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Analytic Perturbation Theory
N
QCD
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History of APT

Euclidean Minkowskian

Q?=qg>—q3 >0 s=q3—q*>0
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RG+Analyticity
ghost-free aoep (Q?)
Bogoliubov et al. 1959
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RG4Analyticity pPQCD-+RG: resum 72-terms
ghost-free aoep (Q?) Arctg(s), UV Non-Power Series
Bogoliubov et al. 1959 Radyush.,Krasn. & Pivov. 1982
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RG4Analyticity pPQCD-+RG: resum 72-terms

ghost-free aoep (Q?) Arctg(s), UV Non-Power Series
Bogoliubov et al. 1959 Radyush.,Krasn. & Pivov. 1982

PQCD-+renormalons:
Arctg(s) at LE region
Ball, Beneke & Braun 1994-95
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RG-+Analyticity Integral Transformation:
ghost-free ag(Q?) R [as] — Arctg(s)
Shirkov & Solovtsov 1996 Jones & Solovtsov 1995
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RG-+Analyticity Integral Transformation:
ghost-free ag(Q?) R [as] — Arctg(s)

Shirkov & Solovtsov 1996 Jones & Solovtsov 1995
PQCD+RG+HAnalyticity

Transforms: D = R "

Couplings: aeg(Q?) < au(s)
Milton & Solovtsov 1996-97
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RG-+Analyticity Integral Transformation:
ghost-free ag(Q?) R [as] — Arctg(s)
Shirkov & Solovtsov 1996 Jones & Solovtsov 1995

PQCD+RG+HAnalyticity

A —1

Transforms: D = R
Couplings: aeg(Q?) < au(s)
Milton & Solovtsov 1996-97

Analytic (global) pQCD-+Analyticity
Global couplings: A,,(Q?) < 2,,(s)
Non-Power perturbative expansions

Shirkov 1999-2001

XIV Lomonosov CEPP@Moscow State University, Physics Dept.  Fractional Analytic Perturbation Theory —p. 6



Intro: PT in QCD

® coupling a,(p?) = (47 /bg) as[L] with L = In(u?/A?)

. dag|L
#® RG equation ?lsl[} | = —a?—ca’

S_ooo

# 1-loop solution generates Landau pole singularity:
as|[L] =1/L
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Intro: PT in QCD
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#® RG equation ZSI[L | = —a?—ca’

S - e o o

# 1-loop solution generates Landau pole singularity:
as|[L] =1/L

#® 2-loop solution generates square-root singularity:
as|L] ~1/vL + c1lney
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Intro: PT in QCD

® coupling a,(p?) = (47 /bg) as[L] with L = In(u?/A?)

. dag|L
#® RG equation ZSI[L | =—a’—cra’—...

# 1-loop solution generates Landau pole singularity:
as|[L] =1/L

#® 2-loop solution generates square-root singularity:
as|L] ~1/vL + c1lney
® PT series: D[L] =1+ dyas[L] + d2a?[L] + ...
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Intro: PT in QCD

® coupling a,(p?) = (47 /bg) as[L] with L = In(u?/A?)

. dag|L
#® RG equation ZSI[L | = —a?—ca’

S - e o o

# 1-loop solution generates Landau pole singularity:
as|[L] =1/L

#® 2-loop solution generates square-root singularity:
as|L] ~1/vL + c1lney
® PT series: D[L] =1+ dyas[L] + d2a?[L] + ...
® RG evolution: B(Q?) = |Z(Q*)/Z(n?)| B(p?)
reduces in 1-loop approximation to
Z ~ a” [L]‘

V — Vg = ’70/(21)0)
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Problem in QCD PT: MinkowsKi region?

Quantities in Minkowski region = %f(z)D(z)dz.

Im:z |
—s + 1€
——> -
—S—’I:S ReZ:Q2
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Problem in QCD PT: MinkowsKi region?

In ff(z)p(z)dz one uses D(z) = » dmal'(z).

A
Im 2

—S + 1€

Re 2z = )?
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Problem in QCD PT: MinkowsKi region?

This change of integration contour is legitimate if D(z) f(z)

IS analytic inside
A

Im z

Re z = ()°
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Problem in QCD PT: MinkowsKi region?

But as(z) and hence D(z) f(z) have Landau pole

singularity just inside!
A

Imz

Re z = Q?
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Problem in QCD PT: MinkowsKi region?

In APT effective couplings A,,(z) are analytic functions =-
Problem does not appear! Equivalence to CIPT for R(s).

A
Im 2

Re 2 = ()?
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Basics of APT

# Different effective couplings in Euclidean (S&S) and
Minkowskian (R&K&P) regions
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Basics of APT

# Different effective couplings in Euclidean (S&S) and
Minkowskian (R&K&P) regions

® Based on @
J e

UV asymptotics Spectrality
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Basics of APT

# Different effective couplings in Euclidean (S&S) and
Minkowskian (R&K&P) regions

® Based on @
J e

UV asymptotics Spectrality

» Euclidean: —g? = Q%, L=1nQ"/A?%, {A,(L)},cn
® Minkowskian: ¢ = s, Ls=1Ins/A?%, {2,(Ls)},cn
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Basics of APT

# Different effective couplings in Euclidean (S&S) and
Minkowskian (R&K&P) regions

® Based on @
J e

UV asymptotics Spectrality

» Euclidean: —g? = Q%, L=1nQ"/A?%, {A,(L)},cn
® Minkowskian: ¢ = s, Ls=1Ins/A?%, {2,(Ls)},cn

r Y dna™(Q?) = Y dmAn(Q?)

m IS power = m IS Index
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Spectral representation

By analytization we mean “Kallen—Lehmann”
representation

2 o > pf(O') o
1@ = [ L

Then (note here pole remover):

1
plo) = L2 + 2
> p(o) 1 1
L — d _— . —
AilL] /0 o + Q2 7 L el —1
o© 1
A1[Ls] = / @ do = — arccos
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Spectral representation

By analytization we mean “Kéallen—Lehmann” representation

2 o > pf(O') o
[f(Q)}an_A G—I—Qz—’ied

with spectral density p¢(o) = Im [f(—o)| /. Then:

_/ - 1(22 " (n - 1), <_%>n_1“41[”

N B (- dis)n_l L]

it = ot ()
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APT graphics: Distorting mirror

First, couplings:  2(:(s) and .A4;(Q?)

1 ®
0.8
0.
0. A (Q?)
0.2 |
—s5 [GeV?] Q? [GeV?]
4 2 0 2 4
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APT graphics: Distorting mirror

Second, square-images: 2>(s) and Ax(Q?)

—s [Gevy b Q?[GeV]
-10 -5 0 5 10
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Problems of APT.
Resolution:
Fractional APT
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Problems of APT

In standard QCD PT we have not only power series
F[L] =) fm aT[L], but also:
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Problems of APT

In standard QCD PT we have not only power series
F[L] =) fm aT[L], but also:

# RG-improvement to account for higher-orders —

Z|L| = exp {/aS[L] %Z; da} L-loop [aS[L]]fyo/(zm)
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Problems of APT

In standard QCD PT we have not only power series
F[L] =) fm aT[L], but also:

# RG-improvement to account for higher-orders —

Z|L| = exp {/aS[L] %Z; da} L-loop [aS[L]]fyo/(zm)

# Factorization — [as[L]]" L™

# Sudakov resummation — exp [—as[L] - f(x)]
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Problems of APT

In standard QCD PT we have not only power series
F[L] =) fm aT[L], but also:

# RG-improvement to account for higher-orders —
as|L] )
Z|L] = exp { / a) da} 1098 [, [ L))o/ (250)

# Factorization — [as[L]]" L™

# Sudakov resummation — exp [—as[L] - f(x)]

New functions: (as)”, (as)” In(as), (as)” L™, e %, ...
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Constructing one-loop FAPT

In one-loop APT we have a very nice recurrence relation

ALl = ! ( d >n_1A | L]
L] = (n —1)! dL !
and the same in Minkowski domain
6, (L] = ( d )2( L
n[]_(n—l)! dL L]

We can use it to construct FAPT.
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FAPT(E): Properties of A, | L]

First, Euclidean coupling (L = L(Q?)):

e_L, — UV
AI/[L]:ﬁ_F( F(Vl) )

Here F'(z,v) is reduced Lerch transcendent. function. Itis
analytic function in v.

XIV Lomonosov CEPP@Moscow State University, Physics Dept. Fractional Analytic Perturbation Theory — p. 16



FAPT(E): Properties of A, | L]

First, Euclidean coupling (L = L(Q?)):

e_L, — UV
AI/[L]:ﬁ_F( F(Vl) )

Here F'(z,v) is reduced Lerch transcendent. function. Itis
analytic function in v. Properties:

» AylL]=1;

» A _,,[L]=L"form e N;

» A,[L=(—1)"A,[—L]form>2, meN;
® A, [f+oo]=0form >2, meN;
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FAPT(M): Properties of A,,| L]

Now, Minkowskian coupling (L = L(s)):

sin {(u — 1)arccos (L/\/n2 + L2)}

Q[I/[L] — 71‘(1/ B 1) (7_‘_2 4 LZ)(V_l)/Z

Here we need only elementary functions.
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FAPT(M): Properties of A,,| L]

Now, Minkowskian coupling (L = L(s)):

sin {(u — 1)arccos (L/\/n2 + L2)}

Q[I/[L] — 71‘(1/ B 1) (7_‘_2 4 LZ)(V_l)/Z

Here we need only elementary functions. Properties:

K Qlo[L] — 1,
» A 4L =L;
I 2(_2[L]=L2—%2, A_3[L] =L (L* —7?), ...;

® A, [Ll=(—1)"Ay,[—L]form >2, meN,;
® A, [FToo]=0form >2, m N
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FAPT(E): Graphics of A,|[L] vs. L

Graphics for fractional v € [2, 3] :

0.1,
0.08!
0.06!

0.04
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FAPT(M): Graphics of A, |L] vs. L

sin {(u — 1)arccos (L/\/w2 + L2)}

2, [L] —

m(v — 1) (n2 + L2)V1/2

Compare with graphics in Minkowskian region :

0.1

0.08!
0.06!

0.04

XIV Lomonosov CEPP@Moscow State University, Physics Dept. Fractional Analytic Perturbation Theory — p. 19



FAPT(E): Comparing A, with (A,)"

Graphics for fractional » =0.62, 1.62 and 2.62:
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FAPT(M): Comparing 21, with (21,)

0}
-0.05/
_0.1:’ /’,’
L ,/
L Pd
L e
-0.15; Pe
L /7
i /7
-0.2 / L
V4 |
2 4 6 8 10
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Comparison of PT, APT, and FAPT

Theory PT APT FAPT
Set {aV}I/ER {Alrn, 2Lrn}rn,EN {AV, 2[V}I/ER
Series S fma™ S Fn A Y fm Am
Inv. powers  (a[L])™ ™ — A_[L] = L™

Products ata? = a* TV — —

Index deriv.  a’In*a — DF A,

Logarithms a’ L* — A,k
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Development of FAPT:

Heavy-Quark Thresholds
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Conceptual scheme of FAPT

! FAPT: 2,(s) =

A

|
A, Q%) |
l R=D"1 l

Here IN; Is fixed and factorized out.
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Conceptual scheme of FAPT

rF== === =¥==¥==¥/==/========= A
| ﬁ |
! FAPT: 2, (s; Ny) = A, (Q%* Ny)|
| R=D1 |
b e e e e e e e e e e e e e = - - -

Here IN; Is fixed, but not factorized out.
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Conceptual scheme of FAPT

! FAPT: 2A£°"(s) — AS°"(Q?) |
I R=D"1 I

Here we see how “analytization” takes into account
N ¢-dependence.
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Global FAPT: Single threshold case

# Consider for simplicity only one threshold at s = m?
with transition Ny = 3 — N = 4.

® Denote: Ly = In(m2/A2) and Ay = In (A2/A2).
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Global FAPT: Single threshold case

# Consider for simplicity only one threshold at s = m?
with transition Ny = 3 — N = 4.

® Denote: Ly = In(m2/A2) and Ay = In (A2/A2).
Then:
AP (L) =6 (L < Ly) |A,[L;3] — A, [Ly; 3] +ﬁ,,[L4+>\4;4]}
+6 (L > Lg) A, [L+ X435 4]
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Global FAPT: Single threshold case

# Consider for simplicity only one threshold at s = m?
with transition Ny = 3 — N = 4.

® Denote: Ly = In(m2/A2) and Ay = In (A2/A2).
Then:
AL[L] =6 (L < La) [%,[L;3] — Ay [La; 3] + 2, [LatAg; 4)]
+6 (L > Lg) A, [L+ X435 4]

and

L033] = P, [Lo+ A 4] -
1+ el—Ls

AP (L] = A, (L4 Aai 4]+ / i
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Graphical comparison: Fixed-N j—Global

AA;[L] — solid, AY°°[L] — dashed:

e AT
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Graphical comparison: Fixed-N j—Global

AA;[L]/AY°[L] — solid:

AAP[L) |
0.1
:
-0.1
-0.2
| L
10 -5 o s 10
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Resummation
N
one-loop APT and FAPT
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Resummation In one-loop APT

Consider series  D[L] = do+ »  dn An[L]
n=1
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Resummation In one-loop APT

Consider series D[L] = dy + Z d,, An[L

Let exist the generating functlon P(t) for coefficients:
d, = dq /OOOP(t) t"~ldt with /OOOP(t) dt =1.
We define a shorthand notation
(e = [ F0) PO .

Then coefficients d,, = dy ((t" ")) p(1).

XIV Lomonosov CEPP@Moscow State University, Physics Dept. Fractional Analytic Perturbation Theory — p. 28



Resummation In one-loop APT

Consider series D[L] = dy + Z d,, An[L

with coefficients d,, = d; ((t"~ 1)) P(t)
We have one-loop recurrence relation:

Ani1[L] = F(n1+ 5 (—i>nA1[L].
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Resummation In one-loop APT

Consider series D[L] = dy + Z d,, An[L

with coefficients d,, = d; ((t"~ 1)) P(t)
We have one-loop recurrence relation:

Ani1[L] = F(n1+ 5 (—i>nA1[L].

Result:
D[L] = do + d1 ((A1[L — t])) pz)
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Resummation In one-loop APT

Consider series D[L] = dy + Z d,, An[L

with coefficients d,, = d; ((t"~ 1)) P(t)
We have one-loop recurrence relation:

Ani1[L] = F(n1+ 5 (—i)nm[u.

Result:
D[L] = do + d1 ((A1[L — t])) pz)

and for Minkowski region:

RI[L] = do + d1 ({(Rl[L — t])) pr)
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Resummation in Global Minkowskian APT

Consider series  R[L] =do + Y  dn AL°°[L]

n=1
with coefficients d,, = dy ((t"" ")) p()-
Result:
_ _ t
RIL] =do + d1 ({0 (L<La) | Ag2[] 4% | L— 5 3| pe
3
__ t
+ di((0 (L2 La)2 | L+ Xa—54)) )b
4
where

A [t] = ﬁl[L4 g — %;4} _ ﬁl{Lg _ é; 3} |
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Resummation in Global Euclidean APT

In Euclidean domain the result is more complicated:

Ly
p1|Ls33| dLs
D|L] = do + d1{{ / 1 _1|_[6L—L]a—t/ﬁ3

— OO

) P(t)

oo

+ (AL )y + ([ PR 2058 e

1 _|_ eL—Lo-—t/,34

) P(t)

where

py|L3 —tx/B3;3] ¢

dx.
B3 [1+ eL—La—ta/Bs]
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Resummation in FAPT

Consider seria R, [L] = do 2, [L] + Z dp At [L]
n— 1
and D,[L] = do A, [L] + Z dp Antv[L]
with coefficients d,, = d; ((t" 1)) P(t)-
Result:
Ry[L] = doA[L]+di {({(2laqv[L —1]))p, 1)
Dy[L] = doA[L] +di ({(Ar+u[L —t]))p, (1)

1 — 2

1
t d
where P, (t) = /P (1—> e S
— =2
0
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Resummation in Global Minkowskian FAPT

o0
Consider series R, [L] = do 23 + ) d,, A%’ [L]

n=1

with coefficients d,, = di ((t" ")) p()-
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Resummation in Global Minkowskian FAPT

o0
Consider series R, [L] = do 23 + ) d,, A%’ [L]

n=1

with coefficients d,, = di ((t" ")) p()-

Then result is complete analog of the Global APT(M) result
with natural substitutions:

A1[L] — A1 ,[L] and P(t) — P,(t)

t d
with P, (t) = /P <—> pr—1_ 25
<
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Resummation in Global Euclidean FAPT

Consider series D, [L] = do AJ" + ) dp AN [L]

n=1

with coefficients d,, = dy ((t"" ")) p()-

Then result is complete analog of the Global APT(E) result
with natural substitutions:

p1lL] — p1y,[L] and P(t) — P,(1)

t d
with P, (t) = / P (—> y2v—1 22
<
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Higgs boson

decay
HY — bb
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Higgs boson decay into bb-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents Js(z) =:b(xz)b(x):

11(@%) = (4m)% [ daei®® (0] T[ Js(2)J5(0)] 0)
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Higgs boson decay into bb-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents Js(z) =:b(xz)b(x):

11(@%) = (4m)% [ daei®® (0] T[ Js(2)J5(0)] 0)

In terms of discontinuity of its imaginary part
Rs(s) = ImII(—s —t€) /(27 s),
so that

Gr

4\/571'

Ly o5 (Mh) = My mi(Muy) Rs(s = M) .
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FAPT(M) analysis of Rs

Running mass m(Q?) is described by the RG equation

m2(Q2) :m2 _as(Qz)_ VO 14 ClbOaS(QZ)_
T 472

174}

with RG-invariant mass 1?2 (for b-quark mi;, ~ 14.6 GeV)
and vg = 1.04, 1 = 1.86.
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FAPT(M) analysis of Rs

Running mass m(Q?) is descrlbed by the RG equation

mZ(Qz):mz as(Qz) 7 14 ClbOOés(Qz)
T 472

174}

with RG-invariant mass 1?2 (for b-quark mi;, ~ 14.6 GeV)
and vg = 1.04, v; = 1.86. This gives us

m-vg
st e - (49" 5 (197)

m>0
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FAPT(M) analysis of Rs

Running mass m(Q?) is descrlbed by the RG equation

m?(Q?) = 1

QS(Qz)

Vo

v

C1 b()OéS (Qz)

14
472

174}

with RG-invariant mass 1?2 (for b-quark mi;, ~ 14.6 GeV)
and vg = 1.04, v; = 1.86. This gives us

Qg 2
3] ﬁs<Q2)=< (f )>

In FAPT(M) we obtain

- (z), 3m?

L] =

Vo

N0
2[’(/lo);glob[L] 4 Z 7.‘-_77?;2[(l);gglob

m>0

m-rvg
m>0

+ Y dnm ( s(Q2)>m+VO

L]
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Model for perturbative coefficients

~

Let us have a look to coefficients of our series, d,,, = d,, /d;,
with di = 17/3.

Model di dy ds dys ds

pQCD 1 7.42 62.3 —
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Model for perturbative coefficients

Let us have a look to coefficients of our series, d,,, = d,, /d;,
with di = 17/3.

Model Jl Jg CZ3 CLL CZ5

pQCD 1 7.42 62.3 —

c=25 B=-048 1 7.42 62.3

"1(BT(n) + T(n + 1))

B+1
with parameters 3 and ¢ estimated by known d,, and with
use of Lipatov asymptotics.

We use model dM°% —=
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Model for perturbative coefficients

Let us have a look to coefficients of our series, d,,, = d,, /d;,
with di = 17/3.

Model Jl Jg CZ3 CZ4 Ci5

pQCD 1 7.42 623 620 —
c=25 B=—-048 1 7.42 623 662 —

"1(BT(n) + T(n + 1))

B+1
with parameters 3 and ¢ estimated by known d,, and with
use of Lipatov asymptotics.

We use model dM°% —=
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Model for perturbative coefficients

Let us have a look to coefficients of our series, d,,, = d,, /d;,
with di = 17/3.

Model di dy ds dy ds

pQCD 1 742 0623 620 —

c=25 B=—-048 1 7.42 623 662 —
c=24,3=-052 1 750 61.1 625

"1(BT(n) + T(n + 1))

B+1
with parameters 3 and ¢ estimated by known d,, and with
use of Lipatov asymptotics.

We use model dM°% —=
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Model for perturbative coefficients

~

Let us have a look to coefficients of our series, d,,, = d,, /d;,
with di = 17/3.

Model di dy ds dy ds

pQCD 1 742 0623 620 —

c=25 B=-048 1 7.42 623 662 —
c=24, 8=-052 1 750 61.1 625 7826

"1(BT(n) + T(n + 1))

B+1
with parameters 3 and ¢ estimated by known d,, and with
use of Lipatov asymptotics.

We use model dM°% —=
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Model for perturbative coefficients

~

Let us have a look to coefficients of our series, d,,, = d,, /d;,
with di = 17/3.

Model di dy ds dy ds

pQCD 1 742 0623 620 —

c=25,3=—-048 1 7.42 62.3 662 —
c=24, 3=-052 1 750 61.1 625 7826
“PMS” model — — 064.8 547 7782

"1(BT(n) + T(n + 1))

B+1
with parameters 3 and ¢ estimated by known d,, and with
use of Lipatov asymptotics.

We use model dM°% —=
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FAPT(M) for Rs: Truncation errors

We define relative errors of series truncation at Nth term:

~ (1;N) ~ (1500)
An[L]=1—-TRs '[L|/Rs |[L]

0.035;

0.025

-—
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-_—
-_—
-_—
-
-_—
L - 4
-
-_—
L - b
-—
-
-
-—
-
-
L)
-_ o

S b R —

- o
0.015

-
L Jpp—
-——_
L [ Jp—
L Jpe—"
-
L - e ean o
-———-
- eoas o

0.005;

i0  10.5 11  11.5 12
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FAPT(M) for Rs: Truncation errors

We define relative errors of series truncation at Nth term:

~ (1;N) ~ (1500)
An[L]=1—-TRs '[L|/Rs |[L]

0.035;

0.025

-—
-
-_—
-_—
-_—
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-_—
L - 4
-
-_—
L - b
-—
-
-
-—
-
-
L)
-_ o
b R —
- o

0.015
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FAPT(M) for Rs: Truncation errors

We define relative errors of series truncation at Nth term:

~ (1;N) ~ (1500)
An[L]=1—-TRs '[L|/Rs |[L]

0.035;

- Sy
b4 's
-_—
-_—
L -—y
-_—
L - 4
-
-_—
L - b
-—
-_—
-—
-—
-—
-
L)
-_ o

F b R —

- o
0.015

0.01 — ==

0.005 —— L
As[L]

10  10.5 11  11.5 12
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FAPT(M) for Rs: Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.
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FAPT(M) for Rs: Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.

But profit will be tiny — instead of 0.5% one’ll obtain 0.3%!

|

80 100 120 140 160 180
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FAPT(M) for Rs: Truncation errors

Conclusion: If we need accuracy of the order 0.5% —
then we need to take into account up to the 4-th correction.

Note: uncertainty due to P(t)-modelling is small < 0.6%.

20 - i

1.5 I I I | I I I | I I I | I I I | I I I
100 120 140 160 180
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FAPT(M) for Rs: Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— In agreement with Kataev&Kim [0902.1442].

Note: on-shell mass uncertainty ~ 2%.

2.0 ]

1.5 I I I | I I I | I I I | I I I | I I I
100 120 140 160 180
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FAPT(M) for Rs: Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— In agreement with Kataev&Kim [0902.1442].

Note: overall uncertainty ~ 3% .

2.0 ]

1.5 I I I | I I I | I I I | I I I | I I I
100 120 140 160 180
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CONCLUSIONS

#® APT provides natural way to Minkowski region for
coupling and related guantities.
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CONCLUSIONS

#® APT provides natural way to Minkowski region for
coupling and related quantities.

#® FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.
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CONCLUSIONS

# APT provides natural way to Minkowski region for
coupling and related quantities.

# FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

# Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P(t) for PT coefficients.
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CONCLUSIONS

# APT provides natural way to Minkowski region for
coupling and related quantities.

# FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

# Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P(t) for PT coefficients.

# Using quite simple model generating function P(t) for

Higgs boson decay H — bb we see that at N3LO we
have accuracy of the order of:
1% — due to truncation error...
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CONCLUSIONS

# APT provides natural way to Minkowski region for
coupling and related quantities.

# FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

# Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P(t) for PT coefficients.

# Using quite simple model generating function P(t) for

Higgs boson decay H — bb we see that at N3LO we
have accuracy of the order of:

1% — due to truncation error ;

2% — due to on-shell mass uncertainty.

Agreement with Kataev&Kim [0902.1442].
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