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Most calculations were made with the dimensional reduction

W.Siegel, Phys.Lett. 84B, (1979), 193; 94B, (1980), 37.

With the dimensional reduction the S-function was calculated even in the
four-loop approximation. It is in agreement with the exact NSVZ -function

2305 = T(R) + C(R)i75(e) /7))
27(1 — Cox/27) '

(o) = -

V.Novikov, M.A.Shifman, A.Vainstein, V.Zakharov, Nucl.Phys. B 229, (1983), 381;
Phys.Lett. 166B, (1985), 329; M.Shifman, A.Vainshtein, Nucl.Phys. B 277, (1986), 456.

Qp to the redefinition of the coupling constant.

/Quantum corrections in supersymmetric theories are investigated for a long \




/Calculations with the higher covariant derivatives. \

Interesting features can be revealed with the higher covariant derivative

regularization.

A.A.Slavnov, Theor.Math.Phys. 23, (1975), 3; P.West, Nucl.Phys. B268, (1986), 113.

Usually integrals, obtained with the higher derivative regularization are very
complicated. However for supersymmetric theories integrals, defining the
(B-function, can be easily calculated, because the integrands are total
derivatives.

A.Soloshenko, K.S. hep-th/0304083; A.Pimenov, K.S., Theor.Math.Phys. 147, (2006), 687.

Example: N=1 supersymmetric Yang-Mills theory with matter in the massless
case is described by the action
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/ Two-loop f-function for a general renormalizable N =1 \

supersymmetric Yang-Mills theory

Two-loop calculation gives the following result:

3 2 3 ) .
Bla) = —%02 + a®T(R)Iy + a®C2I, + %C(R)ﬂC(R)jZIQ n
+a®T(R)CI5 + o2C(R); le — Lt
T

where we do not write the integral for the one-loop ghost contribution and the
integrals Iy—I4 are given below, and the following notation is used:

tr(TATP) =T(R) 67, (TH)(TH = C(R);

fACD ¢BCD —_ (7, 6AB. r=844.
Taking into account Pauli—Villars contributions,

I =1;(0) - Y Li(M;), i=0,2,3
I

Qhere I; are given by 4/




Factorization of integrands into total derivatives I
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Factorization of integrands into total derivatives I
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Two-loop [S-function for a general renormalizable N =1
supersymmetric Yang-Mills theory
The integrals can be calculated using the identity

/ (;ijr]; k12 dZ2f(k2) - 1617rZ (f(kz = 00) = f(k* = 0))'

The result for the two-loop Gell-Mann—Low function is given by

042 043
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Comparing this with the one-loop anomalous dimension gives the NSVZ result.
The result also agrees with the DRED calculations.
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/ Three-loop calculation for SQED \I

The notation is

e — [ 4P d49(—iV(— ) 0°111 12V (p) d™* (v, p/p) +
T (27T)4 167T p 1/2 p 7ILL p

1

4
The main result: (It was obtained as the equality of some well defined
integrals)

d —1 —1 d 4
AJp) — | _ _
dlnA<d (a0, A/p) — g )p:o A% (@ p/A)

)L, L d
=0/ w wdlnA
1

_ _(1 — v(&o(aa/\/“)))

q=0 L

| d
T (1 ~ dma Gl Ag)

—an(oz,A/,u))

Therefore, with higher derivatives it is not necessary to redefine the coupling

(0 ZG(a /) -

constant in order to obtain the agreement with the NSVZ (-function. The

\reason is that the integrands are again total derivatives.

+ (87 (=P, 0) 65(p,0) (ZG)i (a, 1/p) ) (1)

Y




Possible explanation I

One can try to explain the factorization of integrands into total derivatives
substituting solutions of the Slavnov—Taylor identities into the
Schwinger—Dyson equations.

Here we consider only a contribution of the matter superfields: (omitting the
regularization in order to avoid large expressions)

oI e 0 : : /
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Then we introduce the notation
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ﬁVe also need auxiliary sources for these values: \

Ssouree = [ Ao d0();(U0) + § [ @ (65)( 6+ Up); +he

There is a very important identity

D2 6T D2/ Lo 5T
ey~ s\ U = s

which allows to relate usual Green functions, and the functions, containing

derivatives w.r.t. auxiliary sources.

Then using the identity
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the considered contribution to the two-point function can be written as a sum

Q‘ some effective diagrams. 10/
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Calculating matter contribution by Schwinger-Dyson
equations and Slavnov-Taylor identities
Graphically
W@m —|—me

Vertexes here contain derivatives w.r.t. auxiliary sources ¢g and . They are

restricted by the Slavnov—Taylor identities. Substituting solution of these
identities we obtain (in the massless case for simplicity)

d —1 —1 d d*q
Afp) — — 9T
dln A (d (@0, Ao, A/p) — ag )p:o " (R)dlnA/(Qw)‘l 8
1 d 2 ~2 D, D?

D, V4 e




ﬁhe function K, is defined by \

6°T
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For a theory with cubic superpotential this function is nontrivial in the

= 3 (K,); D3} ()
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two-loop approximation.

Factorization of some other values into total derivatives

The explanation, given above, is not complete, because some explicit
calculations show that the diagram, which is contributed by the transversal
part of the Green function, in the lowest loops is also an integral of a total

derivative.

Therefore, it is necessary to explain, why this contribution disappear. More
exactly, it is necessary to explain why in the in lowest loops

1 K., Do D?
A (R) dIn A q:0+

A
D, VA4 VB

N 2

=0




Toward the explanation.

The diagram, which was not calculated, contains derivatives with respect to

the auxiliary sources ¢y. We consider only a part, corresponding to the cubic
superpotential. It can be rewritten as a sum of two-loop effective diagrams:

D, D? D, D? D, D?
§.2 é > VBDVA@
D, VA4

These diagrams are calculated by the same method as above. The result is the
following: The "bad” term with the function K is completely canceled.
However, again there is a nontrivial contribution of the transversal part
(staring at least from the three-loop approximation). Possibly, it can be zero,
but so far there are no calculations, confirming this.
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Conclusion and open questions.

v" With the higher derivative regularization integrals, defining the S-function,

at least in the lowest loops can be easily taken, because the integrands are
total derivatives. The result is in agreement with the NSVZ (-function.

v" The explanation can be possibly made by substituting solutions of the
Slavnov—Taylor identities into the Schwinger—-Dyson equations. The main
problem is whether the factorization of integrands into total derivatives
takes place only in the lowest loops or it holds exactly to all loops.

v Higher loops in the Schwinger—Dyson equations are essential and can

possibly lead to explanation of some so far mysterious cancelations.
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