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Introduction

Standard Model Extension (SME [Kosteleck�y])

Elaborated for studying the manifestation of the `New Physics'
(Strings, Extra Dimensions, Quantum Gravity,...) at low energies
E � mPl ∼ 1019GeV

Axiomatically introduces a set of correction terms to the Lagrangian
of SM(no new �elds!), that maintain some `natural' features of SM:

observer Lorentz invariance (although the vacuum is not
Lorentz-invariant)
unitarity
microcausality
SU(3)C × SU(2)I × U(1)Y gauge invariance
power-counting renormalizablilty (for the minimal SME)

When E � mW ∼ 102GeV, the SME leads to the extended QED with
U(1)em gauge invariance which is typical for SM
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Introduction

(3+1)D Maxwell-Chern-Simons electrodynamics [1]

A particular case of extended QED with the Chern-Simons term:

L = −1

4
FµνF

µν +
1

2
ηµεµναβAνFαβ + ψ̄(iγµDµ −m)ψ.

Dµ = ∂µ + ieAµ, Fµν = ∂µAν − ∂νAµ, εµναβ is the Levi-Civita symbol,

ηµ is a constant axial 4-vector, breaks CPT and Lorentz invariance.

This vector coupling ηµ could arise from:

an axion condensation [Carroll,Field,Jackiw,1992]

background torsion [Dobado,Maroto,1996]

1-loop corrections within SME [Kosteleck�y,Andrianov,Jackiw,et al.]
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Introduction

(3+1)D Maxwell-Chern-Simons electrodynamics [2]

We consider the photon sector:

LA = −1

4
FµνF

µν +
1

2
ηµεµναβAνFαβ

Features of the theory:

The action is U(1)-invariant, though LA is not

When η2 > 0, the theory is unstable

Tµν cannot be made either symmetric or gauge-invariant

However, in the model we use for considering the Casimir e�ect, these
di�culties can be overcome!

Widely studied (2+1)D case: η is a pseudo-scalar and generates massive
photons with unbroken gauge invariance. In the (3+1)D case, the photon
dispersion relation is much more complicated.
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Casimir e�ect within extended QED

The model we use

Photon sector of (3+1)D Maxwell-Chern-Simons electrodynamics

ηµ = {η, 0}
Two in�nite parallel superconductor plates separated by D = 2a

Gauge: A0 = 0, div A = 0 (possible to �x for the chosen ηµ)

Equations of motion: �A = 2η rotA

T 00 = 1
2(E2 + H2)− ηA ·H

In our paper [1], we have shown that:

When a < π/4|η|, the theory is stable!

Vacuum energy (per unit plate area) is half the sum over all
one-photon mode energies:
Evac =

∫
d3x
L2 〈T 00(x)〉 =

∑
n

ωn(D)
2L2

n is a complete set of quantum numbers, L→∞ is the linear plate size

The Casimir force fCasimir = ∂Evac/∂D is gauge-invariant, although
the energy is not
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Casimir e�ect within extended QED One-photon eigenstates

One-photon eigenstates [1]

A(x, t) = N e−iεωt+ikx f(z), k = {kx , ky , 0}, ε = ±1.
(∇2 + 2η rot+ω2)A = 0, div A = 0,

Ax = Ay = 0 at z = ±a (boundary conditions on the conductor)
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Casimir e�ect within extended QED One-photon eigenstates

One-photon eigenstates [2]

Ansatz:

Aε,k,Π,nz (x, t) = N e−iεωt+ikx(fzez + fk k̂ + fzk [ez k̂]), k = {kx , ky , 0}.
Transversality implies: fk = i

k ∂z fz ,

Parity Π = ±1: fk(−z) = −Πfk(z), fzk,z(−z) = Πfzk,z(z).

Equations for fz and fzk :

(ω2 − k2 + ∂2
z )kfzk = 2iη(k2 − ∂2

z )fz ,

(ω2 − k2 + ∂2
z )fz = −2iηkfzk ,

fzk(a) = 0, ∂z fz(a) = 0

The existence of nontrivial solutions implies that:

gΠ(ω2) ≡ ϕΠ(κ+a)ϕ−Π(κ−a) sin θ− + ϕΠ(κ−a)ϕ−Π(κ+a) sin θ+ = 0,

κ± =
p

K± − k2, K± = ∓η +
p

ω2 + η2, sin θ± = κ±/K±; ϕ±1(x) ≡
(

cos x

sin x
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Casimir e�ect within extended QED Vacuum energy

Vacuum energy

In our theory, like in the conventional QED, the vacuum energy (per unit
plate area) is

Evac =
1

L2

∫
〈T 00〉d3x =

1

L2

∑
n

ωn(D)

2
=

∞∫
0

kdk

2π
D(S+ + S−),

where n = {kx , ky ,Π, nz} is the full set of quantum numbers.

Smooth cuto� regularization:

SΠ =
1

D

∑
ωk,Π,nz∈R+

ωk,Π,nz e
−ωk,Π,nz /

√
kΛ, Λ → +∞.

The spectrum is determined with the equation gΠ(ω2) = 0

O. Kharlanov, V. Zhukovsky (MSU) Casimir E�ect within SME 14th Lomonosov conf. 10 / 19



Casimir e�ect within extended QED Vacuum energy

Sum → complex plane integral [1]

Let us now transform discrete sums SΠ into complex plane integrals, using
the residue theorem.

Instead of gΠ(ω2) whose zeros are the one-photon energy eigenvalues, we
will use the meromorphic (analytical, except for the numerable set of poles;
in particular, with no branch points) function

g̃Π(K+) ≡ gΠ(ω)

ϕΠ(κ+a)ϕΠ(κ−a)
= tanΠ κ+a sin θ+ + tanΠ κ−a sin θ−,

ω2 = K+K−, K− = K+ + 2η, κ± =
q

K2
± − k2, sin θ± = κ±/K±.
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Casimir e�ect within extended QED Vacuum energy

Sum → complex plane integral [2]

Residue theorem (we assume η ≥ 0, since the spectrum depends on |η|):∮
C

dK+

2πi
ωe
− ω√

kΛ
∂g̃Π/∂K+

g̃Π
= SΠD +

∑
ω̄n

ω̄ne
− ω̄n√

kΛ
Res [∂g̃Π/∂K+,K+ = ω̄n]

g̃Π(ω̄n)
,

where ω̄n are the poles of function ∂g̃Π/∂K+ within ∆.
O. Kharlanov, V. Zhukovsky (MSU) Casimir E�ect within SME 14th Lomonosov conf. 12 / 19



Casimir e�ect within extended QED Vacuum energy

Sum → complex plane integral [3]

Transforming the pole residue term back into an integral, we obtain:

g̃Π(K+) ≡ tanΠ κ+a sin θ+ + tanΠ κ−a sin θ−,

SΠ =
Π

2

∮
C

ωe−ω/
√

kΛdK+

2πi g̃Π(K+)

{
2− tanΠ κ+a tanΠ κ−a

(
sin θ−
sin θ+

+

+
sin θ+
sin θ−

)
+

Π tanΠ κ+a

κ+a
+

Π tanΠ κ−a

κ−a

}
The integral over the semicircle CΛ does not depend on a when Λ →∞,
within any �nite order in a, thus it is cancelled when renormalized.

Renormalization:
S ren

Π (D) = SΠ(D)− Sdiv
Π (D), Sdiv

Π (D) = C1(Λ) + C2(Λ)/D.
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Casimir e�ect within extended QED Vacuum energy

After renormalization and Λ →∞
Let us rede�ne K+ → −iK+ and make all momentum quantities
dimensionless multiplying them by a, then we obtain:

fCasimir =
1

2

∂

∂D

(
D

(S̃ ren
+ + S̃ ren

− )

a4

)
,

S̃ ren
Π = −1

2

∞∫
0

kdk

2π

+∞∫
−∞

dK+

2π

sgn K+

√
K+K−

tanhΠ κ+ cosh θ+ + tanhΠ κ− cosh θ−
ΣΠ,

ΣΠ = 1 + tanhΠ κ+ tanhΠ κ−
cosh θ+
cosh θ−

−
(

1 +
cosh θ+
cosh θ−

)
tanΠ κ++

+
tanhΠ κ+ − tanhΠ κ−

cosh θ+ + cosh θ−

cosh θ+ sinh2 θ−
κ−

+ (� − � ↔ � + �)

K− = K+ − iηD, κ± =
√

k2 + K 2
±, sinh θ± = k/K±.
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Casimir e�ect within extended QED Vacuum energy

The results of the calculation

After the expansion with respect to ηD and taking the integrals, we obtain:

S̃ ren
+ + S̃ ren

− = − π2

5760
− 5(ηD)2

1152
+O((ηD)4),

fCasimir =
1

2

∂

∂D

(
D

S̃ ren
+ + S̃ ren

−
a4

)
=

π2

240D4

(
1 +

25

3π2
(ηD)2 +O((ηD)4)

)
,

and this expression is valid when |η|D � 1.
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Discussion and conclusion

The correction to the Casimir force

fCasimir =
π2

240D4

(
1 +

25

3π2
(ηD)2 +O((ηD)4)

)
, |η|D � 1.

Discussion:

The correction is attractive, contrary to the recent result obtained by
[Frank,Turan,2006]

The di�erence from the Maxwell value becomes stronger for
comparatively large D

Experimental data [Mohideen et al., D ∼ 500nm, L ∼ 1cm,
1% accuracy] gives the constraint:

|η| . 5 · 10−3eV.

Some authors claim that sensing the Casimir force could be possible
at D . 1mm, then one could place a stronger constraint |η| . 10−5eV.
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Discussion and conclusion Conclusion

Main results

The eigenstates and energy eigenvalues for the Maxwell-Chern-Simons
photon between the conducting plates

The vacuum is stable when |η|D < π/2 [1]

The leading correction to the Casimir force, which is quadratic in η

The constraint on η
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Discussion and conclusion Conclusion

Thank you for your attention!
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