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1. Introduction

Within the quantum theory the state vector at time t, |Φ(t)〉, for
the physical system under consideration which initially (at
t = t0 = 0) was in the state |Φ〉 can be found by solving the
Schödinger equation

i~
∂

∂t
|Φ(t)〉 = H|Φ(t)〉, |Φ(0)〉 = |Φ〉, (1)

where |Φ(t)〉, |Φ〉 ∈ H, H is the Hilbert space of states of the
considered system, ‖ |Φ(t)〉‖ = ‖ |Φ〉‖ = 1 and H denotes the total
selfadjoint Hamiltonian for the system. If one considers an
unstable state |Φ〉 ≡ |φ〉 of the system then using the solution
|φ(t)〉 of Eq. (1) for the initial condition |φ(0)〉 = |φ〉 one can
determine the decay law, Pφ(t) of this state decaying in vacuum

Pφ(t) = |a(t)|2, (2)

where a(t) is probability amplitude of finding the system at the
time t in the initial state |φ〉 prepared at time t0 = 0,

a(t) = 〈φ|φ(t)〉. (3)



We have

a(0) = 1. (4)

From basic principles of quantum theory it is known that the
amplitude a(t), and thus the decay law Pφ(t) of the unstable state
|φ〉, are completely determined by the density of the energy
distribution ω(E) for the system in this state
( S. Krylov, V. A. Fock, Zh. Eksp. Teor. Fiz. 17, (1947), 93.),

a(t) =

∫

Spec.(H)
ω(E) e− i

~ E t dE . (5)

where ω(E) ≥ 0.
Note that (5) and (4) mean that there must be

a(0) =

∫

Spec.(H)
ω(E) dE = 1. (6)

From the last property and from the Riemann–Lebesgue Lemma it
follows that the amplitude a(t), being the Fourier transform of
ω(E) (see (5)), must tend to zero as t →∞.



In L. A. Khalfin paper, Zh. Eksp. Teor. Fiz. 33, (1957), 1371;

[Sov. Phys. – JETP 6, (1958), 1053] , assuming that the spect–

rum of H must be bounded from below, (Spec .(H) > −∞), and
using the Paley–Wiener Theorem it was proved that in the case of
unstable states there must be

|a(t)| ≥ Ae−b tq
, (7)

for |t| → ∞. Here A > 0, b > 0 and 0 < q < 1.
This means that the decay law Pφ(t) of unstable states decaying in
the vacuum, (2), can not be described by an exponential function
of time t if time t is suitably long, t →∞, and that for these
lengths of time Pφ(t) tends to zero as t →∞ more slowly than
any exponential function of t. The analysis of the models of the

decay processes shows that Pφ(t) ' exp(−γ0
φt

~ ), (where γ0
φ is the

decay rate of the state |φ〉), to an very high accuracy for a wide
time range t: From t suitably later than some T0 ' t0 = 0 but
T0 > t0 up to t À τφ = ~

γ0
φ

and smaller than t = tas , where tas

denotes the time t for which the nonexponential deviations of a(t)
begin to dominate.



From this analysis it follows that in the general case the decay law
Pφ(t) takes the inverse power–like form t−λ, (where λ > 0), for
suitably large t ≥ tas À τφ. This effect is in agreement with the
general result (7). Effects of this type are sometimes called the
”Khalfin effect”
The problem how to detect possible deviations from the
exponential form of Pφ(t) at the long time region has been
attracting the attention of physicists since the first theoretical
predictions of such an effect. Many tests of the decay law
performed some time ago did not indicate any deviations from the
exponential form of Pφ(t) at the long time region. Nevertheless
conditions leading to the nonexponetial behavior of the amplitude
a(t) at long times were studied theoretically. Conclusions following
from these studies were applied successfully in experiment
described in the Rothe paper
( C. Rothe, S. I. Hintschich and A. P. Monkman, Phys. Rev. Lett.

96,(2006), 163601. ), where the experimental evidence of the
exponential decay law at long times was reported. This result gives
rise to another problem which now becomes important:



If (and how) deviations from the exponential decay law at long
times affect the energy of the unstable state and its decay rate
at this time region.

Note that in fact the amplitude a(t) contains information about
the decay law Pφ(t) of the state |φ〉, that is about the decay rate
γ0

φ of this state, as well as the energy E0
φ of the system in this

state. This information can be extracted from a(t). Indeed if |φ〉 is
an unstable (a quasi–stationary) state then

a(t) ∼= e
− i
~(E0

φ − i
2γ0

φ) t
. (8)

So, there is

E0
φ −

i

2
γ0

φ ≡ i~
∂a(t)

∂t

1

a(t)
, (9)

in the case of quasi–stationary states.



The standard interpretation and understanding of the quantum
theory and the related construction of our measuring devices are
such that detecting the energy E0

φ and decay rate γ0
φ one is sure

that the amplitude a(t) has the form (8) and thus that the relation
(9) occurs. Taking the above into account one can define the
”effective Hamiltonian”, hφ, for the one–dimensional subspace of
states H|| spanned by the normalized vector |φ〉 as follows

hφ
def
= i~

∂a(t)

∂t

1

a(t)
. (10)

In general, hφ can depend on time t, hφ ≡ hφ(t). One meets this
effective Hamiltonian when one starts with the Schrödinger
Equation (1) for the total state space H and looks for the rigorous
evolution equation for the distinguished subspace of states
H|| ⊂ H. In the case of one–dimensional H|| this rigorous
Schrödinger–like evolution equation has the following form for the
initial condition a(0) = 1,



i~
∂a(t)

∂t
= hφ(t) a(t). (11)

Relations (10) and (11) establish a direct connection between the
amplitude a(t) for the state |φ〉 and the exact effective Hamiltonian
hφ(t) governing the time evolution in the one–dimensional
subspace H‖ 3 |φ〉. Thus the use of the evolution equation (11) or
the relation (10) is one of the most effective tools for the accurate
analysis of the early– as well as the long–time properties of the
energy and decay rate of a given quasi–stationary state |φ(t)〉.
So let us assume that we know the amplitude a(t). Then starting
with this a(t) and using the expression (10) one can calculate the
effective Hamiltonian hφ(t) in a general case for every t. Thus, one
finds the following expressions for the energy and the decay rate of
the system in the state |φ〉 under considerations, to be more precise
for the instantaneous energy and the instantaneous decay rate,



(for details see: K. Urbanowski, Cent. Eur. J. Phys. 7, (2009),

DOI: 10.2478/s11534-009-0053-5 ),

Eφ ≡ Eφ(t) = < (hφ(t), (12)

γφ ≡ γφ(t) = − 2= (hφ(t), (13)

where < (z) and = (z) denote the real and imaginary parts of z
respectively.
The deviations of the decay law Pφ(t) from the exponential form
can be described equivalently using time-dependent decay rate
(13). In terms of such γφ(t) the Khalfin observation that Pφ(t)
must tend to zero as t →∞ more slowly than any exponential
function means that γφ(t) ¿ γ0

φ for t À tas and
limt→∞ γφ(t) = 0.
Using (10) and (12), (13) one can find that



Eφ(0) = 〈φ|H|φ〉, (14)

Eφ(t ∼ τφ) ' E0
φ 6= Eφ(0), (15)

γφ(0) = 0, (16)

γφ(t ∼ τφ) ' γ0
φ. (17)

The aim of this talk is to discuss the long time behaviour of Eφ(t)
using a(t) calculated for the given density ω(E). We show that
Eφ(t) → Emin > −∞ as t →∞ for the model considered and that
a wide class of models has similar long time properties:
Eφ(t) t→∞ 6= E0

φ. It seems that in contrast to the standard Khalfin
effect in the case of the quasi–stationary states belonging to the
same class as excited atomic levels, this long time properties of the
instantaneous energy Eφ(t) have a chance to be detected, eg., by
analyzing properties of the high energy cosmic rays or spectra of
very distant stars.



2. The model

Let us assume that
Spec .(H) = [Emin,∞),
(where, Emin > −∞), and let us choose ω(E) as follows

ω(E) ≡ ωBW (E) =
N

2π
Θ(E−Emin)

γ0
φ

(E − E0
φ )2 + (

γ0
φ

2 )2
, (18)

where N is a normalization constant and

Θ(E) =

{
1 for E ≥ 0,
0 for E < 0,

For such ω(E) using (5) one has



a(t) =
N

2π

∫ ∞

Emin

γ0
φ

(E − E0
φ)2 + (

γ0
φ

2 )2
e− i

~Et dE , (19)

where

1

N
=

1

2π

∫ ∞

Emin

γ0
φ

(E − E0
φ)2 + (

γ0
φ

2 )2
dE . (20)

Formula (19) leads to the result



a(t) = N e
− i
~(E0

φ − i
γ0

φ

2 )t
{

1− i

2π
×

×
[
e

γ0
φt

~ E1

(
− i

~
(E0

φ − Emin +
i

2
γ0

φ)t
)

−E1

(
− i

~
(E0

φ − Emin − i

2
γ0

φ)t
) ] }

, (21)

where E1(x) denotes the integral–exponential function.



In general one has

a(t) ≡ aexp(t) + anon(t), (22)

where

aexp(t) = N e
− i
~(E0

φ − i
γ0

φ

2 )t
, anon(t) = a(t)− aexp(t).

Making use of the asymptotic expansion of E1(x)

E1(z) |z|→∞ ∼ e−z

z
(1− 1

z
+

2

z2
− . . .), (23)

where | arg z | < 3
2π, one finds



a(t) t→∞ ' Ne
− i
~ h0

φ t

+
N

2π
e− i

~ Emint
{

(−i)
γ0

φ

| h0
φ − Emin | 2

~
t

−2
(E0

φ − Emin) γ0
φ

| h0
φ − Emin | 4

(~
t

)2
+ . . .

}
(24)

and



hφ(t) t→∞ = i~
∂a(t)

∂t

1

a(t) t→∞

' Emin − i
~
t
− 2

E0
φ − Emin

| h0
φ − Emin | 2

(~
t

)2
+ . . .(25)

for the considered case (18) of ωBW (E) (for details see:

K. Urbanowski, Cent. Eur. J. Phys. 7, (2009),

DOI: 10.2478/s11534-009-0053-5 ).

From (25) it follows that



< (hφ(t) t→∞)
def
= E∞φ (t)

' Emin − 2
E0

φ − Emin

| h0
φ − Emin | 2

(~
t

)2

−→
t→∞

Emin, (26)

where E∞φ (t) = Eφ(t)| t→∞, and

= (hφ(t) t→∞) ' − ~
t
−→
t→∞

0. (27)



The property (26) means that

< (hφ(t) t→∞) ≡ E∞φ (t) < E0
φ. (28)

For different states |φ〉 = |j〉, (j = 1, 2, 3, . . .) one has

= (h1(t) t→∞) = = (h2(t) t→∞), (29)

whereas in general γ0
1 6= γ0

2 .



Note that from (24) one obtains

a(t) t→∞
2 ' N2e−

γ0
φ

~ t +
N2

4π2

(γ0
φ)2

|h0
φ − Emin | 4

~2

t2
+ . . . . (30)

Relations (24) — (29) become important for times t > tas , where
tas denotes the time t at which contributions to a(t) t→∞

2 from
the first exponential component in (30) and from the second
component proportional to 1

t2 are comparable, that is (see (22)),

|aexp(t)|2 ' |anon(t)|2 (31)

for t →∞. So tas can be be found by considering the following
relation



e−
γ0

φ

~ t ∼ 1

4π2

(γ0
φ)2

|h0
φ − Emin | 4

~2

t2
. (32)

Assuming that the right hand side is equal to the left hand side in
the above relation one gets a transcendental equation. Exact
solutions of such an equation can be expressed by means of the
Lambert W function.
An asymptotic solution of the equation obtained from the relation
(32) is relatively easy to find. The very approximate asymptotic

solution, tas , of this equation for (
Eφ

γ0
φ
) > 10 2 (in general for

(
Eφ

γ0
φ
) → ∞) has the form

γ0
φ tas

~
' 8, 28 + 4 ln (

E0
φ − Emin

γ0
φ

)

+ 2 ln [8, 28 + 4 ln (
E0

φ − Emin

γ0
φ

) ] + . . . . (33)



3. Some generalizations

To complete the analysis performed in the previous Section let us
consider a more general case of ω(E) and a(t). For a start let us

consider relatively simple case when limE→Emin+ ω(E)
def
= ω0 > 0.

Let derivatives ω(k)(E), (k = 0, 1, 2, . . . , n), be continuous in
[Emin,∞), (that is let for E > Emin all ω(k)(E) be continuous and
all the limits limE→Emin+ ω(k)(E) exist) and let all these ω(k)(E) be

absolutely integrable functions then (see: K. Urbanowski,

Eur. Phys. J. D, 54, (2009), DOI: 10.1140/epjd/e2009-00165-x )

a(t) ∼
t→∞

− i~
t

e− i
~Emint

n−1∑

k=0

(−1)k
( i~

t

)k
ω

(k)
0 , (34)

where ω
(k)
0

def
= limE→Emin+ ω(k)(E).



Let us now consider a more complicated form of the density ω(E).
Namely let ω(E) be of the form

ω(E) = (E − Emin)
λ η(E) ∈ L1(−∞,∞), (35)

where 0 < λ < 1 and it is assumed that η(k)(E), (k = 0, 1, . . . , n),
exist and they are continuous in [Emin,∞), and limits
limE→Emin+ η(k)(E) exist, limE→∞ (E − Emin)

λ η(k)(E) = 0
for all above mentioned k, then



a(t) ∼
t→∞

− i~
t

λ e− i
~Emint

[
αn(t) +

(− i~
t

)
αn−1(t)

+
(− i~

t

)2
αn−2(t)

+
(− i~

t

)3
αn−3(t) + . . .

]
, (36)



where

αn−k(t) =
n−k−1∑

l=0

Γ(l + λ)

l!
e− i π(l+λ+2)

2 η
(l+k)
0

(~
t

)l+λ
, (37)

and η
(j)
0 = limE→Emin+ η(j)(E), η(0)(E) = η(E) and j = 0, 1, . . . , n.

The asymptotic form of hu(t) for t →∞ for the a(t) given by the
relation (34) looks as follows

h∞u (t)
def
= hu(t) t→∞ = Emin − i

~
t

−ω
(1)
0

ω0

( ~
t

)2
+ . . . . (38)

In the more general case of a(t) (see, e.g. (36) ) after some algebra
the asymptotic approximation of a(t) can be written as follows



a(t) ∼
t→∞

e−i t
~ Emin

N∑

k=0

ck

tξ+k
, (39)

where ξ > 0 and ck are complex numbers.
From the relation (39) one concludes that

∂a(t)

∂t
∼

t→∞
e−i t

~ Emin
{
− i

~
Emin −

N∑

k=0

(ξ+k)
ck

tξ+k+1

}
. (40)

Now let us take into account the relation (11). From this relation
and relations (39), (40) it follows that

hφ(t) ∼
t→∞

Emin +
d1

t
+

d2

t2
+

d3

t3
+ . . . , (41)



where d1, d2, d3, . . . are complex numbers with negative or positive
real and imaginary parts. This means that in the case of the
asymptotic
approximation to a(t) of the form (39) the following property holds,

lim
t→∞ hφ(t) = Emin < E0

φ. (42)

It seems to be important that results (41) and (42) coincide with
the results (25) — (29) obtained for the density ω(E) given by the
formula (18). This means that general conclusion obtained for the
other ω(E) defining unstable states should be similar to those
following from (25) — (29).



4. Final remarks

Long time properties of the survival probability |a(t)|2 and
instantaneous energy Eφ(t) are relatively easy to find analytically
for times t À τas even in the general case as it was shown in
previous Section. It is much more difficult to analyze these
properties analytically in the transition time region where t ∼ τas .
It can be done numerically for given models.
The model considered in Sec. 2 and defined by the density
ωBW (E), (18), allows one to find numerically the decay curves and
the instantaneous energy εφ(t) as a function of time t. The results
presented in this Section have been obtained assuming for
simplicity that the minimal energy Emin appearing in the formula
(18) is equal to zero, Emin = 0. So, all numerical calculations were
performed for the density ω̃BW (E) given by the following formula

ω̃BW (E) =
N

2π
Θ(E)

γ0
φ

(E − E0
φ )2 + (

γ0
φ

2 )2
, (43)

for some chosen
E0

φ

γ0
φ
.



Performing calculations particular attention was paid to the form
of the probability |a(t)|2, i. e. of the decay curve, and of the
instantaneous energy εφ(t) for times t belonging to the most
interesting transition time-region between exponential and
nonexponential parts of |a(t)|2, where the following relation
corresponding with (31) and (32) takes place,

|aexp(t)|2 ∼ |anon(t)|2, (44)

where aexp(t), anon(t) are defined by (22). Results are presented
graphically below.



Figure: 1. Survival probability Pφ(t) = |a(t)|2 in the transition time

region. The case
E0

φ

γ0
φ

= 10.



Figure: 2. Survival probability Pφ(t) = |a(t)|2 in the transition time

region. The case
E0

φ

γ0
φ

= 10.



Figure: 3. Instantaneous energy Eφ(t) in the transition time region.

The case
E0

φ

γ0
φ

= 10.



Figure: 4. Survival probability Pφ(t) = |a(t)|2 in the transition time

region. The case
E0

φ

γ0
φ

= 100.



Figure: 5. Survival probability Pφ(t) = |a(t)|2 in the transition time

region. The case
E0

φ

γ0
φ

= 100.



Figure: 6. Instantaneous energy Eφ(t) in the transition time region.

The case
E0

φ

γ0
φ

= 100.



A similar form of a decay curves one meets for a very large class of
models defined by energy densities ω(E) of the following type

ω(E) =
N

2π
Θ(E − Emin) (E − Emin)

λ ×

× γ0
φ

(E − E0
φ)2 +

(γ0
φ)2

4

f (E), (45)

≡ ωBW (E) (E − Emin)
λ f (E),

where λ ≥ 0, f (E) is a form–factor — it is a smooth function
going to zero as E → ∞ and it has no threshold and no pole. The
asymptotical large time behavior of a(t) is due to the term
(E − Emin)

λ and the choice of λ (see Sec. 3). The density ω(E)
defined by the relation (45) fulfills all physical requirements and it
leads to the decay curves having a very similar form at transition
times region to the decay curves presented above . The
characteristic feature of all these decay curves is the
presence of sharp and frequent oscillations at the transition
times region (see Figs (1), (2), (4), (5) ).



This means that derivatives of the amplitude a(t) may reach
extremely large values for some times from the transition
time region and the modulus of these derivatives is much
larger than the modulus of a(t), which is very small for these
times. This explains why in this time region the real and imaginary
parts of hφ(t) ≡ Eφ(t) − i

2 γφ(t), which can be expressed by the
relation (10), ie. by a large derivative of a(t) divided by a very
small a(t), reach values much larger than the energy E0

φ of the the
unstable state measured at times for which the decay curve has the
exponential form. For the model considered we found that, eg.

for
E0

φ

γ0
φ

= 10 and 5τφ ≤ t ≤ 60τφ the maximal value of the

instantaneous energy equals Eφ(t) = 89, 2209 E0
φ and Eφ(t)

reaches this value for t ≡ tmx , 10 = 53, 94 τφ and then the
survival probability Pφ(t) is of order Pφ(tmx , 10) ∼ 10−9.



The question is whether and where this effect can manifest
itself. There are two possibilities to observe the above long time
properties of unstable states:

1. One should analyze properties of unstable states
having not too long values of τas .

2. One should find a possibility to observe a suitably
large number of events, i.e. unstable particles, created
by the same source.

The problem with understanding the properties of broad
resonances in the scalar sector (σ meson problem) discussed in
M. Nowakowski, N. G. Kelkar, Nishiharima 2004, Penataquark

— Proceedings of International Workshop on PENATAQUARK 04,

Spring – 8, Hyogo, Japan, 23 –24 July 2004, pp. 182 – 189.

M. Nowakowski, N. G. Kelkar, AIP Conf. Proc. 1030,

(2008), 250 – 255; ArXiv:0807.5103. ,



where the hypothesis was formulated that this problem could be
connected with properties of the decay amplitude in the transition
time region, seems to be possible manifestations of this effect and
this problem refers to the first possibility mentioned above.

The measured range of possible mass of σ meson is very wide, 400
– 1200 MeV. So one can not exclude the possibility that the
masses of some σ mesons are measured for times of order
their lifetime and some of them for times where their
instantaneous energy Eσ(t) is much larger than E0

σ. This is
exactly the case presented in Fig. (3) and Fig. (6). For broad

mesons the ratio E0
σ

γ0
σ

is relatively small and thus the time τas when

the above discussed effect occurs appears to be not too long.



Astrophysical and cosmological processes in which extremely
huge numbers of unstable particles are created seem to be
another possibility for the above discussed effect to become
manifest. The probability Pφ(t) = |a(t)|2 that an unstable particle,
say φ, survives up to time t ∼ τas is extremely small. Let Pφ(t) be

Pφ(t) t∼τas
∼ 10−k , (46)

where k À 1, then there is a chance to observe some of particles φ
survived at t ∼ τas only if there is a source creating these particles
in Nφ number such that

Pφ(t) t∼τas
Nφ À 1. (47)

So if a source exists that creates a flux containing

Nφ ∼ 10 l , (48)

unstable particles and l À k then



the probability theory states that the number Nsurv unstable
particles

Nsurv = Pφ(t) t∼τas
Nφ ∼ 10l−k À 0, (49)

has to survive up to time t ∼ τas .

Sources creating such numbers of unstable particles are known
from cosmology and astrophysics:

I The Big Bang.

I Processes taking place in galactic nuclei (galactic
cores).

I Processes taking place inside stars.

I Etc.



So let us assume that we have an astrophysical source creating a
sufficiently large number of unstable particles in unit of time and
emitting a flux of these particles and that this flux is constant or
slowly varying in time.

An example: a flux of neutrons. From (33) it follows that for
the neutron τn

as ∼ (250τn − 300τn), where τn ' 886 [s]. If the
energies of these neutrons are of order 30× 1017 [eV] then during
time t ∼ τn

as they can reach a distance dn ∼ 25000 [ly], that is the
distance of about a half of the Milky Way radius. Now if in a unit
ot time a suitably large number of neutrons Nn of the energies
mentioned is created by this source then in the distance dn from
the source a number of spherically symmetric space areas (halos)
surrounding the source, where neutron instantaneous energies

En(t) are much larger than their rest energy E0
n = m0

n c2√
1−( vn

c
)2

, (m0
n is

the neutron rest mass and vn denotes its velocity) have to appear
(see Fig. (7)). Of course this conclusion holds also for other
unstable particles φα produced by this source.



-
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Figure: 7. Halos surrounding a cosmic source of unstable particles.



Every kind of particles φα has its own halos located at distances
dφα

k ,

dφα

k ∼ vφα τφ, k
as , (k = 1, 2, . . .),

from the source. Radiuses dφα

k of these halos are determined by

the particles’ velocities vφα and by times τφ, k
as when instantaneous

energies Eφα(t) have local maxima.
Unstable particles φα forming these halos and having

instantaneous energies Eφα(t) À E0
φα

= m0
φα

c2 have to
interact gravitationally with objects outside of these halos as
particles of masses mφα(t) = 1

c2 Eφα(t) À m0
φα

. The possible
observable effects depend on the astrophysical source of these
particles considered.
1. If the halos are formed by unstable particles emitted as a result
of internal star processes then in the case of very young stars
cosmic dust and gases should be attracted by these halos as a
result of a gravity attraction. So, the halos should be a places
where the dust and gases condensate. Thus in the case of very
young stars one may consider thehalos as the places where planets
are born.



2. On the other hand in the case of much older stars a presence
of halos should manifest itself in tiny changes of velocities
and accelerations of object moving in the considered
planetary star system relating to those calculated without
taking into account of the halos presence.
3. If the halos are formed by unstable particles emitted by a

galaxy core and these particles are such that the ratio
Eφ(t)

E0
φ

is

suitably large inside the halos, then rotational velocities of
stars rounding the galaxy center outside the halos should
differ from those calculated without taking into account the
halos. Thus the halos may affect the form of rotation curves
of galaxies. (Of course, we do do not assume that the sole factor
affecting the form of the rotation curves are these halos).
4. Another possible effect is that the velocities of particles
crossing these galactic halos should slightly vary in time due
to gravitational interactions, i. e. they should gain some
acceleration. This should cause charged particles to emit
electromagnetic radiation when they cross the halo.



Note that the above mentioned effects seems to be possible
to examine. All these effect are the simple consequence of
the fact that the instantaneous energy Eφα(t) of unstable
particles becomes large compared with E0

φα
and for some

times even extremely large. On the other hand this property
of Eφα(t) results form the rigorous analysis of properties of
the quantum mechanical survival probability a(t) (see (3) )
and from the assumption that the energy spectrum is
bounded from below.

Thank you

ArXiv: 0908.2219
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