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Abstract
We consider the implications of using an atom as a rod and a clock
in a constant gravitational field. One consequence of this is that the
space metric of any constant gravitational field should be locally
isotropic. This fixes the privileged coordinate system. In it the
deflection of light at finite distances from the Sun is given by the
tangent to the trajectory. In general this approach agrees with
general relativity only in linear approximation and this is quite
surprising.



Introduction and exposition of the approach
Almost 50 years ago the authors of [1] proposed to use, for example,
the hydrogen atom as rod and clock in gravitational field and
analyzed the consequences of this, see also [2]. The gravitational
field, according to its strength, modifies the Bohr radius rb

rb → rbφ =
rb√
gs

, rb =
~2

me2
. (1)

We use the notation

ds2 = g00c
2dt2+gs(dx2

1 +dx2
2 +dx2

3 ), gs ≡ g11 = g22 = g33. (2)

Or denoting

gµν = ηµν + hµν , ηµν = diag(−1, 1, 1, 1, ), (3)

we have
hs = h11 = h22 = h33, (4)

In (2) c2 is the square of velocity of light measured by local rods
and clocks. It is constant and we can put it equal to unity.



So, according to (1) the atom, shrinks:

∆l → ∆lφ =
∆l
√

gs
= ∆l(1 + φ + · · · ). (5)

But we are unable to notice this change observing the atom locally
(near it). To consider the size of the atom as the same anywhere in
gravitational field we have to multiply its shrunken size by the
correcting factor

√
gs . In this way the space part of the metric (2)

appears.
Similarly we treat the period of oscillation T, interval ∆t and
frequency ω:

T → Tφ =
T√
|g00|

, ∆t → ∆tφ =
∆t√
|g00|

,

ω → ωφ = ω
√
|g00| = ω(1 + φ + · · · ), (6)



(It is said that ωφ is measured in the world time t, i.e. by the clock
ticking in the flat space time from which we start to calculate the
influence of the gravitational field on the atom.) The appearance of
metric (2) becomes evident.
It follows from (2) that the coordinate velocity of light is given by

c2
φ = c2 |g00|

gs
= c2(1 + 4φ + · · · ). (7)

The rest energy mc2 in the gravitational field becomes

mc2 → mφc2
φ = mc2

√
|g00| = mc2(1 + φ + · · · ), (8)

see, for example, eq. (88.9) in [4]. From (7) and (8) we have

m → mφ = m
gs√
|g00|

= m(1− 3φ + · · · ), (9)

and from (6) and (8) mc2T = mφc2
φTφ, i.e. the quantity of

dimension erg · sec is independent of gµν . It follows from here (and
from ωT = ωφTφ,E = ~ω) that Planck constant ~ must also be
independent of gravitational field [1] and we can put ~ = 1.



The same should be true for dimensionless fine structure
α = e2

~c =
e2
φ

~cφ
. From here

e2 → e2
φ = e2 cφ

c
= e2

√
|g00|
gs

= e2(1 + 2φ + · · · ). (10)

As modifications of physical quantities are determined by their
dimensions [2] and the terms of the Dirac equation (or any other
equation) are of the same dimension, each term acquire the same
factor. For this reason we are unable to notice any change in the
atom in gravitational field , when observe it locally [3]. This should
be true as long as the tidal forces inside the atom are negligible
It is interesting to note that the Einstein gravitational constant

κ → κφ =
κ√

gs |g00|
(11)

is unaffected by gravitational field, if

gs |g00| = 1. (11a)

.



Now, the picture in which we are dealing with quantities with
subscript φ Thirring calls the unrenormalized one. The picture, in
which all the quantities have the same value in the gravitational
field as outside of it, Thirring calls the renormalized picture.
Using the atom as a rod, we conclude that the space part of metric
of a constant gravitational field should be locally isotropic. i.e. have
the form (2). In linear approximation we have g00 = −1− 2φ, see
eq. (87.11) in [4]. Using linearized Einstein equation and Hilbert
gauge

h̄µν
,ν ≡ (hµν − 1

2
ηµνh),ν = 0, h = hσ

σ, h,ν ≡
∂

∂xν
h, (12)

we find gs = 1− 2φ ≈ 1/|g00|. (We are interested in metric outside
the body.) In these equations φ is the Newtonian potential of a
single body of any form and structure. In this linear approximation
it is not difficult to take into account the rotation

h0α = 2GMαβ
nβ

r2
, (13)

see eq. (105.16) in [4].



Application: deflection of light by the Sun
. In linear approximation the deflection of light by the Sun can be
calculated in two different ways. First, following Schwinger ( see§4
Ch 2 in[5]) we can find the angle of deflection by purely mechanical
means.

ϕ = rgρ

∫ x

−∞

dx

(x2 + ρ2)3/2
=

rg
ρ

(
1 +

x√
ρ2 + (x2

)
= (1∓

√
1− u2)δ, δ = rg/ρ.

(14)
Here ρ is the impact parameter, u = ρ/r . The signs ∓ in front of
square root in the last equation refers to points on the ingoing and
outgoing parts of trajectory (i.e. before and after passing the Sun)
Second, we can calculate the tangent to the trajectory

tanϕ =
dy

dϑ
/

dx

dϑ
=

dr
dϑ sin ϑ + r cos ϑ
dr
dϑ cos ϑ− r sin ϑ

,

x = r cos ϑ, y = r sin ϑ, (15)



or in terms of u = ρ/r :

tanϕ =
du
dϑ sin ϑ− u cos ϑ
du
dϑ cos ϑ + u sin ϑ

. (16)

The trajectory in the privileged (i.e. isotropic) metric in the
considered approximation has the form (see eq. (40.6) in [7])

u = sin θ + (1− cos θ)δ. (17)

Using it, we get the same result (14).
For the upper sign in (14) for small u we have

ϕ = (1−
√

1− u2)δ = (
1

2
u2 +

1

8
u4 + · · · )δ. (14a)

This expression gives also the amount of decrease of the total
deflection angle (which can be not small and may be known only
experimentally ) on the second half of the trajectory. In other
words,the deflection angle at distance u is the total deflection angle
minus the expression (14a).



Using the standard (in Weinberg terminology [6]) Schwarzschild
metric

ds2 =
(
1− rg

r

)
(dx0)2 − r2(sin2 θdϕ2 + dθ2)−

(
1− rg

r

)−1
dr2

(18)
it is easy to get instead (16) the trajectory in the form

u = sinϑ + (1− 1

2
u2 ∓

√
1− u2)δ (19)

and for it instead of (14)

ϕ =

(
1∓

√
1− u2(1 +

u2

2
)

)
.δ (20)

For the upper sign we have instead of (14a)

tanϕ ≈ ϕ = (1−
√

1− u2(1 +
u2

2
))δ =

3

8
u4δ + · · · . (20a)

The difference with (14) and (14a) shows that the standard
Schwarzschild coordinate system contains features introduced not
only by the gravitational field but also by arbitrariness in choice of
coordinate system.



Conclusions
As mentioned earlier, it seems reasonable to expect that the
considered approach should hold beyond the linear approximation
as long as the tidal force inside the atom is negligible. It even seems
reasonable to think that two functions g00 and gs are functions of
only Newtonian potential. This is the case for the isotropic
coordinate system of the Schwarzschild field. It is inticing to think
that the same form of metric should hold for any single body; only
the Newtonian potentials are specific. But this agrees with general
relativity only in linear approximation because only two functions
g00 and gs mast satisfy all Einstein equations. It would be also
interesting to check experimentally that the relation (11a) holds
only in linear approximation as predicted by general relativity.
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