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Quantum corrections in supersymmetric theories are investigated for a long

time, for example in the papers

L.V.Avdeev, O.V.Tarasov, Phys.Lett. 112B, (1982),356;

A.Parkes, P.West, Phys.Lett. 138B, (1983), 99;

I.Jack, D.R.T.Jones, C.G.North, Phys.Lett B386, (1996), 138;

Nucl.Phys. B486 (1997), 479;

I.Jack, D.R.T.Jones, A.Pickering, Phys.Lett. B435, (1998), 61.

Most calculations were made with the dimensional reduction

W.Siegel, Phys.Lett. 84B, (1979), 193; 94B, (1980), 37.

With the dimensional reduction the β-function was calculated even in the

four-loop approximation. It is in agreement with the exact NSVZ β-function

β(α) = −
α2
[
3C2 − T (R) + C(R)i

jγj
i(α)/r

)]
2π(1− C2α/2π)

.

V.Novikov, M.A.Shifman, A.Vainstein, V.Zakharov, Nucl.Phys. B 229, (1983), 381;

Phys.Lett. 166B, (1985), 329; M.Shifman, A.Vainshtein, Nucl.Phys. B 277, (1986), 456.

up to the redefinition of the coupling constant.
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Calculations with the higher covariant derivatives

Interesting features can be revealed with the higher covariant derivative

regularization.

A.A.Slavnov, Theor.Math.Phys. 23, (1975), 3; P.West, Nucl.Phys. B268, (1986), 113.

Usually integrals, obtained with the higher derivative regularization are very

complicated. However for supersymmetric theories integrals, defining the

β-function, can be easily calculated, because the integrands are total

derivatives.

A.Soloshenko, K.S. hep-th/0304083; A.Pimenov, K.S., Theor.Math.Phys. 147, (2006), 687.

Example: N=1 supersymmetric Yang-Mills theory with matter in the massless

case is described by the action

S =
1

2e2
Re tr

∫
d4x d2θWaC

abWb +
1
4

∫
d4x d4θ (φ∗)i(e2V )i

jφj +

+
(1

6

∫
d4x d2θ λijkφiφjφk + h.c.

)
.
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Two-loop β-function for a general renormalizable N = 1
supersymmetric Yang-Mills theory

Two-loop calculation gives the following result:

β(α) = −3α2

2π
C2 + α2T (R)I0 + α3C2

2I1 +
α3

r
C(R)i

jC(R)j
iI2 +

+α3T (R)C2I3 + α2C(R)i
j
λ∗jklλ

ikl

4πr
I4 + . . . ,

where we do not write the integral for the one-loop ghost contribution and the

integrals I0–I4 are given below, and the following notation is used:

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA.

Taking into account Pauli–Villars contributions,

Ii = Ii(0)−
∑

I

Ii(MI), i = 0, 2, 3

where Ii are given by
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Factorization of integrands into total derivatives

I0(M) = 8π

∫
d4q

(2π)4
d

d ln Λ

1

q2
d

dq2

{
1

2
ln
(
q2(1 + q2m/Λ2m)2 +M2)+

+
M2

2(q2(1 + q2m/Λ2m)2 +M2)
− mq2m/Λ2mq2(1 + q2m/Λ2m)

q2(1 + q2m/Λ2m)2 +M2

}
;

I1 = 96π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

1

k2

d

dk2

{
1

q2(q + k)2(1 + q2n/Λ2n)
×

× 1

(1 + (q + k)2n/Λ2n)

(
n+ 1

(1 + k2n/Λ2n)
− n

(1 + k2n/Λ2n)2

)}
;

I2(M) = −64π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

1

q2
d

dq2

{
q2

k2(1 + k2n/Λ2n)
×

× (1 + (q + k)2m/Λ2m)

((q + k)2(1 + (q + k)2m/Λ2m) +M2)

[
q2(1 + q2m/Λ2m)3

(q2(1 + q2m/Λ2m)2 +M2)2
+

+
mq2m/Λ2m

q2(1 + q2m/Λ2m)2 +M2
− 2mq2m/Λ2mM2

(q2(1 + q2m/Λ2m)2 +M2)2

]}
;
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Factorization of integrands into total derivatives

I3(M) = 16π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

{
∂

∂qα

[
kα(1 + q2m/Λ2m)

(q2(1 + q2m/Λ2m)2 +M2)
×

× 1

(k + q)2(1 + (q + k)2n/Λ2n)

(
− (1 + k2m/Λ2m)3

(k2(1 + k2m/Λ2m)2 +M2)2
+

+
mk2m/Λ2m

k2(1 + k2m/Λ2m)2 +M2
− 2mk2m/Λ2mM2

(k2(1 + k2m/Λ2m)2 +M2)2

)]
−

− 1

k2

d

dk2

[
2(1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)

(q2(1 + q2m/Λ2m)2 +M2) ((q + k)2(1 + (q + k)2m/Λ2m)2 +M2)
×

×
(

1

(1 + k2n/Λ2n)
+

nk2n/Λ2n

(1 + k2n/Λ2n)2

)]}
;

I4 = 64π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

1

q2
d

dq2

[
1

k2(q + k)2(1 + k2m/Λ2m)
×

× 1

(1 + (q + k)2m/Λ2m)

(
1

(1 + q2m/Λ2m)
+

mq2m/Λ2m

(1 + q2m/Λ2m)2

)]
.
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Two-loop β-function for a general renormalizable N = 1
supersymmetric Yang-Mills theory

The integrals can be calculated using the identity∫
d4k

(2π)4
1
k2

d

dk2
f(k2) =

1
16π2

(
f(k2 =∞)− f(k2 = 0)

)
.

The result for the two-loop Gell-Mann–Low function is given by

β(α) = −α
2

2π

(
3C2 − T (R)

)
+

α3

(2π)2
(
− 3C2

2 + T (R)C2 +

+
2
r
C(R)i

jC(R)j
i
)
−
α2C(R)i

jλ∗jklλ
ikl

8π3r
+ . . . .

Comparing this with the one-loop anomalous dimension gives the NSVZ result.

The result also agrees with the DRED calculations.
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Three-loop calculation for SQED

The notation is

Γ(2) =
∫

d4p

(2π)4
d4θ

(
− 1

16π
V(−p) ∂2Π1/2V(p) d−1(α, µ/p) +

+
1
4

(φ∗)i(−p, θ)φj(p, θ) (ZG)i
j(α, µ/p)

)
. (1)

The main result: (It was obtained as the equality of some well defined

integrals)

d

d ln Λ

(
d−1(α0,Λ/p)− α−1

0

)∣∣∣
p=0

= − d

d ln Λ
α−1

0 (α, µ/Λ)=

=
1
π

(
1− d

d ln Λ
lnG(α0,Λ/q)

∣∣∣
q=0

)
=

1
π

+
1
π

d

d ln Λ

(
lnZG(α, µ/q)−

− lnZ(α,Λ/µ)
)∣∣∣

q=0
=

1
π

(
1− γ

(
α0(α,Λ/µ)

))
.

Therefore, with higher derivatives it is not necessary to redefine the coupling

constant in order to obtain the agreement with the NSVZ β-function. The

reason is that the integrands are again total derivatives.
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Possible explanation

One can try to explain the factorization of integrands into total derivatives

substituting solutions of the Slavnov–Taylor identities into the

Schwinger–Dyson equations.

Here we consider only a contribution of the matter superfields: (omitting the

regularization in order to avoid large expressions)

δΓ
δVB

y δVA
x

=
e

4
δ

δVB
y

〈
(φ∗x)i(TA)i

j(e2V ′
xφx)j + h.c.

〉
+ gauge contribution.

Then we introduce the notation

(U0)i ≡
∞∑

n=1

λijk
[D2

2∂2

(
φjφk

)
+ 2
(D2

2∂2
φj

)
φk

]
;

(U1)i ≡
∞∑

n=1

λijkφjφk. (2)
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We also need auxiliary sources for these values:

SSource =
∫
d4x d2θ (ϕ)j(U1)j +

1
4

∫
d8x (φ∗0)i(e2V ′

φ+ U∗0)i + h.c.

There is a very important identity

−D
2

2
δΓ

δ(φ∗0)i
= −D

2

8

〈
(e2V ′

φ+ U∗0)i

〉
=

δΓ
δ(φ∗)i

,

which allows to relate usual Green functions, and the functions, containing

derivatives w.r.t. auxiliary sources.

Then using the identity∫
d8xVA(φ∗e2V ′

)i(TA)i
jφj =

∫
d8x

{(
8
δS
δφi

VA − (φ∗e2V ′
+

+U0)iD̄2VA − 2D̄a(φ∗e2V ′
+ U0)iD̄aVA

)
(TA)i

j D2

16∂2
φj −

−D
2

2∂2
(U1)i(TA)i

j
(
D̄2VA D2

16∂2
φj + 2D̄aVA D̄aD

2

16∂2
φj

)}
. (3)

the considered contribution to the two-point function can be written as a sum

of some effective diagrams.
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Calculating matter contribution by Schwinger-Dyson
equations and Slavnov-Taylor identities

Graphically

δ2Γ
δVxδVy

= + gauge contribution

Vertexes here contain derivatives w.r.t. auxiliary sources φ0 and ϕ. They are

restricted by the Slavnov–Taylor identities. Substituting solution of these

identities we obtain (in the massless case for simplicity)

d

d ln Λ

(
d−1(α0, λ0,Λ/p)− α−1

0

)∣∣∣
p=0

= −2πT (R)
d

d ln Λ

∫
d4q

(2π)4
×

× 1
q2

d

dq2

(
ln(q2G2) + 2Kϕ

)
+

VBDaVA

DaD̄
2
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The function Kϕ is defined by

δ2Γ
δ(jy)jδ(ϕw)i

≡ −1
2

(Kϕ)j
iD̄2

yδ
8
yw. (4)

For a theory with cubic superpotential this function is nontrivial in the

two-loop approximation.

Factorization of some other values into total derivatives

The explanation, given above, is not complete, because some explicit

calculations show that the diagram, which is contributed by the transversal

part of the Green function, in the lowest loops is also an integral of a total

derivative.

Therefore, it is necessary to explain, why this contribution disappear. More

exactly, it is necessary to explain why in the in lowest loops

1
4π
T (R)

dKϕ

d ln Λ

∣∣∣
q=0

+ = 0

VBDaVA

DaD̄
2
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Toward the explanation

The diagram, which was not calculated, contains derivatives with respect to

the auxiliary sources φ0. We consider only a part, corresponding to the cubic

superpotential. It can be rewritten as a sum of two-loop effective diagrams:

→ +

VBDaVA

DaD̄
2

VBDaVA

DaD̄
2

VB

DaVA

DaD̄
2

+ . . .

These diagrams are calculated by the same method as above. The result is the

following: The ”bad” term with the function Kϕ is completely canceled.

However, again there is a nontrivial contribution of the transversal part

(staring at least from the three-loop approximation). Possibly, it can be zero,

but so far there are no calculations, confirming this.
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Conclusion and open questions

X With the higher derivative regularization integrals, defining the β-function,

at least in the lowest loops can be easily taken, because the integrands are

total derivatives. The result is in agreement with the NSVZ β-function.

X The explanation can be possibly made by substituting solutions of the

Slavnov–Taylor identities into the Schwinger–Dyson equations. The main

problem is whether the factorization of integrands into total derivatives

takes place only in the lowest loops or it holds exactly to all loops.

X Higher loops in the Schwinger–Dyson equations are essential and can

possibly lead to explanation of some so far mysterious cancelations.


