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History of APT
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0 − �q2 ≥ 0
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ghost-free αE(Q2)

Shirkov & Solovtsov 1996

Integral Transformation:

R [αs] → Arctg(s)
Jones & Solovtsov 1995

pQCD+RG+Analyticity

Transforms: D̂ = R̂−1

Couplings: αE(Q2) ⇔ αM(s)
Milton & Solovtsov 1996–97

Analytic (global) pQCD+Analyticity
Global couplings: An(Q2) ⇔ An(s)
Non-Power perturbative expansions

Shirkov 1999–2001
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Intro: PT in QCD

coupling αs(μ
2) = (4π/b0)as[L] with L = ln(μ2/Λ2)

RG equation
d as[L]

d L
= −a2

s − c1 a3
s − . . .

1-loop solution generates Landau pole singularity:
as[L] = 1/L
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Intro: PT in QCD

coupling αs(μ
2) = (4π/b0)as[L] with L = ln(μ2/Λ2)

RG equation
d as[L]

d L
= −a2

s − c1 a3
s − . . .

1-loop solution generates Landau pole singularity:
as[L] = 1/L

2-loop solution generates square-root singularity:
as[L] ∼ 1/

√
L + c1lnc1

PT series: D[L] = 1 + d1as[L] + d2a
2
s[L] + . . .

RG evolution: B(Q2) =
[
Z(Q2)/Z(μ2)

]
B(μ2)

reduces in 1-loop approximation to
Z ∼ aν [L]

∣∣∣
ν = ν0 ≡ γ0/(2b0)
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Problem in QCD PT: Minkowski region?

Quantities in Minkowski region =

∮∮∮
f(z)D(z)dz.

•
−s + iε

•

Im z

Re z = Q2•
−s − iε
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Problem in QCD PT: Minkowski region?

In
∮∮∮

f(z)D(z)dz one uses D(z) =
∑∑∑
m

dmαm
s (z).

•−s + iε
•

Im z

Re z = Q2•−s − iε
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Problem in QCD PT: Minkowski region?
This change of integration contour is legitimate if D(z)f(z)
is analytic inside

•
−s + iε

•

Im z

Re z = Q2•
−s − iε
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Problem in QCD PT: Minkowski region?
But αs(z) and hence D(z)f(z) have Landau pole
singularity just inside!

•
−s + iε

•

Im z

Re z = Q2•
−s − iε

�
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Problem in QCD PT: Minkowski region?
In APT effective couplings An(z) are analytic functions ⇒
Problem does not appear! Equivalence to CIPT for R(s).

•
−s + iε

•

Im z

Re z = Q2•
−s − iε
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Basics of APT

Different effective couplings in Euclidean (S&S) and
Minkowskian (R&K&P) regions
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Basics of APT

Different effective couplings in Euclidean (S&S) and
Minkowskian (R&K&P) regions

Based on RG + Causality
⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = lnQ2/Λ2, {An(L)}n∈N

Minkowskian: q2 = s, Ls = ln s/Λ2, {An(Ls)}n∈N

PT
∑∑∑
m

dmam
s (Q2) ⇒

∑∑∑
m

dmAm(Q2) APT

m is power ⇒ m is index
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Spectral representation

By analytization we mean “Källen–Lehmann”
representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf (σ)

σ + Q2 − iε
dσ

Then (note here pole remover):

ρ(σ) =
1

L2
σ + π2

A1[L] =

∫∫∫ ∞

0

ρ(σ)

σ + Q2
dσ =

1

L
−

1

eL − 1

A1[Ls] =

∫∫∫ ∞

s

ρ(σ)

σ
dσ =

1

π
arccos

Ls√
π2 + L2

s
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Spectral representation

By analytization we mean “Källen–Lehmann” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf (σ)

σ + Q2 − iε
dσ

with spectral density ρf (σ) = Im
[
f(−σ)

]
/π. Then:

An[L]=

∫∫∫ ∞

0

ρn(σ)

σ + Q2
dσ =

1

(n − 1)!

(
−

d

dL

)n−1

A1[L]

An[Ls]=

∫∫∫ ∞

s

ρn(σ)

σ
dσ =

1

(n − 1)!

(
−

d

dLs

)n−1

A1[Ls]

an
s [L] =

1

(n − 1)!

(
−

d

dL

)n−1

as[L]
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APT graphics: Distorting mirror

First, couplings: A1(s) and A1(Q
2)
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Q2 [GeV2]−s [GeV2]

A1(Q
2)�1(s)
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APT graphics: Distorting mirror

Second, square-images: A2(s) and A2(Q
2)
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Problems of APT.
Resolution:

Fractional APT
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:
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F [L] =

∑∑∑
m

fm am
s [L], but also:

RG-improvement to account for higher-orders →

Z[L] = exp
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}
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:

RG-improvement to account for higher-orders →

Z[L] = exp

{∫∫∫ as[L] γ(a)

β(a)
da

}
1-loop−→ [as[L]]γ0/(2β0)

Factorization → [as[L]]n Lm

Sudakov resummation → exp [−as[L] · f(x)]

New functions: (as)
ν , (as)

ν ln(as), (as)
ν Lm, e−as , . . .
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Constructing one-loop FAPT
In one-loop APT we have a very nice recurrence relation

An[L] =
1

(n − 1)!

(
−

d

dL

)n−1

A1[L]

and the same in Minkowski domain

An[L] =
1

(n − 1)!

(
−

d

dL

)n−1

A1[L] .

We can use it to construct FAPT.
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling (L = L(Q2)):

Aν [L] =
1

Lν
−

F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν.
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling (L = L(Q2)):

Aν [L] =
1

Lν
−

F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν. Properties:

A0[L] = 1;

A−m[L] = Lm for m ∈ N;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N;

Fractional Analytic Perturbation Theory – p. 16



XIV Lomonosov CEPP@Moscow State University, Physics Dept.

FAPT(M): Properties of Aν[L]

Now, Minkowskian coupling (L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]
π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functions.
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FAPT(M): Properties of Aν[L]

Now, Minkowskian coupling (L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]
π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functions. Properties:

A0[L] = 1;

A−1[L] = L;

A−2[L] = L2 −
π2

3
, A−3[L] = L

(
L2 − π2

)
, . . . ;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N

Fractional Analytic Perturbation Theory – p. 17



XIV Lomonosov CEPP@Moscow State University, Physics Dept.

FAPT(E): Graphics of Aν[L] vs. L

Aν [L] =
1

Lν
−

F (e−L, 1 − ν)

Γ(ν)

Graphics for fractional ν ∈ [2,3] :

-15 -10 -5 0 5 10 15
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A2.25(L)
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FAPT(M): Graphics of Aν[L] vs. L

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]
π(ν − 1) (π2 + L2)

(ν−1)/2

Compare with graphics in Minkowskian region :
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FAPT(E): Comparing Aν with (A1)
ν

ΔE(L,ν) =
Aν [L] −

(
A1[L]

)ν

Aν [L]

Graphics for fractional ν =0.62, 1.62 and 2.62:

2 4 6 8 10
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L
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Fractional Analytic Perturbation Theory – p. 20



XIV Lomonosov CEPP@Moscow State University, Physics Dept.

FAPT(M): Comparing Aν with (A1)
ν

ΔM(L,ν) =
Aν [L] −

(
A1[L]

)ν

Aν [L]

Minkowskian graphics for ν =0.62, 1.62 and 2.62:
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Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Set
{

aν
}

ν∈R

{
Am,Am

}
m∈N

{
Aν,Aν

}
ν∈R

Series
∑∑∑
m

fm am
∑∑∑
m

fm Am
∑∑∑
m

fm Am

Inv. powers (a[L])−m — A−m[L] = Lm

Products aμaν = aμ+ν — —

Index deriv. aν lnka — DkAν

Logarithms aνLk — Aν−k
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Development of FAPT:

Heavy-Quark Thresholds
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Conceptual scheme of FAPT

PT:
[
a(Q2)

]ν

S.D.: ρν(σ)

AM AE

Aν(s) Aν(Q2)
D̂−→←−

R̂ = D̂−1
FAPT:

Here Nf is fixed and factorized out.
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Conceptual scheme of FAPT

PT:
[
αs(Q

2;Nf)
]ν

S.D.: ρν(σ;Nf)

AM AE

Aν(s;Nf) Aν(Q2;Nf)
D̂−→←−

R̂ = D̂−1
FAPT:

Here Nf is fixed, but not factorized out.
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Conceptual scheme of FAPT

PT:
[
α glob

s (Q2)
]ν

S.D.: ρ glob
ν (σ)

AM AE

A glob
ν (s) A glob

ν (Q2)
D̂−→←−

R̂ = D̂−1

FAPT:

Here we see how “analytization” takes into account
Nf -dependence.
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ2

3) and λ4 = ln (Λ2
3/Λ2

4).
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ2

3) and λ4 = ln (Λ2
3/Λ2

4).

Then:

Aglob
ν [L]= θ (L < L4)

[
Aν [L; 3] − Aν [L4; 3] + Aν [L4+λ4; 4]

]
+ θ (L ≥ L4)Aν [L+λ4; 4]
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ2

3) and λ4 = ln (Λ2
3/Λ2

4).

Then:

Aglob
ν [L]= θ (L < L4)

[
Aν [L; 3] − Aν [L4; 3] + Aν [L4+λ4; 4]

]
+ θ (L ≥ L4)Aν [L+λ4; 4]

and

Aglob
ν [L]=Aν [L+λ4; 4] +

L4∫∫∫
−∞

ρν [Lσ; 3] − ρν [Lσ+λ4; 4]

1 + eL−Lσ
dLσ
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Graphical comparison: Fixed-Nf—Global

Aglob
ν [L] = Aν [L + λ4; 4] + ΔAν [L] ;

ΔA1[L] — solid, Aglob
1 [L] — dashed:

-10 -5 0 5 10
-0.5

0

0.5

1

1.5

L

ΔĀ(2)
1 [L]

Aglob;(2)
1 [L]
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Graphical comparison: Fixed-Nf—Global

Aglob
ν [L] = Aν [L + λ4; 4] + ΔAν [L] ;

ΔA1[L]/Aglob
1 [L] — solid:

-10 -5 0 5 10

-0.2

-0.1

0

0.1

0.2

L

ΔĀ(2)
1 [L]

Aglob;(2)
1 [L]
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Resummation
in

one-loop APT and FAPT
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]

Let exist the generating function P (t) for coefficients:

dn = d1

∫∫∫ ∞

0
P (t) tn−1dt with

∫∫∫ ∞

0
P (t)dt = 1 .

We define a shorthand notation

〈〈f(t)〉〉P (t) ≡
∫∫∫ ∞

0
f(t)P (t)dt .

Then coefficients dn = d1 〈〈tn−1〉〉P (t).
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
−

d

dL

)n

A1[L] .
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
−

d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
−

d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)

and for Minkowski region:

R[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)
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Resummation in Global Minkowskian APT

Consider series R[L] = d0 +

∞∑∑∑
n=1

dn Aglob
n [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Result:

R[L] = d0 + d1〈〈θ (L<L4)
[
Δ4A1[t]+A1

[
L−

t

β3
; 3

]]
〉〉P (t)

+ d1〈〈θ (L≥L4)A1

[
L+λ4−

t

β4
; 4

]
〉〉P (t) .

where

Δ4A1[t] = A1

[
L4 + λ4 −

t

β4
; 4

]
− A1

[
L3 −

t

β3
; 3

]
.
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Resummation in Global Euclidean APT

In Euclidean domain the result is more complicated:

D[L] = d0 + d1〈〈
L4∫∫∫

−∞

ρ1 [Lσ; 3] dLσ

1 + eL−Lσ−t/β3
〉〉P (t)

+ 〈〈Δ4[L, t]〉〉P (t) + d1〈〈
∞∫∫∫
L4

ρ1 [Lσ + λ4; 4] dLσ

1 + eL−Lσ−t/β4
〉〉P (t) .

where

Δ4[L, t] =

1∫∫∫
0

ρ1 [L4 + λ4 − tx/β4; 4] t

β4

[
1 + eL−L4−tx̄/β4

] dx

−
1∫∫∫
0

ρ1 [L3 − tx/β3; 3] t

β3

[
1 + eL−L4−tx̄/β3

] dx.
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Resummation in FAPT

Consider seria Rν [L] = d0 Aν [L] +

∞∑∑∑
n=1

dn An+ν [L]

and Dν [L] = d0 Aν [L] +

∞∑∑∑
n=1

dn An+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Result:

Rν [L] = d0 Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν (t) ;

Dν [L] = d0 Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν (t) .

where Pν(t) =

1∫∫∫
0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Resummation in Global Minkowskian FAPT

Consider series Rν [L] = d0 Aglob
ν +

∞∑∑∑
n=1

dn A
glob
n+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
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Resummation in Global Minkowskian FAPT

Consider series Rν [L] = d0 Aglob
ν +

∞∑∑∑
n=1

dn A
glob
n+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Then result is complete analog of the Global APT(M) result
with natural substitutions:

A1[L] → A1+ν [L] and P (t) → Pν(t)

with Pν(t) =

1∫∫∫
0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Resummation in Global Euclidean FAPT

Consider series Dν [L] = d0 Aglob
ν +

∞∑∑∑
n=1

dn Aglob
n+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Then result is complete analog of the Global APT(E) result
with natural substitutions:

ρ1[L] → ρ1+ν [L] and P (t) → Pν(t)

with Pν(t) =

1∫∫∫
0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Higgs boson

decay

H0 → bb̄
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Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉
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Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉

in terms of discontinuity of its imaginary part

RS(s) = Im Π(−s − iε)/(2π s) ,

so that

ΓH→bb(MH) =
GF

4
√

2π
MH m2

b(MH)RS(s = M2
H) .
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2

[
αs(Q

2)

π

]ν0
[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 14.6 GeV)
and ν0 = 1.04, ν1 = 1.86.
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2

[
αs(Q

2)

π

]ν0
[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 14.6 GeV)
and ν0 = 1.04, ν1 = 1.86. This gives us[
3 m̂2

b

]−1
D̃S(Q2) =

(
αs(Q

2)

π

)ν0

+
∑∑∑
m>0

dm

(
αs(Q

2)

π

)m+ν0

.
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2

[
αs(Q

2)

π

]ν0
[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 14.6 GeV)
and ν0 = 1.04, ν1 = 1.86. This gives us[
3 m̂2

b

]−1
D̃S(Q2) =

(
αs(Q

2)

π

)ν0

+
∑∑∑
m>0

dm

(
αs(Q

2)

π

)m+ν0

.

In FAPT(M) we obtain

R̃(l);N

S [L] =
3m̂2

πν0

[
A

(l);glob
ν0 [L] +

N∑∑∑
m>0

d
(l)
m

πm
A

(l);glob
m+ν0

[L]

]
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Model for perturbative coefficients
Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 —
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Model for perturbative coefficients
Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 —

c = 2.5, β = −0.48 1 7.42 62.3

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients
Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —

c = 2.5, β = −0.48 1 7.42 62.3 662 —

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients
Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —

c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients
Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —

c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625 7826

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients
Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —

c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625 7826

“PMS” model — — 64.8 547 7782

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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FAPT(M) for R̃S: Truncation errors

We define relative errors of series truncation at N th term:

ΔN [L] = 1 − R̃(1;N )

S [L]/R̃(1;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

L

Δ2[L]

Δ3[L]
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FAPT(M) for R̃S: Truncation errors

We define relative errors of series truncation at N th term:

ΔN [L] = 1 − R̃(1;N )

S [L]/R̃(1;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

L

Δ2[L]

Δ3[L]

Δ4[L]
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FAPT(M) for R̃S: Truncation errors

We define relative errors of series truncation at N th term:

ΔN [L] = 1 − R̃(1;N )

S [L]/R̃(1;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

L

Δ2[L]

Δ3[L]

Δ4[L]

Δ5[L]
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FAPT(M) for R̃S: Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.
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FAPT(M) for R̃S: Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.

But profit will be tiny — instead of 0.5% one’ll obtain 0.3%!

80 100 120 140 160 180
1.5

2.0

2.5

3.0

3.5

MH [GeV]

ΓH→b̄b [MeV]

ΓFAPT
H→b̄b
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FAPT(M) for R̃S: Truncation errors

Conclusion: If we need accuracy of the order 0.5% —
then we need to take into account up to the 4-th correction.

Note: uncertainty due to P (t)-modelling is small ��� 0.6%.

100 120 140 160 180
1.5

2.0

2.5

3.0

3.5

MH [GeV]

Γ∞
H→b̄b

[MeV]
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FAPT(M) for R̃S: Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— in agreement with Kataev&Kim [0902.1442].
Note: on-shell mass uncertainty ∼ 2%.

100 120 140 160 180
1.5

2.0

2.5

3.0

3.5

MH [GeV]

Γ∞
H→b̄b

[MeV]
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FAPT(M) for R̃S: Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— in agreement with Kataev&Kim [0902.1442].
Note: overall uncertainty ∼ 3% .
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2.5

3.0
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Γ∞
H→b̄b

[MeV]
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Higgs boson decay H → bb we see that at N3LO we
have accuracy of the order of:
1% — due to truncation error...
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Higgs boson decay H → bb we see that at N3LO we
have accuracy of the order of:
1% — due to truncation error ;
2% — due to on-shell mass uncertainty.
Agreement with Kataev&Kim [0902.1442].
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