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Recent ideas and methods in the black hole physics are based on complex

analyticity and conformal field theory, which unifies the black hole physics

with (super)string theory and physics of elementary particles [G.‘t Hooft,

NPB(1990)]
Kerr-Newman solution: as a Rotating Black-Hole and as a Kerr

Spinning Particle: Carter (1968), (g = 2 as that of the Dirac electron), Israel (1970),
AB (1974-2009), Lopez (1984) ...

About 40 years of the Kerr-Schild Geometry and Twistors.

Based on twistors Kerr Theorem and Kerr-Schild geometry (1969).

Twistor Algebra, R. Penrose, (1967).

• Real and Complex Twistor Structures of the Kerr-Schild Geometry

• Twistor-beams – New results on Black-Holes (AB, First Award of GRF

2009, arXive: 0903.3162).
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Kerr-Schild form of the rotating black hole solutions:

gµν = ηµν + 2Hkµkν, H =
mr − e2/2

r2 + a2 cos2 θ
. (1)

Vector field kµ(x) is tangent to Principal Null Congruence (Kerr congru-

ence).

kµdxµ = P−1(du + Ȳ dζ + Y dζ̄ − Y Ȳ dv), (2)

where Y (x) = eiφ tan θ
2, and ζ = (x + iy)2−

1
2 , ζ̄ = (x− iy)2−

1
2 , u = (z − t)2−

1
2 , v =

(z + t)2−
1
2 are the null Cartesian coordinates.

The Kerr Theorem: The geodesic and shear-free null congruences (type

D metrics) are determined by holomorphic function Y (x) which is analytic

solution of the equation F (T a) = 0 , where F is an arbitrary analytic function

of the projective twistor coordinates T a = {Y, ζ − Y v, u + Y ζ̄}.
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Figure 1: The Kerr singular ring and the Kerr congruence.

The Kerr singular ring r = cos θ = 0 is a branch line of space on two sheets:

“negative (–)” and “positive (+)” where the fields change their directions.

Twosheetedness! Mystery of the Kerr source! The Kerr ring as a “mirror

gate” to “Alice world”.

Stringy source: E.Newman 1964, A.B. 1974-1999, W.Israel 1975, ...

Rotating disk. W.Israel (1969), Hamity (1973), L‘opez (1983)9; A.B. (1989)

Superconducting bag ( U(1)× U(1) model), A.B. (2002-2004).

New Look: Holographic BH interpretation. A.B.(2009) based on the ideas

C.R.Stephens, G. t’ Hooft and B.F. Whiting (1994), ‘t Hooft (2000).
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Figure 2: Penrose conformal diagrams.

Unfolded Kerr-Schild spacetime corresponds to holographic BH spacetime.

Kerr congruence performs holographic projection of 3+1 dim bulk to 2+1

dim boundary.Desirable structure of a quantum BH spacetime ( Stephens,

t’ Hooft and Whiting (1994)).

Exact solutions demand Alignment of the electromagnetic
field to Kerr congruence, Aµk

µ = 0 !

Twosheetedness ⇒ kµ(+) 6= kµ(−) ⇒ g
(+)
µν 6= g

(−)
µν . It is ignored

in perturbative approach. Exact solutions have twistor-beams!
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Twistor-Beams. The exact time-dependent KS solutions.
Debney, Kerr and Schild (1969). The black-hole at rest: gµν = ηµν+2Hkµkν,

P = 2−1/2(1 + Y Ȳ ).

Tetrad components of electromagnetic field Fab = eµ
ae

ν
bFµν,

F12 = AZ2, F31 = γZ − (AZ),1 , (3)

here Z = −P/(r + ia cos θ) is a complex expansion of the congruence. Sta-

tionarity ⇒ γ = 0.

Kerr-Newman solution is exclusive: ψ(Y ) = const.

In general case ψ(Y ) is an arbitrary holomorphic function of Y (x) = eiφ tan θ
2,

which is a projective coordinate on celestial sphere S2, A = ψ(Y )/P 2, and

there is infinite set of the exact solutions, in which ψ(Y ) is singular at the

set of points {Yi}, ψ(Y ) =
∑

i
qi

Y (x)−Yi
, corresponding to angular directions φi, θi.

Twistor-beams. Poles at Yi produce semi-infinite singular lightlike beams,

supported by twistor rays of the Kerr congruence. The twistor-beams have very

strong backreaction to KS metric

gµν = ηµν − 2Hkµkν, H =
mr − |ψ|2/2

r2 + a2 cos2 θ
. (4)
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How act such beams on the BH horizon?

Black holes with holes in the horizon, A.B., E.Elizalde, S.R.Hildebrandt and

G.Magli, Phys. Rev. D74 (2006) 021502(R)

Singular beams lead to formation of the holes in the black hole horizon,

which opens up the interior of the “black hole” to external space.
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Figure 3: Near extremal black hole with a hole in the horizon. The event

horizon is a closed surface surrounded by surface g00 = 0.
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Twistor-beams are exact stationary and time-dependent Kerr-Schild solutions

(of type D) which show that ‘elementary’ electromagnetic excitations have

generally singular beams supported by twistor null lines. Interaction of a black-

hole with external, even very weak, electromagnetic field results in appearance

of the beams, which have very strong back reaction to metric and horizon

and form a fine-grained structure of the horizon pierced by fluctuating

microholes. [A.B., E. Elizalde, S.R. Hildebrandt and G. Magli, Phys.Lett. B 671 486

(2009), arXiv:0705.3551[hep-th]; A.B., arXiv:gr-qc/0612186.]

Figure 4: Horizon covered by fluctuating micro-holes.
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Time-dependent solutions of DKS equations for electromag-
netic excitations, γ 6= 0, A.B. (2004-2008)

a) Exact solutions for electromagnetic field on the Kerr-Schild background,

(2004),

b) Asymptotically exact wave solutions, consistent with Kerr-Schild gravity

in the low frequency limit, (2006-2008)

c) Self-regularized solutions, consistent with gravity for averaged stress-

energy tensor, (A.B. 2009)

Electromagnetic field is determined by functions A and γ,

A,2−2Z−1Z̄Y,3 A = 0, A,4 = 0, (5)

DA + Z̄−1γ,2−Z−1Y,3 γ = 0, (6)

and

Gravitational sector: has two equations for function M, which take into

account the action of electromagnetic field

M,2−3Z−1Z̄Y,3 M = Aγ̄Z̄, (7)

DM =
1

2
γγ̄. (8)

where cD = ∂3 − Z−1Y,3 ∂1 − Z̄−1Ȳ ,3 ∂2 .
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Similar to the exact stationary solutions, typical time-dependent (type D) solutions

contain outgoing singular beam pulses which have very strong back reaction to metric

and perforate horizon.

Eqs. of the electromagnetic sector were solved (2004).

GSF condition Y,2 = Y,4 = 0,⇒ kµ∂µY = 0.

Stationary Kerr-Schild solutions

A = ψ/P 2, where ψ,2 = ψ,4 = 0 ⇒ ψ(Y ) ⇒ alignment condition kµ∂µψ = 0.

Time-dependent solutions need a complex retarded time parameter τ, obeying

τ,2 = τ,4 = 0, and ψ = ψ(Y, τ ).

There appears a dependence between Ȧ and γ

(∂3 − Z−1Y,3 ∂1 − Z̄−1Ȳ ,3 ∂2)A + Z̄−1γ,2−Z−1Y,3 γ = 0.

Integration yields

γ =
21/2ψ̇

P 2Y
+ φ0(Y, τ )/P, (9)

which shows that nonstationarity, ψ̇ =
∑

i ċi(τ )/(Y −Yi) 6= 0, creates generally

the poles in γ ∼ ∑
i qi/(Y − Yi), leading to twistor-beams in directions Yi =

eiφ tan θ
2.
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Self-regularization.
Structure of KS solutions inspire the regularization which acts immedi-

ately on the function γ. Free function φ0(Y, τ ) of the homogenous solution

may be tuned, to cancel the poles of function ψ̇ =
∑

i ċi(τ )/(Y − Yi).

i-th term

γi(reg) =
21/2ċi(τ )

Y (Y − Yi)P 2
+ φ

(tun)
i (Y, τ )/P. (10)

Condition to compensate i-th pole is

γi(reg)(Y, τ )|Ȳ =Ȳi
= 0. (11)

We obtain

φ
(tun)
i (Y, τ ) = − 21/2ċi(τ )

Y (Y − Yi)Pi
, (12)

where

Pi = P (Y, Ȳi) = 2−1/2(1 + Y Ȳi) (13)

is analytic in Y, which provides analyticity of φtun
i (Y, τ ).
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As a result we obtain

γi(reg) =
ċi(τ )(Ȳi − Ȳ )

P 2Pi(Y − Yi)
. (14)

First gravitational DKS equation gives

m = m0(Y ) +
∑

i,k

ci ˙̄ck(Yk − Y )

(Y − Yi)

∫

Ȳk

dȲ

P P̄k(Ȳ − Ȳk)
. (15)

Using the Cauchy integral formula, we obtain

m = m0(Y ) + 2πi
∑

i

(Yk − Y )

(Y − Yi)

∑

k

ci ˙̄ck

|Pk|2 . (16)

Functions ci and c̄k for different beams are not correlated,

< ci̇̄ck >= 0. Time averaging retains only the terms with i = k,

< m >t= m0 − 2πi
∑

k

ck ˙̄ck

|Pk|2 . (17)

12



Representing ci(τ ) = qi(τ )e−iωiτ via amplitudes qi(τ ) and carrier frequencies

ωi of the beams. The mass term retains the low-frequency fluctuations and

angular non-homogeneity caused by amplitudes and casual angular distri-

bution of the beams,

< m >t= m0 + 2π
∑

k

ωk

∑

k

<
qkq̄k

|Pkk|2 > . (18)

Second gravitational DKS equations is definition of the loss of mass in

radiation,

ṁ = −1

2
P 2

∑

i,k

γi(reg)γ̄k(reg) = −1

2

∑

i,k

ċi ˙̄ck

P 2PiP̄k
(19)

Time averaging removes the terms with i 6= k and yields

< ṁ >t= −1

2

∑

k

ċk ˙̄ck

P 2|Pk|2 . (20)

In terms of the amplitudes of beams we obtain

< ṁ >t= −1

2

∑

k

ω2
k <

q̇kq̄k

|Pkk|4 >, (21)

which shows contribution of a single beam pulse to the total loss of mass.

The obtained solutions are consistent with the Einstein-Maxwell system

of equations for the time-averaged stress-energy tensor.
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Obtained results.

• Exact time-dependent solutions for Maxwell eqs. on the Kerr-Schild

background ⇒ singular twistor-beam pulses.

• Exact back reaction of the beams to metric and horizon ⇒ fluctuating

metric and horizon perforated by twistor-beam pulses.

• Exact time-dependent solutions for Maxwell eqs. on the Kerr-Schild

background leading to regular, but fluctuating radiation⇒ regular < T µν >,

but metric and horizon are covered by fluctuating twistor-beams!

• Consistency with averaged Einstein equations

Rµν − 1

2
Rgµν =< T µν > . (22)

We arrive at a semiclassical geometry of fluctuating twistor-
beams which takes an intermediate position between the Clas-
sical and Quantum gravity.

THE END. THANK YOU FOR YOUR ATTENTION!
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