Fractional Analytic Perturbation Theory

A. P. Bakulev Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)

OUTLINE

- Intro: Analytic Perturbation Theory (APT) in QCD
- Problems of APT and their resolution in FAPT:
- Technical development of FAPT: thresholds
- Resummation in APT and FAPT
- Applications: Higgs decay $H^0 \rightarrow b\bar{b}$
- Conclusions

Collaborators & Publications

Collaborators:

S. Mikhailov (Dubna), N. Stefanis (Bochum), and A. Karanikas (Athens)

Publications:

- A. B., Mikhailov, Stefanis PRD 72 (2005) 074014
- A. B., Karanikas, Stefanis PRD 72 (2005) 074015
- A. B., Mikhailov, Stefanis PRD 75 (2007) 056005
- A. B.&Mikhailov "Resummation in (F)APT", arXiv:0803.3013 [hep-ph]
- A. B. "Global FAPT in QCD with Selected Applications", Phys. Part. Nucl. 40 (2009) 715

Analytic Perturbation Theory in QCD

Euclidean $Q^2 = ec q^2 - q_0^2 \ge 0$

$\begin{array}{l} {\rm Minkowskian}\\ s=q_0^2-\vec{q}^2\geq 0 \end{array}$

Euclidean $Q^2=ar{q}^2-q_0^2\geq 0$

RG+Analyticity ghost-free $\overline{\alpha}_{QED}(Q^2)$ Bogoliubov et al. 1959

Minkowskian
$$s = q_0^2 - \vec{q}^2 \ge 0$$

Euclidean $Q^2=ar{q}^2-q_0^2\geq 0$	$egin{array}{llllllllllllllllllllllllllllllllllll$
RG+Analyticity	pQCD+RG: resum π ² -terms
ghost-free $\overline{\alpha}_{QED}(Q^2)$	Arctg(s), UV Non-Power Series
Bogoliubov et al. 1959	Radyush., Krasn. & Pivov. 1982

Euclidean $Q^2 = ec q^2 - q_0^2 \ge 0$

 $\begin{array}{l} {\rm Minkowskian}\\ s=q_0^2-\vec{q}^2\geq 0 \end{array}$

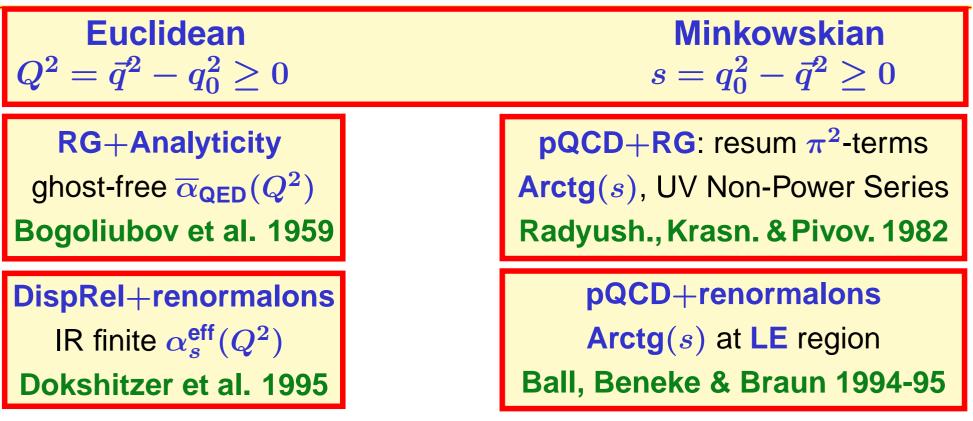
RG+Analyticity ghost-free $\overline{\alpha}_{QED}(Q^2)$ Bogoliubov et al. 1959 pQCD+RG: resum π^2 -terms Arctg(s), UV Non-Power Series

Radyush., Krasn. & Pivov. 1982

pQCD+renormalons:

Arctg(s) at LE region

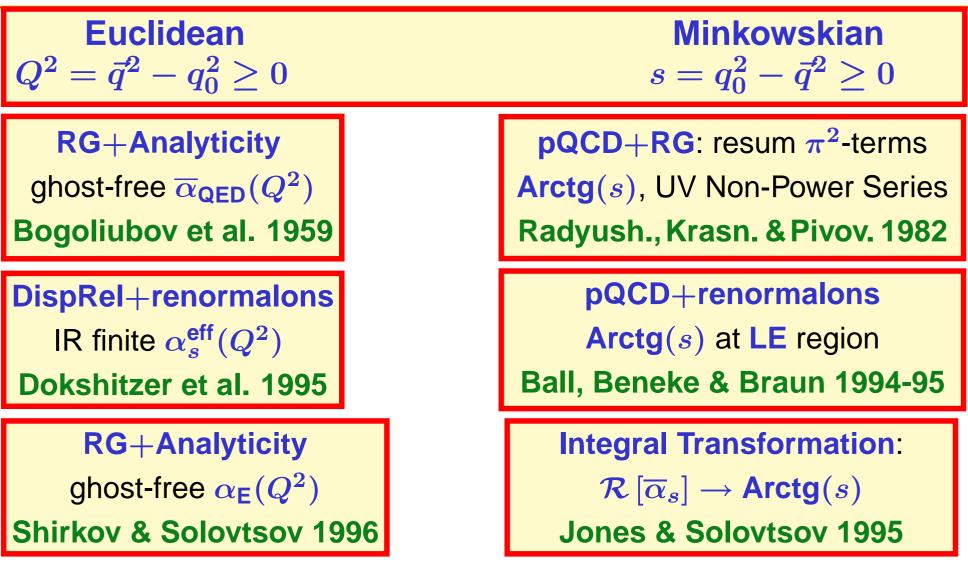
Ball, Beneke & Braun 1994-95



Euclidean Minkowskian $Q^2 = \vec{q}^2 - q_0^2 \ge 0$ $s = q_0^2 - \vec{q}^2 \ge 0$ **pQCD+RG**: resum π^2 -terms **RG**+Analyticity ghost-free $\overline{\alpha}_{QED}(Q^2)$ Arctg(s), UV Non-Power Series **Bogoliubov et al. 1959** Radyush., Krasn. & Pivov. 1982 pQCD+renormalons **DispRel**+renormalons IR finite $\alpha_s^{\text{eff}}(Q^2)$ Arctg(s) at LE region Ball, Beneke & Braun 1994-95 Dokshitzer et al. 1995 **Integral Transformation:**

 $\mathcal{R}\left[\overline{\alpha}_{s}\right] \to \operatorname{Arctg}(s)$

Jones & Solovtsov 1995



Euclidean $Q^2 = ar{q}^2 - q_0^2 \ge 0$

 $\begin{array}{l} {\rm Minkowskian}\\ s=q_0^2-\vec{q}^2\geq 0 \end{array}$

RG+Analyticity

ghost-free $\alpha_{\mathsf{E}}(Q^2)$

Shirkov & Solovtsov 1996

Integral Transformation: $\mathcal{R}[\overline{\alpha}_s] \rightarrow \operatorname{Arctg}(s)$

Jones & Solovtsov 1995

Euclidean Minkowskian $Q^2 = \vec{q}^2 - q_0^2 \ge 0$ $s = q_0^2 - \vec{q}^2 \ge 0$ **Integral Transformation**: **RG**+Analyticity ghost-free $\alpha_{\mathsf{E}}(Q^2)$ $\mathcal{R}[\overline{\alpha}_s] \rightarrow \operatorname{Arctg}(s)$ Shirkov & Solovtsov 1996 Jones & Solovtsov 1995 pQCD+RG+Analyticity Transforms: $\hat{\mathcal{D}} = \hat{\mathcal{R}}^{-1}$ Couplings: $\alpha_{\mathsf{E}}(Q^2) \Leftrightarrow \alpha_{\mathsf{M}}(s)$ Milton & Solovtsov 1996–97

Euclidean Minkowskian $Q^2 = \bar{q}^2 - q_0^2 \ge 0$ $s = q_0^2 - \vec{q}^2 \ge 0$ **Integral Transformation: RG**+Analyticity ghost-free $\alpha_{\mathsf{E}}(Q^2)$ $\mathcal{R}[\overline{\alpha}_s] \rightarrow \operatorname{Arctg}(s)$ Shirkov & Solovtsov 1996 Jones & Solovtsov 1995 pQCD+RG+Analyticity Transforms: $\hat{\mathcal{D}} = \hat{\mathcal{R}}^{-1}$ Couplings: $\alpha_{\mathsf{E}}(Q^2) \Leftrightarrow \alpha_{\mathsf{M}}(s)$ Milton & Solovtsov 1996–97 Analytic (global) pQCD+Analyticity Global couplings: $\mathcal{A}_n(Q^2) \Leftrightarrow \mathfrak{A}_n(s)$ Non-Power perturbative expansions Shirkov 1999–2001

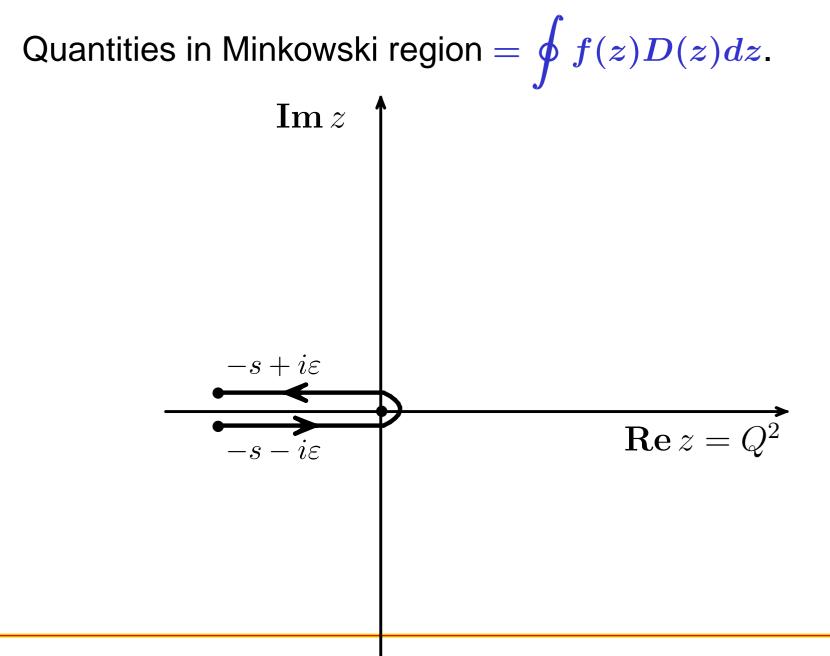
- coupling $\alpha_s(\mu^2) = (4\pi/b_0) a_s[L]$ with $L = \ln(\mu^2/\Lambda^2)$
- RG equation $\frac{d a_s[L]}{d L} = -a_s^2 c_1 a_s^3 \dots$
- 1-loop solution generates Landau pole singularity:
 $a_s[L] = 1/L$

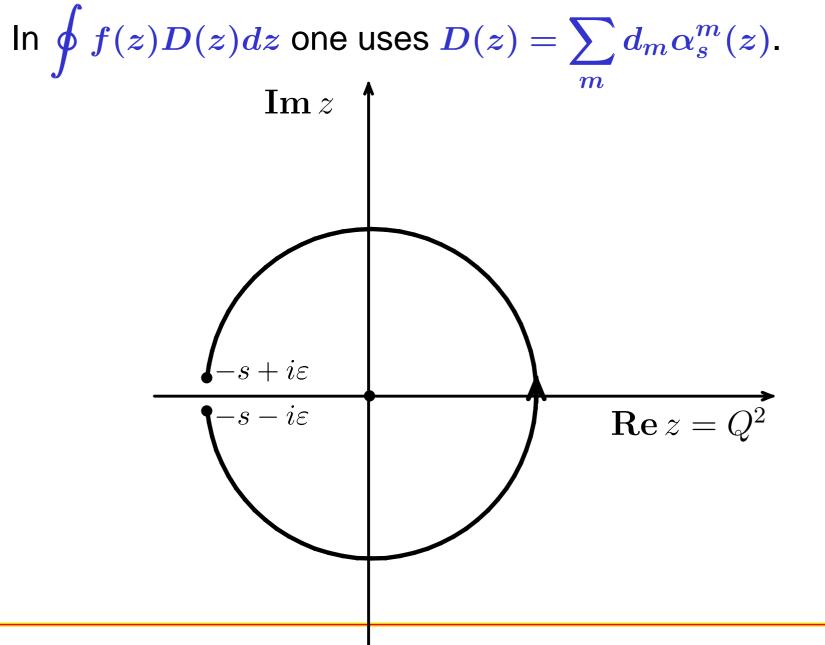
- coupling $\alpha_s(\mu^2) = (4\pi/b_0) a_s[L]$ with $L = \ln(\mu^2/\Lambda^2)$
- RG equation $\frac{d a_s[L]}{d L} = -a_s^2 c_1 a_s^3 \dots$
- 1-loop solution generates Landau pole singularity:
 $a_s[L] = 1/L$
- 2-loop solution generates square-root singularity:
 $a_s[L] \sim 1/\sqrt{L + c_1 \ln c_1}$

- coupling $\alpha_s(\mu^2) = (4\pi/b_0) a_s[L]$ with $L = \ln(\mu^2/\Lambda^2)$
- RG equation $\frac{d a_s[L]}{d L} = -a_s^2 c_1 a_s^3 \dots$
- 1-loop solution generates Landau pole singularity:
 $a_s[L] = 1/L$
- 2-loop solution generates square-root singularity:
 $a_s[L] \sim 1/\sqrt{L + c_1 \ln c_1}$
- PT series: $D[L] = 1 + d_1 a_s [L] + d_2 a_s^2 [L] + ...$

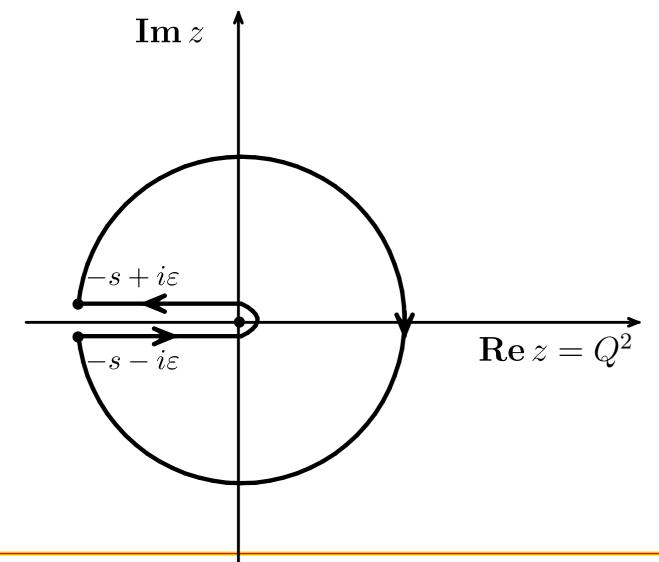
- coupling $\alpha_s(\mu^2) = (4\pi/b_0) a_s[L]$ with $L = \ln(\mu^2/\Lambda^2)$
- RG equation $\frac{d a_s[L]}{d L} = -a_s^2 c_1 a_s^3 \dots$
- 1-loop solution generates Landau pole singularity:
 $a_s[L] = 1/L$
- 2-loop solution generates square-root singularity:
 $a_s[L] \sim 1/\sqrt{L + c_1 \ln c_1}$
- PT series: $D[L] = 1 + d_1 a_s [L] + d_2 a_s^2 [L] + ...$

• RG evolution: $B(Q^2) = [Z(Q^2)/Z(\mu^2)] B(\mu^2)$ reduces in 1-loop approximation to $Z \sim a^{\nu}[L]|_{\nu} = \nu_0 \equiv \gamma_0/(2b_0)$

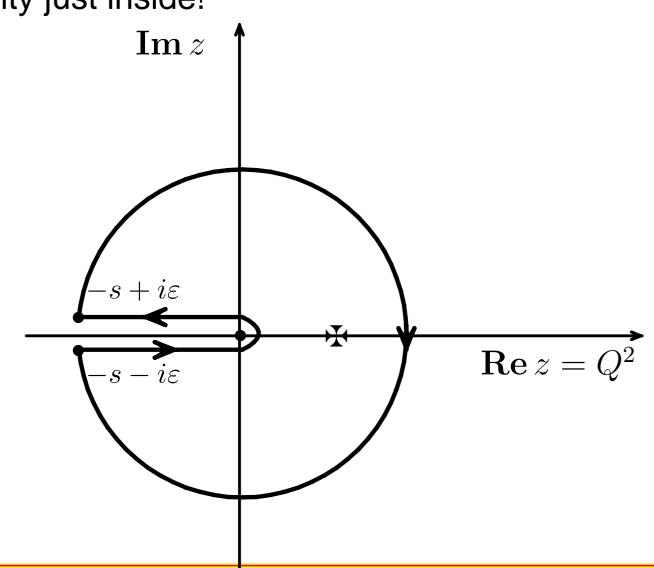




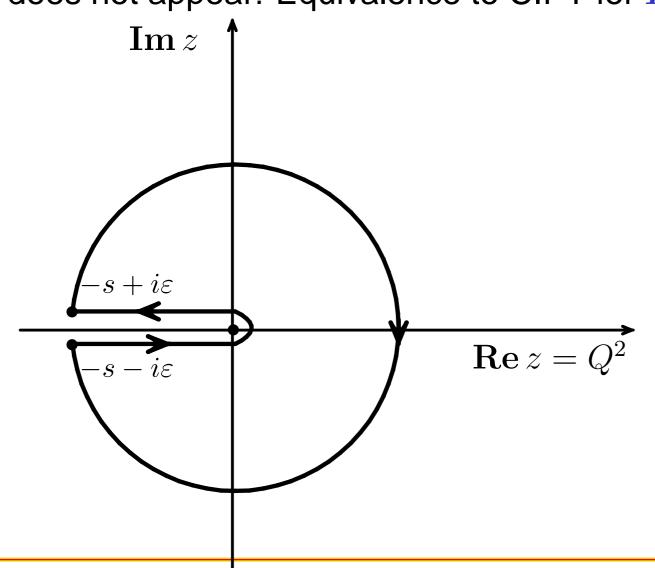
This change of integration contour is legitimate if D(z)f(z) is analytic inside

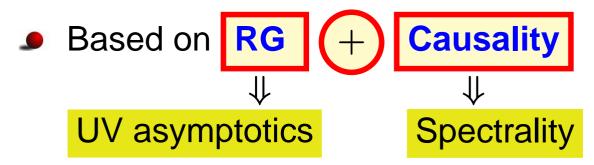


But $\alpha_s(z)$ and hence D(z)f(z) have Landau pole singularity just inside!



In APT effective couplings $\mathcal{A}_n(z)$ are analytic functions \Rightarrow Problem does not appear! Equivalence to CIPT for R(s).





- Euclidean: $-q^2 = Q^2$, $L = \ln Q^2 / \Lambda^2$, $\{\mathcal{A}_n(L)\}_{n \in \mathbb{N}}$
- Minkowskian: $q^2 = s$, $L_s = \ln s / \Lambda^2$, $\{\mathfrak{A}_n(L_s)\}_{n \in \mathbb{N}}$

- Euclidean: $-q^2 = Q^2$, $L = \ln Q^2 / \Lambda^2$, $\{\mathcal{A}_n(L)\}_{n \in \mathbb{N}}$
- Minkowskian: $q^2 = s, \ L_s = \ln s / \Lambda^2, \ \{\mathfrak{A}_n(L_s)\}_{n \in \mathbb{N}}$

• PT
$$\sum_{m} d_{m} a_{s}^{m}(Q^{2}) \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}(Q^{2})$$
 APT m is power \Rightarrow m is index

Spectral representation

By **analytization** we mean "Källen–Lehmann" representation

$$\left[f(Q^2)
ight]_{\sf an} = \int_0^\infty rac{
ho_f(\sigma)}{\sigma+Q^2-i\epsilon}\,d\sigma$$

Then (note here **pole remover**):

$$\begin{split} \rho(\sigma) &= \frac{1}{L_{\sigma}^{2} + \pi^{2}} \\ \mathcal{A}_{1}[L] &= \int_{0}^{\infty} \frac{\rho(\sigma)}{\sigma + Q^{2}} d\sigma = \frac{1}{L} - \frac{1}{e^{L} - 1} \\ \mathfrak{A}_{1}[L_{s}] &= \int_{s}^{\infty} \frac{\rho(\sigma)}{\sigma} d\sigma = \frac{1}{\pi} \arccos \frac{L_{s}}{\sqrt{\pi^{2} + L_{s}^{2}}} \end{split}$$

Spectral representation

By analytization we mean "Källen–Lehmann" representation

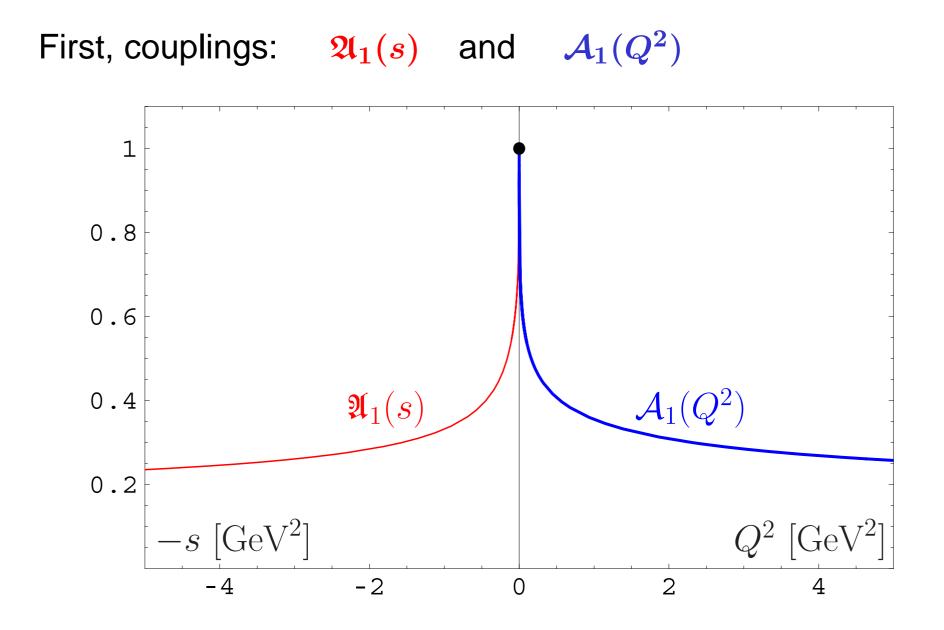
$$\left[f(Q^2)
ight]_{\mathrm{an}} = \int_0^\infty rac{
ho_f(\sigma)}{\sigma+Q^2-i\epsilon}\,d\sigma$$

with spectral density $\rho_f(\sigma) = \lim \left[f(-\sigma) \right] / \pi$. Then:

$$egin{aligned} \mathcal{A}_n[L] =& \int_0^\infty rac{
ho_n(\sigma)}{\sigma+Q^2} \, d\sigma = rac{1}{(n-1)!} \left(-rac{d}{dL}
ight)^{n-1} \mathcal{A}_1[L] \ \mathfrak{A}_n[L_s] =& \int_s^\infty rac{
ho_n(\sigma)}{\sigma} \, d\sigma = rac{1}{(n-1)!} \left(-rac{d}{dL_s}
ight)^{n-1} \mathfrak{A}_1[L_s] \ 1 = \int_s^\infty rac{
ho_n(\sigma)}{\sigma} \, d\sigma = rac{1}{(n-1)!} \left(-rac{d}{dL_s}
ight)^{n-1} \mathfrak{A}_1[L_s] \end{aligned}$$

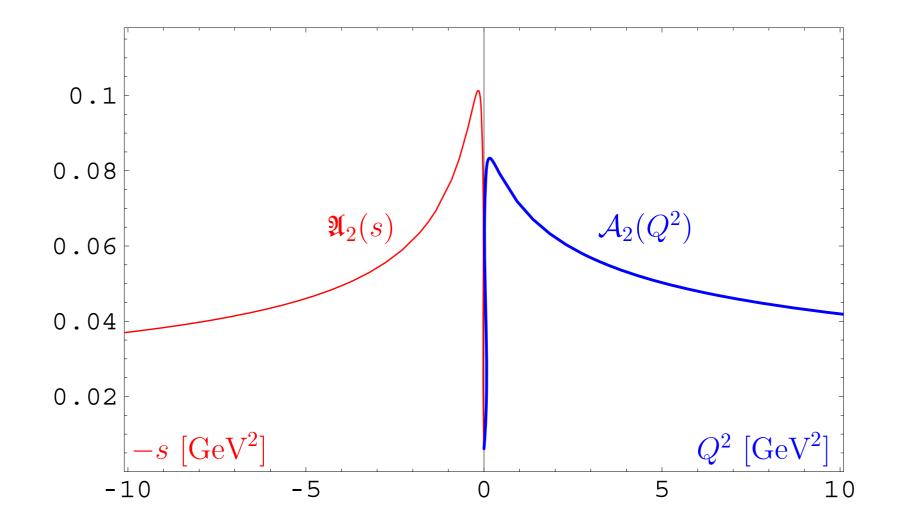
$$a_s^n[L] = rac{1}{(n-1)!} \left(-rac{a}{dL}
ight) \qquad a_s[L]$$

APT graphics: Distorting mirror



APT graphics: Distorting mirror

Second, square-images: $\mathfrak{A}_2(s)$ and $\mathcal{A}_2(Q^2)$



Problems of APT. Resolution: Fractional APT

In standard QCD PT we have not only power series $F[L] = \sum_{m} f_m a_s^m [L]$, but also:

In standard QCD PT we have not only power series $F[L] = \sum_{m} f_m a_s^m [L]$, but also:

SG-improvement to account for higher-orders \rightarrow

$$Z[L] = \exp\left\{\int^{a_s[L]} rac{\gamma(a)}{eta(a)} \, da
ight\} \stackrel{ ext{1-loop}}{\longrightarrow} [a_s[L]]^{\gamma_0/(2eta_0)}$$

In standard QCD PT we have not only power series $F[L] = \sum_{m} f_m a_s^m [L]$, but also:

SG-improvement to account for higher-orders \rightarrow

$$Z[L] = \exp\left\{\int^{a_s[L]} rac{\gamma(a)}{eta(a)} \, da
ight\} \stackrel{ ext{1-loop}}{\longrightarrow} [a_s[L]]^{\gamma_0/(2eta_0)}$$

• Factorization $\rightarrow [a_s[L]]^n L^m$

In standard QCD PT we have not only power series $F[L] = \sum_{m} f_m a_s^m [L]$, but also:

SG-improvement to account for higher-orders \rightarrow

$$Z[L] = \exp\left\{\int^{a_s[L]} rac{\gamma(a)}{eta(a)} \, da
ight\} \stackrel{ ext{1-loop}}{\longrightarrow} [a_s[L]]^{\gamma_0/(2eta_0)}$$

- Factorization $\rightarrow [a_s[L]]^n L^m$
- Sudakov resummation $\rightarrow \exp\left[-a_s[L] \cdot f(x)\right]$

Problems of APT

In standard QCD PT we have not only power series $F[L] = \sum_{m} f_m a_s^m [L]$, but also:

SG-improvement to account for higher-orders \rightarrow

$$Z[L] = \exp\left\{\int^{a_s[L]} rac{\gamma(a)}{eta(a)} \, da
ight\} \stackrel{ ext{1-loop}}{\longrightarrow} [a_s[L]]^{\gamma_0/(2eta_0)}$$

- Factorization $\rightarrow [a_s[L]]^n L^m$
- Sudakov resummation $\rightarrow \exp\left[-a_s[L] \cdot f(x)\right]$

New functions: $(a_s)^{
u}$, $(a_s)^{
u} \ln(a_s)$, $(a_s)^{
u} L^m$, e^{-a_s} , ...

Constructing one-loop FAPT

In one-loop **APT** we have a very nice recurrence relation

$$\mathcal{A}_n[L] = rac{1}{(n-1)!} \left(-rac{d}{dL}
ight)^{n-1} \mathcal{A}_1[L]$$

and the same in Minkowski domain

$$\mathfrak{A}_n[L] = rac{1}{(n-1)!} \left(-rac{d}{dL}
ight)^{n-1} \mathfrak{A}_1[L].$$

We can use it to construct **FAPT**.

FAPT(E): Properties of $\mathcal{A}_{\nu}[L]$

First, Euclidean coupling $(L = L(Q^2))$:

$$\mathcal{A}_{
u}[L] = rac{1}{L^{
u}} - rac{F(e^{-L},1-
u)}{\Gamma(
u)}$$

Here $F(z, \nu)$ is reduced Lerch transcendent. function. It is analytic function in ν .

FAPT(E): Properties of $\mathcal{A}_{\nu}[L]$

First, Euclidean coupling $(L = L(Q^2))$:

$$\mathcal{A}_{
u}[L] = rac{1}{L^{
u}} - rac{F(e^{-L},1-
u)}{\Gamma(
u)}$$

Here $F(z, \nu)$ is reduced Lerch transcendent. function. It is analytic function in ν . Properties:

- $\mathcal{A}_{-m}[L] = L^m$ for $m \in \mathbb{N};$
- ${} {\scriptstyle
 ightarrow} {$

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling (L = L(s)):

$$\mathfrak{A}_{
u}[L] = rac{\sin\left[(
u-1) \arccos\left(L/\sqrt{\pi^2+L^2}
ight)
ight]}{\pi(
u-1)\left(\pi^2+L^2
ight)^{(
u-1)/2}}$$

Here we need only elementary functions.

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling (L = L(s)):

$$\mathfrak{A}_{
u}[L] = rac{\sin\left[(
u-1) \arccos\left(L/\sqrt{\pi^2+L^2}
ight)
ight]}{\pi(
u-1)\left(\pi^2+L^2
ight)^{(
u-1)/2}}$$

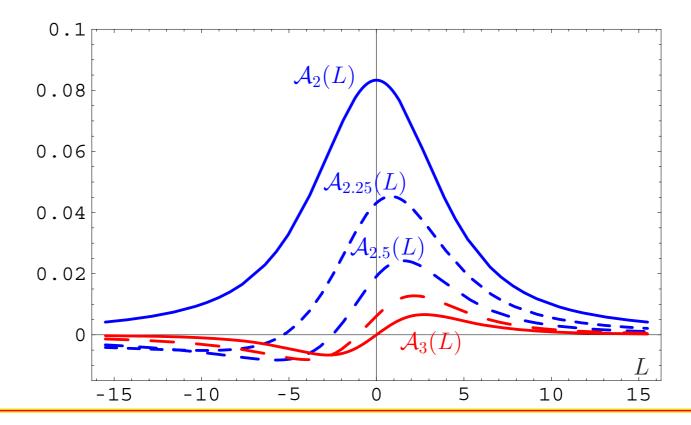
Here we need only elementary functions. Properties:

 $\mathfrak{A}_0[L] = 1;$ $\mathfrak{A}_{-1}[L] = L;$ $\mathfrak{A}_{-2}[L] = L^2 - \frac{\pi^2}{3}, \quad \mathfrak{A}_{-3}[L] = L(L^2 - \pi^2), \quad \dots;$ $\mathfrak{A}_m[L] = (-1)^m \mathfrak{A}_m[-L] \text{ for } m \ge 2, \quad m \in \mathbb{N};$ $\mathfrak{A}_m[\pm \infty] = 0 \text{ for } m \ge 2, \quad m \in \mathbb{N}$

FAPT(E): Graphics of $\mathcal{A}_{\nu}[L]$ vs. L

$$\mathcal{A}_{
u}[L] = rac{1}{L^{
u}} - rac{F(e^{-L},1-
u)}{\Gamma(
u)}$$

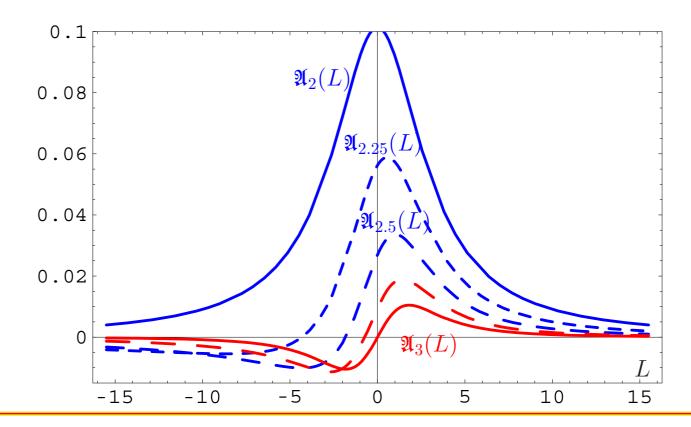
Graphics for fractional $\nu \in [2,3]$:



FAPT(M): Graphics of $\mathfrak{A}_{\nu}[L]$ vs. L

$$\mathfrak{A}_{\nu}[L] = \frac{\sin\left[(\nu-1) \arccos\left(L/\sqrt{\pi^2 + L^2}\right)\right]}{\pi(\nu-1)\left(\pi^2 + L^2\right)^{(\nu-1)/2}}$$

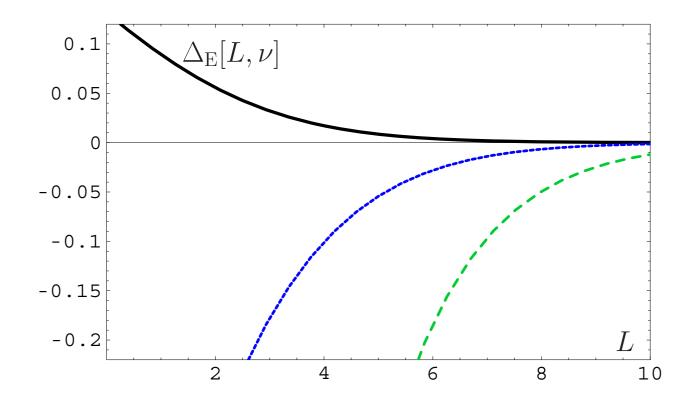
Compare with graphics in Minkowskian region :



FAPT(E): Comparing A_{ν} with $(A_1)^{\nu}$

$$\Delta_{\mathsf{E}}(L,
u) = rac{\mathcal{A}_{
u}[L] - ig(\mathcal{A}_1[L]ig)^{
u}}{\mathcal{A}_{
u}[L]}$$

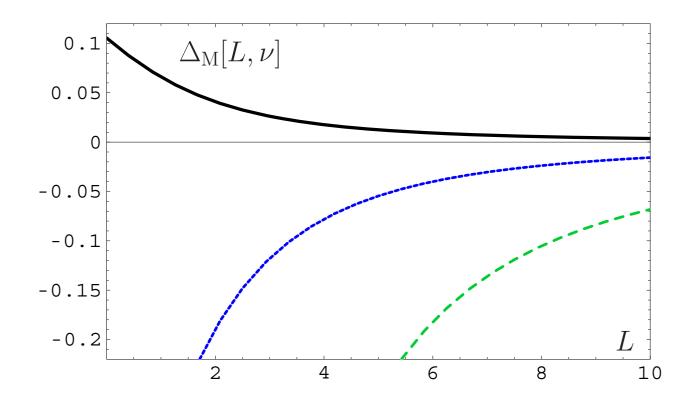
Graphics for fractional $\nu = 0.62$, 1.62 and 2.62:



FAPT(M): Comparing \mathfrak{A}_{ν} with $(\mathfrak{A}_1)^{\nu}$

$$\Delta_{\mathsf{M}}(L,\nu) = \frac{\mathfrak{A}_{\nu}[L] - \left(\mathfrak{A}_{1}[L]\right)^{\nu}}{\mathfrak{A}_{\nu}[L]}$$

Minkowskian graphics for $\nu = 0.62$, 1.62 and 2.62:



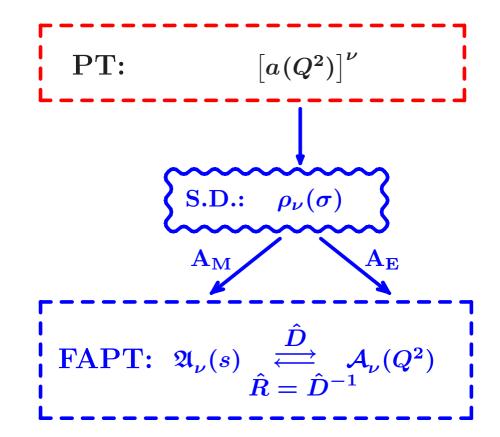
Comparison of **PT**, **APT**, and **FAPT**

Theory	PT	APT	FAPT
Set	$\left\{a^{ u} ight\}_{ u\in\mathbb{R}}$	$ig\{\mathcal{A}_m,\mathfrak{A}_mig\}_{m\in\mathbb{N}}$	$ig\{ \mathcal{A}_{ u}, \mathfrak{A}_{ u} ig\}_{ u \in \mathbb{R}}$
Series	$\sum\limits_m f_m a^m$	$\sum\limits_m f_m \mathcal{A}_m$	$\sum\limits_{m} f_{m} \mathcal{A}_{m}$
Inv. powers	$(a[L])^{-m}$		$\mathcal{A}_{-m}[L] = L^m$
Products	$a^\mu a^ u = a^{\mu+ u}$		
Index deriv.	$a^{ u} {\sf ln}^k a$		$\mathcal{D}^k\mathcal{A}_ u$
Logarithms	$a^{ u}L^k$		$\mathcal{A}_{ u-k}$

Development of FAPT:

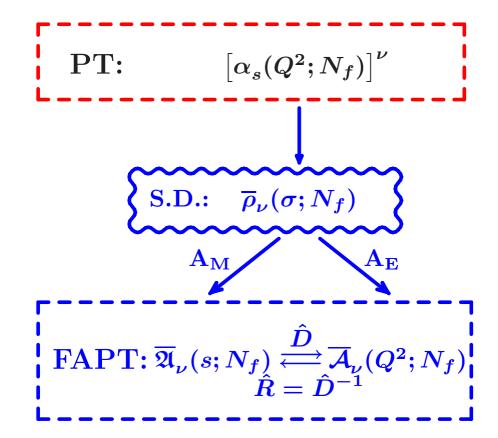
Heavy-Quark Thresholds

Conceptual scheme of **FAPT**



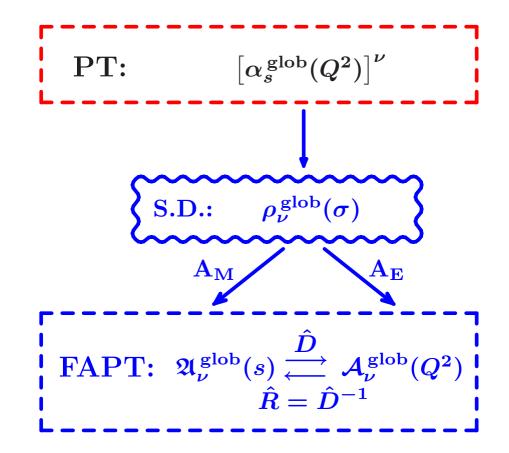
Here N_f is fixed and factorized out.

Conceptual scheme of **FAPT**



Here N_f is fixed, but not factorized out.

Conceptual scheme of **FAPT**



Here we see how "analytization" takes into account N_f -dependence.

Global FAPT: Single threshold case

- Consider for simplicity only one threshold at $s = m_c^2$ with transition $N_f = 3 \rightarrow N_f = 4$.
- Denote: $L_4 = \ln (m_c^2 / \Lambda_3^2)$ and $\lambda_4 = \ln (\Lambda_3^2 / \Lambda_4^2)$.

Global FAPT: Single threshold case

- Consider for simplicity only one threshold at $s = m_c^2$ with transition $N_f = 3 \rightarrow N_f = 4$.
- Denote: $L_4 = \ln{(m_c^2/\Lambda_3^2)}$ and $\lambda_4 = \ln{(\Lambda_3^2/\Lambda_4^2)}$.

Then:

$$\begin{split} \mathfrak{A}_{\nu}^{\mathsf{glob}}[L] = \theta \left(L < L_4 \right) \left[\overline{\mathfrak{A}}_{\nu}[L;3] - \overline{\mathfrak{A}}_{\nu}[L_4;3] + \overline{\mathfrak{A}}_{\nu}[L_4 + \lambda_4;4] \right] \\ + \theta \left(L \ge L_4 \right) \overline{\mathfrak{A}}_{\nu}[L + \lambda_4;4] \end{split}$$

Global FAPT: Single threshold case

- Consider for simplicity only one threshold at $s = m_c^2$ with transition $N_f = 3 \rightarrow N_f = 4$.
- Denote: $L_4 = \ln{(m_c^2/\Lambda_3^2)}$ and $\lambda_4 = \ln{(\Lambda_3^2/\Lambda_4^2)}$.

Then:

$$\begin{split} \mathfrak{A}_{\nu}^{\mathsf{glob}}[L] = \theta \left(L < L_4 \right) \left[\overline{\mathfrak{A}}_{\nu}[L;3] - \overline{\mathfrak{A}}_{\nu}[L_4;3] + \overline{\mathfrak{A}}_{\nu}[L_4 + \lambda_4;4] \right] \\ + \theta \left(L \ge L_4 \right) \overline{\mathfrak{A}}_{\nu}[L + \lambda_4;4] \end{split}$$

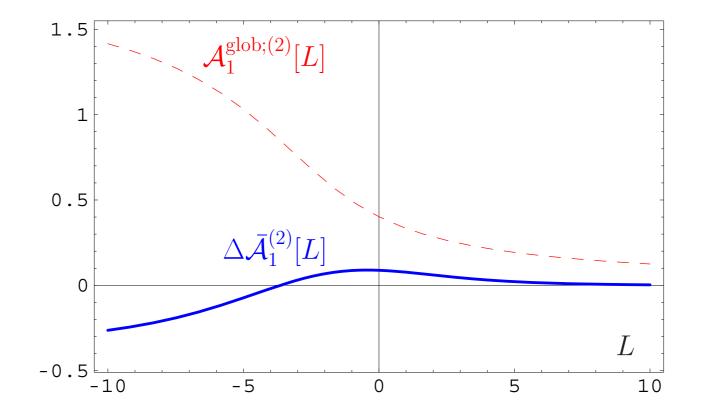
and

$$\mathcal{A}_{
u}^{\mathsf{glob}}[L] \!=\! \overline{\mathcal{A}}_{
u}[L\!+\!\lambda_4;4] \!+\! \int\limits_{-\infty}^{L_4} rac{\overline{
ho}_{
u}\left[L_{\sigma};3
ight]\!-\!\overline{
ho}_{
u}\left[L_{\sigma}\!+\!\lambda_4;4
ight]}{1+e^{L-L_{\sigma}}} dL_{\sigma}$$

Graphical comparison: Fixed- N_f —Global

$$\mathcal{A}_{\nu}^{\mathsf{glob}}[L] = \overline{\mathcal{A}}_{\nu}[L + \lambda_4; 4] + \Delta \overline{\mathcal{A}}_{\nu}[L];$$

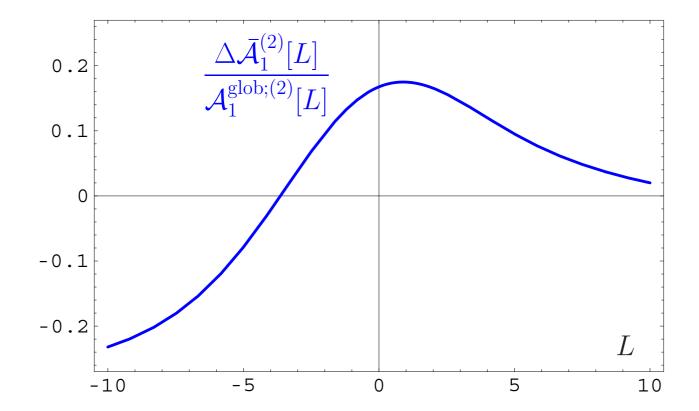
 $\Delta \overline{\mathcal{A}}_1[L] -$ solid, $\mathcal{A}_1^{\text{glob}}[L] -$ dashed:



Graphical comparison: Fixed- N_f —Global

$$\mathcal{A}^{\mathsf{glob}}_{\nu}[L] = \overline{\mathcal{A}}_{\nu}[L + \lambda_4; 4] + \Delta \overline{\mathcal{A}}_{\nu}[L];$$

 $\Delta \overline{\mathcal{A}}_1[L] / \mathcal{A}_1^{\mathsf{glob}}[L] - \mathsf{solid}$:



Resummation in one-loop APT and FAPT

Consider series
$$\mathcal{D}[L] = d_0 + \sum_{n=1}^{\infty} d_n \mathcal{A}_n[L]$$

Consider series $\mathcal{D}[L] = d_0 + \sum_{n=1}^{\infty} d_n \mathcal{A}_n[L]$ Let exist the generating function P(t) for coefficients:

$$d_n = d_1 \int_0^\infty P(t) t^{n-1} dt$$
 with $\int_0^\infty P(t) dt = 1$.

We define a shorthand notation

$$\langle\langle f(t)\rangle\rangle_{P(t)}\equiv\int_0^\infty f(t)\,P(t)\,dt\,.$$

Then coefficients $d_n = d_1 \langle \langle t^{n-1} \rangle \rangle_{P(t)}$.

Consider series $\mathcal{D}[L] = d_0 + \sum_{n=1}^{\infty} d_n \mathcal{A}_n[L]$ with coefficients $d_n = d_1 \langle \langle t^{n-1} \rangle \rangle_{P(t)}$. We have one-loop recurrence relation:

$$\mathcal{A}_{n+1}[L] = rac{1}{\Gamma(n+1)} \left(-rac{d}{dL}
ight)^n \mathcal{A}_1[L]\,.$$

 ∞

Consider series $\mathcal{D}[L] = d_0 + \sum_{n=1}^{\infty} d_n \mathcal{A}_n[L]$ with coefficients $d_n = d_1 \langle \langle t^{n-1} \rangle \rangle_{P(t)}$. We have one-loop recurrence relation:

$$\mathcal{A}_{n+1}[L] = rac{1}{\Gamma(n+1)} \left(-rac{d}{dL}
ight)^n \mathcal{A}_1[L]\,.$$

 ∞

Result:

$$\mathcal{D}[L] = d_0 + d_1 \left< \left< \mathcal{A}_1[L-t] \right> \right>_{P(t)}$$

Consider series $\mathcal{D}[L] = d_0 + \sum_{n=1}^{\infty} d_n \mathcal{A}_n[L]$ with coefficients $d_n = d_1 \langle \langle t^{n-1} \rangle \rangle_{P(t)}$. We have one-loop recurrence relation:

$$\mathcal{A}_{n+1}[L] = rac{1}{\Gamma(n+1)} \left(-rac{d}{dL}
ight)^n \mathcal{A}_1[L]\,.$$

Result:

$$\mathcal{D}[L] = d_0 + d_1 \left< \left< \mathcal{A}_1[L-t] \right> \right>_{P(t)}$$

and for Minkowski region:

$$\mathcal{R}[L] = d_0 + d_1 \left< \left< \mathfrak{A}_1[L-t] \right> \right>_{P(t)}$$

Resummation in Global Minkowskian APT

Consider series $\mathcal{R}[L] = d_0 + \sum_{n=1}^{\infty} d_n \mathfrak{A}_n^{\mathsf{glob}}[L]$ with coefficients $d_n = d_1 \langle \langle t^{n-1} \rangle \rangle_{P(t)}$. Result:

$$egin{aligned} \mathcal{R}[L] &= d_0 \;+\; d_1 \langle \langle heta \left(L < L_4
ight) iggl[\Delta_4 \overline{\mathfrak{A}}_1[t] + \overline{\mathfrak{A}}_1 iggl[L - rac{t}{eta_3}; 3 iggr] iggr]
angle
angle_{P(t)} \ &+\; d_1 \langle \langle heta \left(L \ge L_4
ight) \overline{\mathfrak{A}}_1 iggl[L + \lambda_4 - rac{t}{eta_4}; 4 iggr]
angle
angle_{P(t)}. \end{aligned}$$

where

$$\Delta_4 \overline{\mathfrak{A}}_1[t] = \overline{\mathfrak{A}}_1 \Big[L_4 + \lambda_4 - \frac{t}{\beta_4}; 4 \Big] - \overline{\mathfrak{A}}_1 \Big[L_3 - \frac{t}{\beta_3}; 3 \Big].$$

Resummation in Global Euclidean APT

In Euclidean domain the result is more complicated: $\mathcal{D}[L] = d_0 + d_1 \langle \langle \int_{-\infty}^{L_4} \frac{\overline{\rho}_1 [L_{\sigma}; 3] \ dL_{\sigma}}{1 + e^{L - L_{\sigma} - t/\beta_3}} \rangle \rangle_{P(t)} + \langle \langle \Delta_4 [L, t] \rangle \rangle_{P(t)} + d_1 \langle \langle \int_{L_4}^{\infty} \frac{\overline{\rho}_1 [L_{\sigma} + \lambda_4; 4] \ dL_{\sigma}}{1 + e^{L - L_{\sigma} - t/\beta_4}} \rangle \rangle_{P(t)}.$

where

$$egin{aligned} \Delta_4[L,t] &= \int \limits_0^1 rac{\overline{
ho}_1 \left[L_4 + \lambda_4 - tx/eta_4; 4
ight] t}{eta_4 \left[1 + e^{L - L_4 - tar{x}/eta_4}
ight]} \, dx \ &- \int \limits_0^1 rac{\overline{
ho}_1 \left[L_3 - tx/eta_3; 3
ight] t}{eta_3 \left[1 + e^{L - L_4 - tar{x}/eta_3}
ight]} \, dx. \end{aligned}$$

Resummation in FAPT

Consider seria
$$\mathcal{R}_{\nu}[L] = d_0 \mathfrak{A}_{\nu}[L] + \sum_{\substack{n=1 \\ \infty}}^{\infty} d_n \mathfrak{A}_{n+\nu}[L]$$

and $\mathcal{D}_{\nu}[L] = d_0 \mathcal{A}_{\nu}[L] + \sum_{\substack{n=1 \\ n=1}}^{\infty} d_n \mathcal{A}_{n+\nu}[L]$

with coefficients $d_n = d_1 \langle \langle t^{n-1} \rangle \rangle_{P(t)}$.

Result:

 $egin{aligned} \mathcal{R}_{
u}[L] &= d_0 \, \mathfrak{A}_{
u}[L] + d_1 \left< \left< \mathfrak{A}_{1+
u}[L-t] \right>
ight>_{P_{
u}(t)}; \ \mathcal{D}_{
u}[L] &= d_0 \, \mathcal{A}_{
u}[L] + d_1 \left< \left< \mathcal{A}_{1+
u}[L-t] \right>
ight>_{P_{
u}(t)}. \end{aligned}$

where
$$P_
u(t) = \int\limits_0^{-} P\left(rac{t}{1-z}
ight)
u \, z^{
u-1} rac{dz}{1-z}.$$

Resummation in Global Minkowskian FAPT

Consider series $\mathcal{R}_{\nu}[L] = d_0 \mathfrak{A}_{\nu}^{\mathsf{glob}} + \sum_{n=1}^{\infty} d_n \mathfrak{A}_{n+\nu}^{\mathsf{glob}}[L]$ with coefficients $d_n = d_1 \langle \langle t^{n-1} \rangle \rangle_{P(t)}$.

Resummation in Global Minkowskian FAPT

 $\begin{array}{ll} \text{Consider series} & \mathcal{R}_{\nu}[L] = d_0 \,\mathfrak{A}_{\nu}^{\mathsf{glob}} + \sum_{n=1}^{\infty} d_n \,\mathfrak{A}_{n+\nu}^{\mathsf{glob}}[L] \\ \text{with coefficients} & d_n = d_1 \,\langle\langle t^{n-1} \rangle\rangle_{P(t)}. \end{array} \end{array}$

Then result is complete analog of the Global APT(M) result with natural substitutions:

$$\mathfrak{A}_1[L] o \mathfrak{A}_{1+
u}[L] ext{ and } P(t) o P_
u(t)$$

with $P_
u(t) = \int_0^1 P\left(rac{t}{1-z}
ight)
u \, z^{
u-1} rac{dz}{1-z}.$

Resummation in Global Euclidean FAPT

 $\begin{array}{ll} \text{Consider series} \quad \mathcal{D}_{\nu}[L] = d_0 \, \mathcal{A}_{\nu}^{\text{glob}} + \sum_{n=1}^{\infty} d_n \, \mathcal{A}_{n+\nu}^{\text{glob}}[L] \\ \text{with coefficients } d_n = d_1 \, \langle \langle t^{n-1} \rangle \rangle_{P(t)}. \end{array} \end{array}$

Then result is complete analog of the Global APT(E) result with natural substitutions:

$$\overline{
ho}_1[L] o \overline{
ho}_{1+
u}[L] extrm{ and } P(t) o P_
u(t)$$
with $P_
u(t) = \int_0^1 P\left(rac{t}{1-z}
ight)
u \, z^{
u-1} rac{dz}{1-z}.$

Higgs boson decay $H^0 \rightarrow b\bar{b}$

Higgs boson decay into **bb**-pair

This decay can be expressed in QCD by means of the correlator of quark scalar currents $J_{S}(x) = :\overline{b}(x)b(x):$

$$\Pi(Q^2) = (4\pi)^2 i \int dx e^{iqx} \langle 0 \mid T[\ J_{\mathsf{S}}(x) J_{\mathsf{S}}(0) \] \mid 0
angle$$

Higgs boson decay into **bb**-pair

This decay can be expressed in QCD by means of the correlator of quark scalar currents $J_{S}(x) = :\overline{b}(x)b(x):$

$$\Pi(Q^2) = (4\pi)^2 i \int dx e^{iqx} \langle 0 \mid T[\; J_{\mathsf{S}}(x) J_{\mathsf{S}}(0) \;] \left| 0
ight
angle$$

in terms of discontinuity of its imaginary part

$$R_{\rm S}(s) = {\rm Im}\,\Pi(-s-i\epsilon)/(2\pi\,s)\,,$$

so that

$$\Gamma_{\mathsf{H}
ightarrow b\overline{b}}(M_{\mathsf{H}}) = rac{G_F}{4\sqrt{2}\pi} M_{\mathsf{H}} \, m_b^2(M_{\mathsf{H}}) \, R_{\mathsf{S}}(s = M_{\mathsf{H}}^2) \, .$$

FAPT(M) analysis of R_S

Running mass $m(Q^2)$ is described by the RG equation $m^2(Q^2) = \hat{m}^2 \left[\frac{\alpha_s(Q^2)}{\pi} \right]^{\nu_0} \left[1 + \frac{c_1 b_0 \alpha_s(Q^2)}{4\pi^2} \right]^{\nu_1}.$

with RG-invariant mass \hat{m}^2 (for *b*-quark $\hat{m}_b \approx 14.6$ GeV) and $\nu_0 = 1.04$, $\nu_1 = 1.86$.

FAPT(M) analysis of R_S

Running mass $m(Q^2)$ is described by the RG equation $m^2(Q^2) = \hat{m}^2 \left[\frac{\alpha_s(Q^2)}{\pi} \right]^{\nu_0} \left[1 + \frac{c_1 b_0 \alpha_s(Q^2)}{4\pi^2} \right]^{\nu_1}.$

with RG-invariant mass \hat{m}^2 (for *b*-quark $\hat{m}_b \approx 14.6$ GeV) and $\nu_0 = 1.04$, $\nu_1 = 1.86$. This gives us

$$ig[3\,\hat{m}_b^2ig]^{-1}\,\,\widetilde{D}_{\sf S}(Q^2) = igg(rac{lpha_s(Q^2)}{\pi}igg)^{
u_0} + \sum_{m>0} d_m\,\,igg(rac{lpha_s(Q^2)}{\pi}igg)^{m+
u_0}$$

FAPT(M) analysis of **R**_S

Running mass $m(Q^2)$ is described by the RG equation $m^2(Q^2) = \hat{m}^2 \left[\frac{\alpha_s(Q^2)}{\pi} \right]^{\nu_0} \left[1 + \frac{c_1 b_0 \alpha_s(Q^2)}{4\pi^2} \right]^{\nu_1}.$

with RG-invariant mass \hat{m}^2 (for *b*-quark $\hat{m}_b \approx 14.6$ GeV) and $\nu_0 = 1.04$, $\nu_1 = 1.86$. This gives us

$$ig[3\,\hat{m}_b^2ig]^{-1}\,\,\widetilde{D}_{\sf S}(Q^2) = igg(rac{lpha_s(Q^2)}{\pi}igg)^{
u_0} + \sum_{m>0} d_m\,\,igg(rac{lpha_s(Q^2)}{\pi}igg)^{m+
u_0}$$

In FAPT(M) we obtain

$$\widetilde{\mathcal{R}}_{\mathsf{S}}^{(l);N}[L] = rac{3\widehat{m}^2}{\pi^{
u_0}} \, \left[\mathfrak{A}_{
u_0}^{(l);\mathsf{glob}}[L] + \sum_{m>0}^N rac{d_m^{(l)}}{\pi^m} \mathfrak{A}_{m+
u_0}^{(l);\mathsf{glob}}[L]
ight]$$

Let us have a look to coefficients of our series, $\tilde{d}_m = d_m/d_1$, with $d_1 = 17/3$.

Model	$ ilde{d}_1$	$ ilde{d}_2$	$ ilde{d}_3$	$ ilde{d}_4$	$ ilde{d}_5$
pQCD	1	7.42	62.3		

Let us have a look to coefficients of our series, $\tilde{d}_m = d_m/d_1$, with $d_1 = 17/3$.

Model	$ ilde{d}_1$	$ ilde{d}_2$	$ ilde{d}_3$	$ ilde{d}_4$	$ ilde{d}_5$
pQCD	1	7.42	62.3		
$c = 2.5, \ eta = -0.48$	1	7.42	62.3		

Let us have a look to coefficients of our series, $\tilde{d}_m = d_m/d_1$, with $d_1 = 17/3$.

Model	$ ilde{d}_1$	$ ilde{d}_2$	$ ilde{d}_3$	$ ilde{d}_4$	$ ilde{d}_5$
pQCD	1	7.42	62.3	620	
$c = 2.5, \ eta = -0.48$	1	7.42	62.3	662	_

Let us have a look to coefficients of our series, $\tilde{d}_m = d_m/d_1$, with $d_1 = 17/3$.

Model	$ ilde{d}_1$	$ ilde{d}_2$	$ ilde{d}_3$	$ ilde{d}_4$	$ ilde{d}_5$
pQCD	1	7.42	62.3	620	
$c = 2.5, \ eta = -0.48$	1	7.42	62.3	662	
$c = 2.4, \ eta = -0.52$	1	7.50	61.1	625	

Let us have a look to coefficients of our series, $\tilde{d}_m = d_m/d_1$, with $d_1 = 17/3$.

Model	$ ilde{d}_1$	$ ilde{d}_2$	$ ilde{d}_3$	$ ilde{d}_4$	$ ilde{d}_5$
pQCD	1	7.42	62.3	620	
$c = 2.5, \ eta = -0.48$	1	7.42	62.3	662	
$c=2.4,\ eta=-0.52$	1	7.50	61.1	625	7826

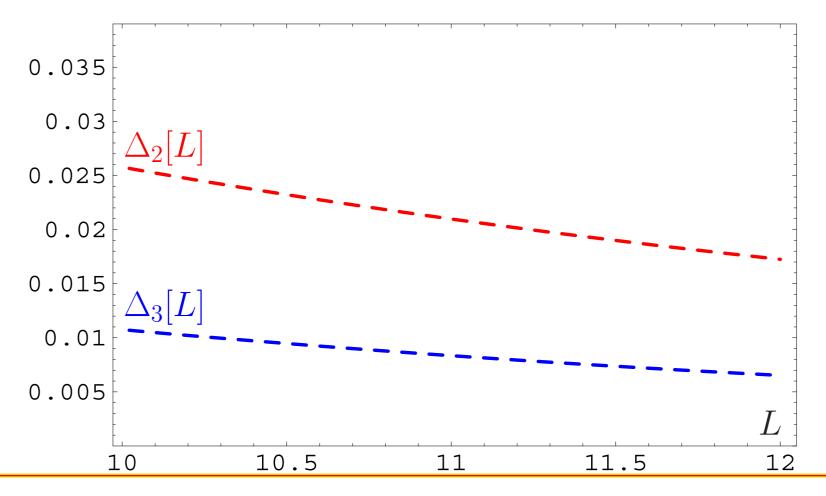
Let us have a look to coefficients of our series, $\tilde{d}_m = d_m/d_1$, with $d_1 = 17/3$.

Model	$ ilde{d}_1$	$ ilde{d}_2$	$ ilde{d}_3$	$ ilde{d}_4$	$ ilde{d}_5$	
pQCD	1	7.42	62.3	620		
$c = 2.5, \ eta = -0.48$	1	7.42	62.3	662		
$c = 2.4, \ eta = -0.52$	1	7.50	61.1	625	7826	
"PMS" model			64.8	547	7782	
We use model $ ilde{d}_n^{mod} = rac{c^{n-1}(eta\Gamma(n)+\Gamma(n+1))}{eta+1}$						
with parameters eta and c estimated by known $ ilde{d}_n$ and						

with parameters β and c estimated by known d_n and with use of **Lipatov** asymptotics.

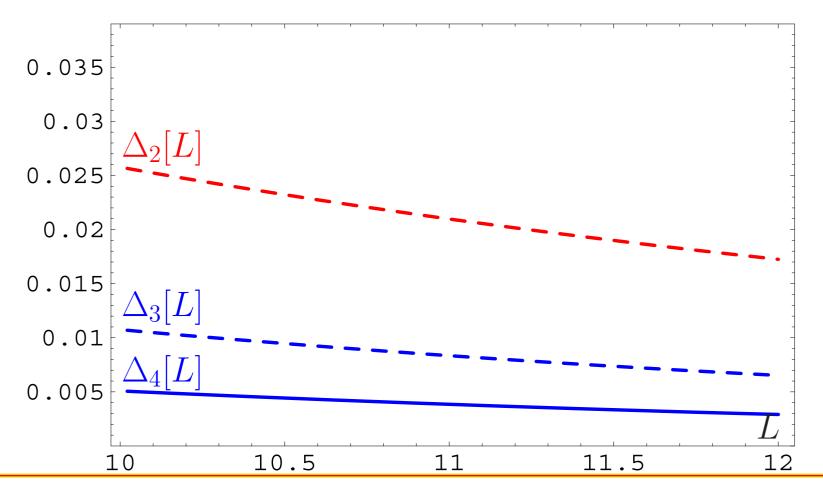
We define relative errors of series truncation at *N*th term:

$$\Delta_N[L] = 1 - \widetilde{\mathcal{R}}_{\mathsf{S}}^{(1;N)}[L] / \widetilde{\mathcal{R}}_{\mathsf{S}}^{(1;\infty)}[L]$$



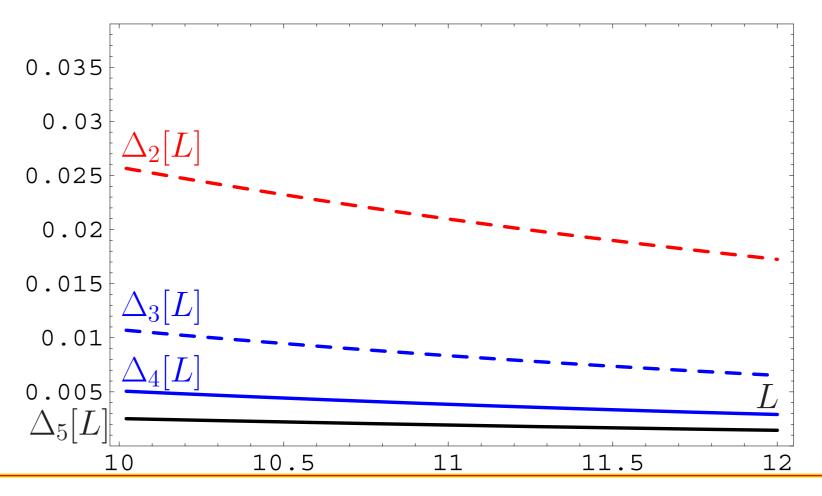
We define relative errors of series truncation at *N*th term:

$$\Delta_N[L] = 1 - \widetilde{\mathcal{R}}_{\mathsf{S}}^{(1;N)}[L] / \widetilde{\mathcal{R}}_{\mathsf{S}}^{(1;\infty)}[L]$$



We define relative errors of series truncation at *N*th term:

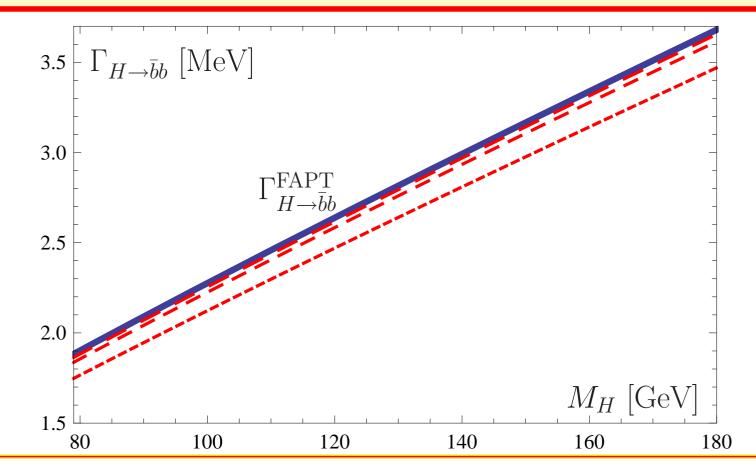
$$\Delta_N[L] = 1 - \widetilde{\mathcal{R}}_{\mathsf{S}}^{(1;N)}[L] / \widetilde{\mathcal{R}}_{\mathsf{S}}^{(1;\infty)}[L]$$



Conclusion: If we need accuracy better than 0.5% — only then we need to calculate the 5-th correction.

Conclusion: If we need accuracy better than 0.5% — only then we need to calculate the 5-th correction.

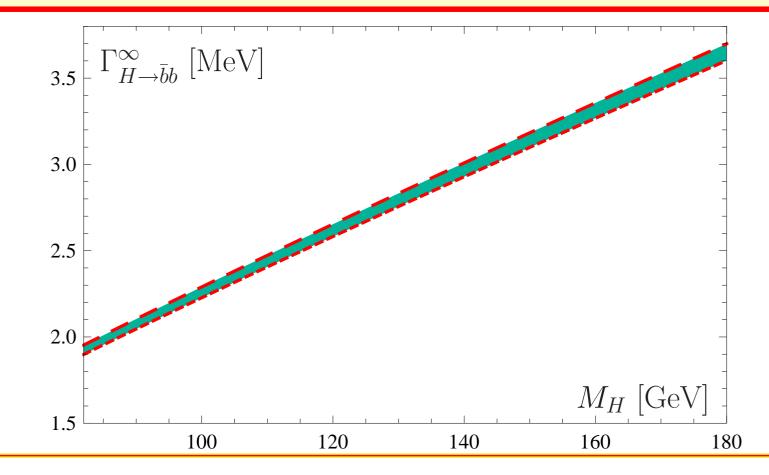
But profit will be tiny — instead of 0.5% one'll obtain 0.3%!



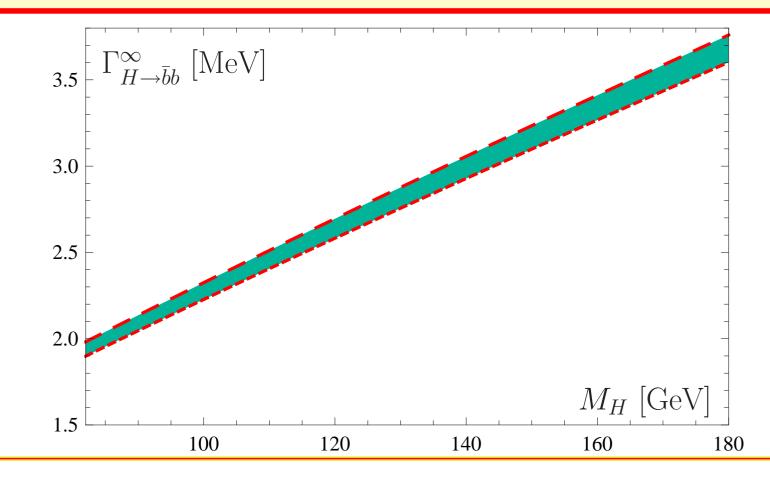
FAPT(M) for $\widetilde{\mathbf{R}}_{S}$: Truncation errors

Conclusion: If we need accuracy of the order 0.5% — then we need to take into account up to the 4-th correction.

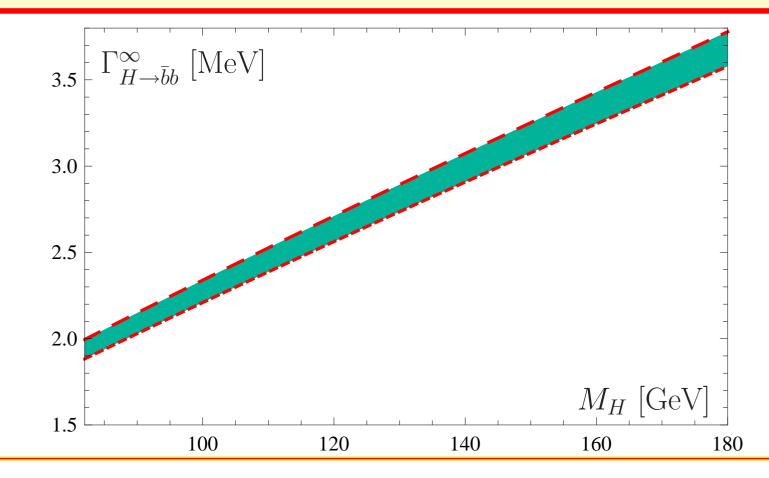
Note: uncertainty due to P(t)-modelling is small $\leq 0.6\%$.



Conclusion: If we need accuracy of the order 1% then we need to take into account up to the 3-rd correction — in agreement with Kataev&Kim [0902.1442]. Note: on-shell mass uncertainty $\sim 2\%$.



Conclusion: If we need accuracy of the order 1% — then we need to take into account up to the 3-rd correction — in agreement with Kataev&Kim [0902.1442]. Note: overall uncertainty $\sim 3\%$.



APT provides natural way to Minkowski region for coupling and related quantities.

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function P(t) for PT coefficients.

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function P(t) for PT coefficients.
- Using quite simple model generating function P(t) for Higgs boson decay $H \rightarrow \overline{b}b$ we see that at N³LO we have accuracy of the order of:

1% — due to truncation error...

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function P(t) for PT coefficients.
- Using quite simple model generating function P(t) for Higgs boson decay $H \rightarrow \overline{b}b$ we see that at N³LO we have accuracy of the order of:

1% — due to truncation error ;

2% — due to on-shell mass uncertainty.

Agreement with Kataev&Kim [0902.1442].