrow ^{136}Cs$
- N, NN, NNN decay into invisible channels in <sup>136</sup>Xe

#### NIMA482(2002)728

PLB436(1998)379 PLB387(1996)222, NJP2(2000)15.1 PLB436(1998)379, EPJdirectC11(2001)1

#### foreseen/in progress

Astrop.P.5(1996)217 PLB465(1999)315 PLB493(2000)12 PRD61(2000)117301 Xenon01 PLB527(2002)182 PLB546(2002)23 Beyond the Desert (2003) 365 EPJA27 s01 (2006) 35



#### DAMA/R&D set-up: results on rare processes DAMA/Ge & LNGS Ge facility

 Particle Dark Matter search with CaF<sub>2</sub>(Eu)

#### NPB563(1999)97, Astrop.Phys.7(1997)73



- $2\beta$  decay in <sup>136</sup>Ce and in <sup>142</sup>Ce
  - 2EC2v <sup>40</sup>Ca decay
    - $2\beta$  decay in <sup>46</sup>Ca and in <sup>40</sup>Ca
    - 2β<sup>+</sup> decay in <sup>106</sup>Cd
    - 2β and β decay in <sup>48</sup>Ca
    - 2EC2 $\nu$  in <sup>136</sup>Ce, in <sup>138</sup>Ce and  $\alpha$  decay in <sup>142</sup>Ce
    - $2\beta^+0\nu$ , EC $\beta^+0\nu$  decay in <sup>130</sup>Ba
    - Cluster decay in LaCl<sub>3</sub>(Ce)
    - CNC decay  $^{139}La \rightarrow ^{139}Ce$
    - $\alpha$  decay of natural Eu
    - β decay of <sup>113</sup>Cd
    - ββ decay of <sup>64</sup>Zn
    - $\beta\beta$  decay of <sup>108</sup>Cd and <sup>114</sup>Cd
    - 2ε0v in <sup>136</sup>Ce; 2β in <sup>136</sup>Ce, <sup>138</sup>Ce NPA824(2009)101
    - 2β in <sup>64</sup>Zn, <sup>70</sup>Zn, <sup>180</sup>W, <sup>186</sup>W

Il Nuov.Cim.A110(1997)189 Astrop. Phys. 7(1997)73

- NPB563(1999)97 Astrop.Phys.10(1999)115 • several RDs on low background PMTs;
- NPA705(2002)29 NIMA498(2003)352
- NIMA525(2004)535 NIMA555(2005)270 UJP51(2006)1037 NPA789(2007)15 PRC76(2007)064603
- PLB658(2008)193
- EPJA36(2008)167
- - NPA826(2009)256

- - RDs on highly radiopure NaI(Tl) set-up;

    - qualification of many materials
    - measurements with a  $Li_6Eu(BO_3)_3$ (NIMA572(2007)734) crystal
    - measurements with <sup>100</sup>Mo sample investigating  $\beta\beta$  decay in the  $4\pi$  lowbckg HP Ge facility of LNGS (NPAE(2008)473)
    - search for <sup>7</sup>Li solar axions (NPA806(2008)388)
    - +Many other meas. already scheduled for near future

Pauli Exclusion Principle (PEP) has a crucial role in physics



easy explanation is still missing as stressed by Feynmann.

### Why test Pauli Exclusion Principle (PEP)?

...many theoretical attempts to go beyond Bose and Fermi statistics ...

$$\begin{aligned} a_i a_j^{\dagger} - q a_j^{\dagger} a_i &= \delta_{ij} \\ q &= -1 + \beta^2 \quad \beta^2 \ll 1 \end{aligned}$$

Phys. Rev. Lett. 64 (1990) 705 Phys. Lett. B 242 (1990) 407 Fund. Phys. 29 (1999) 397.



small probability of admixed symmetric component

BUT also possible PEP violations due to physics at higher energy scale

Phys. Rev. Lett. 68 (1992) 1826 superficial PEP violations due to possible substructure in composite models of quark and leptons

$$\delta_{e}^{2} = \left[\frac{4}{3}\left(\frac{3}{7}\right)^{5}\left(\frac{Zr_{0}}{a_{0}}\right)^{3}\right]^{2} \text{ composite electron size}$$

Possible PEP violations due to extra dimensions: Phys. Rev. D 39 (1989) 2032 If something in fundamental physics can be tested, then it absolutely must be tested (Okun)

### 4 classes of experiments:

1) search for PEP-forbidden electronic states in atoms

2) search for PEP-forbidden nuclear states

3) search for PEP-forbidden electronic transitions

4) search for PEP-forbidden nuclear transitions

Phys. Lett. B 240 (1990) 227 Phys. Rev. Lett. 74 (1995) 4787 JETP Lett. 68 (1998) 112 Phys. Rev. Lett. 85 (2000) 2701

J. Phys. G 17 (1991) S355.

Nucl. Phys. B (Proc. Suppl.) 28A (1992) 219 Phys. Lett. B 460 (1999) 236 Phys. Lett. B 641 (2006) 18 Int. J. Mod. Phys. A 22 (2007) 242 Phys. Lett. B 306 (1993) 218 Phys. Lett. B 408 (1997) 439 Eur. Phys. J. A 6 (1999) 361 Nucl. Phys. B (Proc. Suppl.) 87(2000) 510 Eur. Phys. J. C 37 (2004) 421

Underground experiment site and high radiopurity set-up allow to reduce background due to PEP-allowed transitions induced by cosmic rays or environmental radioactivity

# DAMA/NaI : ≈100 kg NaI(Tl)

Performances: N.Cim.A112(1999)545-575, EPJC18(2000)283, Riv.N.Cim.26 n. 1(2003)1-73, IJMPD13(2004)2127

### **Results on rare processes:**

- Possible Pauli exclusion principle violation PLB408(1997)439
- CNC processes

• Electron stability and non-paulian transitions in Iodine atoms (by L-shell)

- Search for solar axions
- Exotic Matter search
- Search for superdense nuclear matter
- Search for heavy clusters decays

PLB460(1999)235 PLB515(2001)6 EPJdirect C14(2002)1 EPJA23(2005)7 EPJA24(2005)51

PRC60(1999)065501

#### **Results on DM particles:**

- PSD
- Investigation on diurnal effect
- Exotic Dark Matter search

PLB389(1996)757 N.Cim.A112(1999)1541 PRL83(1999)4918

• Annual Modulation Signature

PLB424(1998)195, PLB450(1999)448, PRD61(1999)023512, PLB480(2000)23, EPJC18(2000)283, PLB509(2001)197, EPJC23(2002)61, PRD66(2002)043503, Riv.N.Cim.26 n.1 (2003)1, IJMPD13(2004)2127, IJMPA21(2006)1445, EPJC47(2006)263, IJMPA22(2007)3155, EPJC53(2008)205, PRD77(2008)023506, MPLA23(2008)2125.

### model independent evidence of a particle DM component in the galactic halo at $6.3\sigma$ C.L.

total exposure (7 annual cycles) 0.29 ton x yr



#### The new DAMA/LIBRA set-up ~250 kg Nal(TI) (Large sodium lodide Bulk for RAre processes) As a result of a second generation R&D for more radiopure NaI(TI)

As a result of a second generation R&D for more radiopure NaI(Tl) by exploiting new chemical/physical radiopurification techniques (all operations involving crystals and PMTs - including photos - in HP Nitrogen atmosphere)

installing DAMA/LIBRA detectors assembling a DAMA/LIBRA detector

filling the inner-Cu box with further shield detectors during installation; in the central and right up detectors the new shaped Cu shield surrounding light guides (acting also as optical windows) and PMTs was not yet applied

Radiopurity, performances, procedures, etc.: NIA Results on DM particles: Annual Modulation Signature: EPJ See Bernabei's talk

NIMA592(2008)297 EPJC56(2008)333

**Results on rare processes:** Possible processes violating the Pauli exclusion principle in Na and I:

EPJC62(2009)327

lation in the ful

closing the Cu box housing the detectors

DAMA/LIBRA over 4 annual cycles (0.53 ton×yr) confirms the *model independent evidence of a particle DM component in the galactic halo* of DAMA/NaI (0.29 ton×yr); the cumulative confidence level is 8.2  $\sigma$  (total exposure 0.82 ton × yr)

# A) Search for non-paulian nuclear processes



### The former results obtained with 100 Kg low background DAMA/Nal



### First results on PEP-violating nuclear processes with DAMA/LIBRA

### 570h running time, optimized for very high energy

At very high energy (E > 10 MeV) background is due to the very high energy muons possibly surviving the mountain.

#### EPJC62(2009)327

For PEP violating nuclear processes: events where just one detector fires.

events in the 7 upper/lower plane of detector (10 cryst.)

events in the  $\mathbf{0}$ central planes of detector (14 cryst.)



### EPJC62(2009)327

Ι

Ι

II

| Group $(J)$ of<br>considered<br>detectors                             | Corresponding<br>exposure $(N_J t)$<br>(nuclei × s) | Expected background events $(b_J)$ | Measured events $(n_J)$ | Upper Limit on $\lambda$<br>(90% C.L.)<br>(s <sup>-1</sup> ) |                                         |
|-----------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|-------------------------|--------------------------------------------------------------|-----------------------------------------|
| Just the 4 detectors<br>at corners (I)                                | $3.2\times10^{32}$                                  | 12.1                               | 11                      | $1.99\times 10^{-32}$                                        |                                         |
| Just the remaining 6<br>detectors in the upper<br>and lower rows (II) | $4.8	imes10^{32}$                                   | 8.7                                | 6                       | $9.33	imes10^{-33}$                                          |                                         |
| Just the 14 central<br>detectors (III)                                | $1.1	imes 10^{33}$                                  | 2.2                                | 0                       | $2.06\times10^{-33}$                                         |                                         |
| Just the 9 core<br>detectors (IV)                                     | $7.2\times10^{32}$                                  | 0.057                              | 0                       | $3.19	imes10^{-33}$                                          | Case ${}^{A}X$ $\tilde{\Gamma}$<br>(Me) |
| Combined analysis (I+II+III): $1.63 \times 10^{-33}$                  |                                                     |                                    |                         |                                                              | a) <sup>23</sup> Na 1.6                 |

$$\Gamma = \Gamma(^{23}Na) + \Gamma(^{127}I) = \hbar\lambda \le 1.1 \times 10^{-54} MeV$$

Lower limit on the mean life for non-paulian proton emission:

 $\tau > 2 \times 10^{25}$  y for <sup>23</sup>Na,  $\tau > 2.5 \times 10^{25}$  y for <sup>127</sup>I

Case  ${}^{A}X$   $\tilde{\Gamma}$   $\delta^{2}$  Upper Limit (MeV) (90% C.L.) a)  ${}^{23}Na$  1.65 1.7 × 10<sup>-55</sup>  ${}^{127}I$  4.64 b)  ${}^{23}Na$  4.59 6.8 × 10<sup>-56</sup>  ${}^{127}I$  11.1

### cautious approach:

$$\delta^2 \lesssim 3 - 4 \times 10^{-55}$$

# **B)** Search for non-paulian electronic transitions

Electronic configuration schema of I anion (54 electrons) in Na<sup>+</sup>I<sup>-</sup> crystal



example of a PEP violating transition of lodine electron to the full k-shell followed by the atomic shells rearrangement. The total released energy (x-ray + Auger electrons) is approximately equal to k-shell ionization potential ( $\approx$  32 keV)

### First results on PEP-violating electronic transitions with DAMA/LIBRA

EPJC62(2009)327



Exposure: 0.53 ton × yr

 $\tau_{PV} > 4.7 \text{ x } 10^{30} \text{ s } (90\% \text{ C.L.})$ 



normal electromagnetic dipole transition to Iodine K-shell:  $\tau^0 \approx 6 \ge 10^{-17}$ s  $\delta_e^2 < 1.28 \ge 10^{-47}$  (90% C.L.).

one order of magnitude more stringent than the previous one (ELEGANTS V) (VIP sensitivity with a different approach in Cu sample is 10<sup>-28</sup> with final goal 10<sup>-31</sup>)

This limit can also be related to a possible finite size of the electron in composite models of quarks and leptons providing supercial violation of the PEP; the obtained upper limit on the electron size is:  $r_0 < 5.7 \times 10^{-18}$  cm (energy scale of E > 3.5 TeV).

# **CONCLUSIONS-1**

PEP-violating spontaneous emission of protons:

- First DAMA/LIBRA results:  $\delta^2 < (3 4) \times 10^{-55}$
- $\tau_{Na}$  > 2 x 10<sup>25</sup> y and  $\tau_{I}$  > 2.5 x 10<sup>25</sup> y

PEP-violating electronic transitions in Iodine:

- First DAMA/LIBRA results:  $\delta_e^2 < 1.28 \times 10^{-47}$
- Investigation of composite model of quark and leptons:  $r_0 < 5.7 \times 10^{-18}$  cm (energy scale of E > 3.5 TeV).

# **CONCLUSIONS-2**

# Future perspectives:DAMA/LIBRA expected sensitivity in case of 3 yr of<br/>data taking optimized for high energy

MonteCarlo simulation



Possible highly radiopure NaI(Tl) multi-purpose set-up DAMA/1 ton (proposed by DAMA in 1996) at R&D phase