Minimal Extension of the Standard Model of Particle Physics

Dmitry Gorbunov

Institute for Nuclear Research, Moscow, Russia

14th Lomonosov Conference on Elementary Particle Physics, Moscow, MSU, 21.08.2009
Outline

1. Motivation: Phenomena Observed but Unexplained within the SM
2. The νMSM Model: Content and Lagrangian
3. The νMSM Model: Numbers in Sterile Neutrino Sector
4. Conclusions
Outline

1. Motivation: Phenomena Observed but Unexplained within the SM

2. The νMSM Model: Content and Lagrangian

3. The νMSM Model: Numbers in Sterile Neutrino Sector

4. Conclusions
Motivation: Phenomena Observed but Unexplained within the SM

Neutrino Oscillations: Masses and Mixing

- Δm^2 [eV2]
- $\tan^2 \theta$

Figure: Various experimental data points and theoretical predictions for neutrino oscillations, including Super-K, K2K, NOMAD, LSND, BNL E776, CHORUS, NOMAD, and CDHSW.
Baryons and Dark Matter in Astrophysics

Rotation curves

Gravitational lensing

“Bullet” cluster
Motivation: Phenomena Observed but Unexplained within the SM

Baryons and Dark Matter in Cosmology

Rotation curves

BBN

Gravitational lensing

Structures

CMB fluctuations

“Bullet” cluster

Dmitry Gorbunov (INR)
Standard Model: Success and Problems

Gauge fields (interactions) – γ, W^\pm, Z, g

Three generations of matter: $L = (\nu_L, e_L), e_R; Q = (u_L, d_L), d_R, u_R$

- Describes
 - all experiments dealing with electroweak and strong interactions

- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) — sterile neutrino as DM
 - Baryon asymmetry — leptogenesis via sterile neutrino oscillations

ν_{MSM} explains these but does not address those

Dmitry Gorbunov (INR)
Standard Model: Success and Problems

Gauge fields (interactions) – γ, W^\pm, Z, g
Three generations of matter: $L = (\nu_L, e_L, e_R, \nu_R)$; $Q = (u_L, d_L, u_R, d_R)$

- Describes
 - all experiments dealing with electroweak and strong interactions

- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) — sterile neutrino as DM
 - Baryon asymmetry — leptogenesis via sterile neutrino oscillations

νMSM explains these but does not address those
Standard Model: Success and Problems

Gauge fields (interactions) – γ, W^\pm, Z, g

Three generations of matter: $L = (\nu_L, e_L, e_R)$; $Q = (u_L, d_L, d_R, u_R)$

- Describes
 - all experiments dealing with electroweak and strong interactions

- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) — sterile neutrino as DM
 - Baryon asymmetry — leptogenesis via sterile neutrino oscillations
 - Dark energy (Ω_Λ)
 - Inflation
 - Strong CP
 - Gauge hierarchy
 - Quantum gravity

νMSM explains these but does not address those
Standard Model: Success and Problems

Gauge fields (interactions) – γ, W^\pm, Z, g

Three generations of matter: $L = (\nu_L, e_L), e_R; Q = (u_L, d_L), d_R, u_R$

- Describes
 - all experiments dealing with electroweak and strong interactions

- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) — sterile neutrino as DM
 - Baryon asymmetry — leptogenesis via sterile neutrino oscillations
 - Dark energy (Ω_{Λ})
 - Inflation — $R^2, RH^\dagger H, \ldots$
 - Strong CP — changing topology, \ldots
 - Gauge hierarchy — No scales!
 - Quantum gravity

\textit{νMSM} explains these

explained by Plank-scale physics?
Outline

1. Motivation: Phenomena Observed but Unexplained within the SM
2. The νMSM Model: Content and Lagrangian
3. The νMSM Model: Numbers in Sterile Neutrino Sector
4. Conclusions
νMSM Particle Content

36 quark states:

\[(u,d)_L, (c,s)_L, (t,b)_L\] and \[u_R, d_R, c_R, s_R, t_R, b_R\]

\[(u,d)_L, (c,s)_L, (t,b)_L\] and \[u_R, d_R, c_R, s_R, t_R, b_R\]

\[(u,d)_L, (c,s)_L, (t,b)_L\] and \[u_R, d_R, c_R, s_R, t_R, b_R\]

9+3 leptonic states:

\[(\nu_e, e)_L, (\nu_\mu, \mu)_L, (\nu_\tau, \tau)_L\] and \[N_1, e_R, N_2, \mu_R, N_3, \tau_R\]

SU(3)×SU(2)_L×U(1) — 12 gauge bosons (8+3+1)

one Higgs doublet

Leptonic sector has similar structure as the quark sector
νMSM Particle Content

36 quark states:

\[(u, d)_L, (c, s)_L, (t, b)_L\] and \[u_R, d_R, c_R, s_R, t_R, b_R\]

\[(u, d)_L, (c, s)_L, (t, b)_L\] and \[u_R, d_R, c_R, s_R, t_R, b_R\]

\[(u, d)_L, (c, s)_L, (t, b)_L\] and \[u_R, d_R, c_R, s_R, t_R, b_R\]

9+3 leptonic states:

\[(\nu_e, e)_L, (\nu_\mu, \mu)_L, (\nu_\tau, \tau)_L\] and \[N_1, e_R, N_2, \mu_R, N_3, \tau_R\]

SU(3)×SU(2)_L×U(1) — 12 gauge bosons (8+3+1)

one Higgs doublet

Leptonic sector has similar structure as the quark sector
\(\nu \text{MSM Lagrangian} \)

- Let us try to use as little “new physics” as possible
- Require to get the correct neutrino oscillations
- Explain DM and baryon asymmetry of the Universe

\[\mathcal{L}_{\nu \text{MSM}} = \mathcal{L}_{\text{MSM}} + \bar{N}_i i \partial \nu N_i - f_{i\alpha} H \bar{N}_i L_{\alpha} - \frac{M_i}{2} \bar{N}_i^c N_i + \text{h.c.} \]

Extra coupling constants:

- 3 Majorana masses \(M_i \)
- 15 new Yukawa couplings

(Dirac mass matrix \(M^D = f \langle H \rangle \) has 3 Dirac masses, 6 mixing angles and 6 CP-violating phases)

Asaka, Blanchet, Shaposhnikov, 2005

Asaka, Shaposhnikov, 2005
ν Masses and Mixings: “seesaw” from $f_l \alpha H N \frac{1}{L} \alpha$

$M_I \gg M^D = f v$ — says nothing about M_I! dangerous: $\delta m^2_h \propto M^2_I$

3 heavy neutrinos with masses M_I similar to quark masses

Light neutrino masses

$$M^\nu = -(M^D)^T \frac{1}{M_I} M^D \propto f^2 \frac{v^2}{M_I}$$

$$U^T M^\nu U = \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix}$$

Mixings: flavor state $\nu_\alpha = U_{\alpha i} \nu_i + \theta_{\alpha l} N^c_l$

Active-sterile mixings

$$\theta_{\alpha l} = \frac{(M^D)_{\alpha l}^T}{M_I} \propto f \frac{v}{M_I} \ll 1$$
Outline

1. Motivation: Phenomena Observed but Unexplained within the SM
2. The νMSM Model: Content and Lagrangian
3. The νMSM Model: Numbers in Sterile Neutrino Sector
4. Conclusions
The νMSM Model: Numbers in Sterile Neutrino Sector

Spectrum of νMSM

\[
\begin{array}{cccccc}
\text{eV} & 10^{10} & 10^6 & 10^2 & 10^{-2} & 10^{-6} \\
10^{-6} & t & c & b & \tau & \nu N_2 \\
10^{-2} & u & s & \mu & e & \nu N_2 \\
10^2 & d & \nu N_1 \\
10^6 & \nu N_1 & N_2 & N_3 \\
10^{10} & N_1 & N_2 & N_3 \\
\end{array}
\]

Dirac masses

Majorana masses

quarks

leptons

Dmitry Gorbunov (INR)
DM – lightest sterile neutrino N_1

Phase-space density constraints

$\sin^2(2\theta_1)$ vs. M_1 [keV]

$\Omega_{N_1} > \Omega_{DM}$

$\Omega_{N_1} < \Omega_{DM}$

X-ray constraints

$\Omega_{N_1} > \Omega_{DM}$

$\Omega_{N_1} < \Omega_{DM}$

$L_6^{\text{max}} = 700$

BBN limit: $L_6^{\text{BBN}} = 2500$

$L_6 = 25$

$L_6 = 70$
BAU – heaviest sterile neutrinos $N_{2,3}$
Outline

1. Motivation: Phenomena Observed but Unexplained within the SM

2. The νMSM Model: Content and Lagrangian

3. The νMSM Model: Numbers in Sterile Neutrino Sector

4. Conclusions
Conclusions

- \(\nu\text{MSM} \) — the simplest Standard Model extension with right handed neutrinos provides
 - active neutrino masses and mixing angles
 - 1-50 keV neutrino as DM
 - mechanism for baryon asymmetry generation

- Possible searches for Dark Matter keV sterile neutrino
 - X-ray observations — indirect evidence
 - \(0\nu\beta\beta \) decay — very small rate, \(m_\nu \lesssim 10^{-5} \text{ eV} \)
 - Full kinematics measurement of beta decay in the laboratory?

- Possible searches for “heavy” sterile neutrinos responsible for baryogenesis
 - sterile neutrino from \(K, D, B, \tau \) decays with \(\text{Br} \approx 10^{-6} – 10^{-10} \)
 - sterile neutrino decays searches: CNGS, T2K, etc.

Model with \(M_N < M_K \) can be fully explored experimentally