

On behalf of the KLOE Collaboration

XIV Lomonosov Conference Moscow State University 18-25 August 2009

Outline

- KLOE experiment
 - Kaon physics
 - $\begin{array}{l} V_{us} \\ Quantum interference \\ K_{e2}^{\prime}/K_{\mu 2} \end{array}$
 - Hadron physics
 - $\eta \rightarrow \pi\pi ee/eeee$
 - Gluonium
 - Scalars
 - Cross sections
 - Conclusion and perspective

24 August 2009

24 August 2009

A. De Santis - XIV Lomonosov Conference - Moscow

The KLOE detector

V us

24 August 2009

24 August 2009

with $K \in \{K^+, K^0\}$; $l \in \{e, \mu\}$, $e \in C_K^2$ 1/2 for K^+ , 1 for K^0

Inputs from theory:

- S_{EW} Universal short distance EW correction (1.0232)
- $f_{+}^{K^{0}\pi(0)}$ Hadronic matrix element at zero momentum transfer (*t*=0)

 $\Delta_{K}^{SU(2)}$ Form factor correction for strong

SU(2) breaking

 $I_{Kl}(\lambda)$

Phase space integral: λs parameterize form factor dependence on *t :*

Inputs from experiment:

 $\Gamma(K_{l3(\gamma)})$ Branching ratios with

well determined

decays; lifetimes

treatment of radiative

 K_{e3} : only λ_{+} (or $\lambda_{+}' \lambda_{+}''$)

 $K_{\mu\beta}$: need λ_+ and λ_0

Long distance EM effects

K,e3

*K*_{*ι*}μ3

K_se3

K±e3

K±μ3

0.217

0.2155(7)

0.2167(9)

0.2152(14)

0.2152(13)

0.2132(15)

All KLOE inputs but K_s lifetime

Comparing Ke3 with Kµ3 We can test lepton universality with kaons

$$r_{\mu e} = \frac{|f_{+}(0)V_{us}|^{2}_{\mu 3}}{|f_{+}(0)V_{us}|^{2}_{e 3}}$$

$$\textbf{JHEP04(2008)059}$$

$$\textbf{\Gamma}_{\mu e} = \textbf{1.000(8)}$$

JHEP04(2008)059

$$f_{+}(0)|V_{us}| = 0.2157(6) \chi^{2}_{/ndof} = 7/4 (13\%)$$

$$|V_{us}| = 0.2237(13) \Rightarrow 1 - |V_{us}|^{2} - |V_{ud}|^{2} = 9(8) \times 10^{-4}$$

$$\begin{cases} f_{+}(0) = 0.964(5) & \text{PRL 100 (2008)} \\ |V_{ud}| = 0.97418(26) & \text{PRC 77 (2008)} \end{cases}$$

0.213

 $f_{+}(0) |V_{us}|$

0.215

err %

0.3

0.4

0.7

0.6

0.7

Constraining CKM unitarity

24 August 2009

Sensitivity to new physics: an example

Using the determination of V_{us} from K_{I3} and V_{ud} from superallowed β decay and the ratio K_{µ2}/ $\pi_{\mu 2}$ we can explore new physics model.

The observable

$$R_{\ell 23} = \left| \frac{V_{us}(K_{\mu 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\mu 2})} \right|$$

we get:

• R₁₂₃ = 1.008(8)

(unitarity for K_{I3} and β -decays is used)

R₁₂₃ sensitivity to H[±] exchange

$$R_{\ell 23} = \left| 1 - \frac{m_{K^+}^2}{m_{H^+}^2} \left(1 - \frac{m_{\pi^+}^2}{m_{K^+}^2} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \, \tan \beta} \right|$$

$K_{e2}/K_{\mu 2}$

24 August 2009

R_K: LFV beyond SM

Very high precision prediction in the SM (no hadronic uncertainties) $\mathbf{R}_{\kappa}^{SM} = 2.477(1) \times 10^{-5}$ [JHEP10(2007)005]

In SM only IB included $R_{K}^{SM} = (K_{e2}(\gamma_{IB}))/(K_{\mu 2}(\gamma_{IB}))$

LFV in the MSSM would enhance R_{κ} up to 1% LFV appears at 1-loop level via an effective $H^+\ell v_{\tau}$ Yukawa interaction dominated by ev_{τ} [PRD74(2006)011701]

Signal counting

plane with 0.86 < NN < 1.02 and -3700 < M²_{len} < 6100

24 August 2009

 R_{K} final result

$$R_{K} = (2.493 \pm 0.025_{stat} \pm 0.019_{syst}) \times 10^{-5}$$

$$1.0\% \qquad 0.8\%$$

$$R_{K}^{SM} = (2.477 \pm 0.001) \quad 10^{-5}$$

Systematic errors %	stat	syst
Reconstruction	0.4	0.4
Trigger efficiency	0.4	-
Background sub	-	0.3
Ke2(DE) comp.	0.2	-
Clustering	0.2	
Total	0.6	0.5

 Main contribution to systematic uncertainty from control-sample statistics (0.6%) Sensitivity shown as 95%-CL excluded regions in the tan β - M_H plane, for fixed values of the 1-3 slepton-mass matrix element, $\Delta_{13} = 10^{-3}, 0.5 \times 10^{-3}, 10^{-4}$

Kaon interferometry

Kaon interferometry: basic principles

$$\begin{aligned} \left|i\right\rangle &= \frac{1}{\sqrt{2}} \left[\left| K^{0}(\vec{p})\right\rangle \right| \overline{K}^{0}(-\vec{p})\right\rangle - \left| \overline{K}^{0}(\vec{p})\right\rangle \right| K^{0}(-\vec{p})\right\rangle \\ &= \frac{N}{\sqrt{2}} \left[\left| K_{s}(\vec{p})\right\rangle \right| K_{L}(-\vec{p})\right\rangle - \left| K_{L}(\vec{p})\right\rangle \left| K_{s}(-\vec{p})\right\rangle \right] \end{aligned}$$

$$I(f_1, f_2; \Delta t) = \frac{\Gamma_S^1 \Gamma_S^2}{2\Gamma} e^{-\Gamma |\Delta t|} \left[|\eta_1|^2 e^{\frac{\Delta \Gamma}{2} \Delta t} + |\eta_2|^2 e^{-\frac{\Delta \Gamma}{2} \Delta t} - 2\Re e \left(\eta_1 \eta_2 e^{-i\Delta m \Delta t} \right) \right]$$

Assuming same final state: $\pi^+\pi^-$

24 August 2009

Decoherence parameter

- Analysed data: L=1.5 fb⁻¹ (2004-05 data)
- Fit including Δt resolution and efficiency effects + regeneration
- Γ_s , Γ_L , Δm fixed from PDG

KLOE FINAL:

$$\zeta_{00} = (1.4 \pm 9.5_{\text{STAT}} \pm 3.8_{\text{SYST}}) \times 10^{-7}$$

as CP viol.
$$O(|\eta_{+-}|^2) \sim 10^{-6}$$

=> high sensitivity to ζ_{00}

- Improvement x 2 wrt published KLOE measurement (PLB 642(2006) 315)
- From CPLEAR data $(p\overline{p})_{REST} \rightarrow K^0 \overline{K}^0$ Bertlmann et al. obtain (PR D60 (1999) 114032): $\zeta_{0\overline{0}} = 0.4 \pm 0.7$

24 August 2009

precision $O(10^{-3})$

QG induced CPTV in correlated Kaon system

In presence of decoherence and CPT violation induced by quantum gravity (CPT operator "ill-defined") the definition of the particle-antiparticle states could be modified. This in turn could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) to the kaon state [Bernabeu, et al. PRL 92 (2004) 131601, NPB744 (2006) 180]:

$$|i\rangle \propto \left(K^{0}\overline{K}^{0} - K^{0}\overline{K}^{0}\right) + \bigotimes K^{0}\overline{K}^{0} + K^{0}\overline{K}^{0}\right)$$

$$|\omega| \text{ could be at most: } \left|\omega\right|^{2} = O\left(\frac{E^{2}/M_{PLANCK}}{\Delta\Gamma}\right) \approx 10^{-5} \Rightarrow |\omega| \sim 10^{-3}$$

Fit of $I(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t,\omega)$:
KLOE FINAL: L=1.5 fb⁻¹
 $\Re \omega = \left(-1.6^{+3.0}_{-2.1STAT} \pm 0.4_{SYST}\right) \times 10^{-4}$
 $\Im \omega = \left(-1.7^{+3.3}_{-3.0STAT} \pm 1.2_{SYST}\right) \times 10^{-4}$
 $|\omega| < 1.0 \times 10^{-3}$ at 95% C.L.
-In the B system [Alvarez, Bernabeu, Nebot JHEP 0611,087]
 $-0.0084 \leq \Re \omega \leq 0.0100$ at 95% C.L.

24 August 2009

Scalars

24 August 2009

Light scalars in ϕ radiative decays Scalar structure below 1 GeV is an open point: **qq,qqqq**, **KK** molecule... BR and mass spectra of $\phi \rightarrow PP'\gamma$ sensitive to intermediate scalar meson structure At KLOE PP': EPJC49(2007)473, PLB537(2002)21 \Rightarrow f₀(980)/ σ (600) $\pi^0\pi^0$ $\pi^+\pi^- \Rightarrow f_0(980)/\sigma(600)$ PLB634(2006)148 $\eta \pi^0 \implies a_0(980)$ arXiv:0904.2539, PLB536(2002)209 $K_{s}K_{s}$ \Rightarrow f₀(980)/a₀(980) PLB679(2009)10

Phenomenological models used to describe $\phi \rightarrow S\gamma \rightarrow PP'\gamma$:

24 August 2009

24 August 2009

Search for $\phi \to K_S K_S \gamma$

KLOE PLB679(2009)10

After all cuts we are left with 5 events in data and 3.2 in MC $BR(\phi \rightarrow (f_0 + a_0)\gamma \rightarrow K^0\overline{K}^0\gamma) = \frac{UL(\mu_{sig})}{\int Ldt \cdot \sigma(e^+e^- \rightarrow \phi) \cdot \frac{1}{2} \cdot BR(K_s \rightarrow \pi^+\pi^-)^2 \cdot \epsilon}$

Selection efficiency on the signal is (24.8±0.5)%

24 August 2009

Pseudoscalars

$\eta \rightarrow \pi^+ \pi^- e^+ e^-$

Poorly measured (4 events CMD-2, 15 events CELSIUS-WASA) BR predicted by ChPT and VMD models η structure using virtual photon KLOE PLB675(2009)283 Angular asymmetry between ee and $\pi\pi$ Test of non-CKM CP violation Z Gao, Mod. Phys. Lett. A17(2002) 1583 π Within SM constrained by BR($\eta \rightarrow \pi \pi$): e Experiment: $A_{b} < 10^{-4}$ π $A_{0} \sim 10^{-15}$ Theory:

The unconventional CPV term can increase A₆ up to 10⁻²

24 August 2009

BR and Asymmetry

BR($\eta \rightarrow \pi \ ^{+}\pi \ ^{-}e^{+}e^{-}(\gamma)$) = (26.8 ± 0.9_{Stat.} ± 0.7_{Syst.}) · 10⁻⁵

24 August 2009

$\eta \rightarrow e^+ e^- e^+ e^-$

η/η' mixing

- $\phi \rightarrow \eta' \gamma$ $\eta' \rightarrow \pi^+ \pi^- \eta \quad \eta \rightarrow 3\pi^0$
- $\phi \rightarrow \eta' \gamma$ $\eta' \rightarrow \pi^0 \pi^0 \eta \eta \rightarrow \pi^+ \pi^- \pi^0$
- $\phi \rightarrow \eta \gamma$ $\eta \rightarrow 3\pi^{0}$

Allowing also for gluonium content in η' we fit the following ratios of BR:

KLOE PLB 648 (2007)

$$R_{\phi} = \frac{BR(\phi \rightarrow \eta' \gamma)}{BR(\phi \rightarrow \eta \gamma)} = 4.77 \pm 0.09 \pm 0.19$$

$$|\eta'\rangle = X_{\eta'} \frac{1}{\sqrt{2}} |u\bar{u} + d\bar{d}\rangle + Y_{\eta'}|s\bar{s}\rangle + Z_{\eta'}|glue\rangle$$
$$|\eta\rangle = \cos\varphi_{P} \frac{1}{\sqrt{2}} |u\bar{u} + d\bar{d}\rangle + \sin\varphi_{P}|s\bar{s}\rangle$$

$$\frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M2} Z_{NS} \left(\sin(\varphi_{G}) \cos(\varphi_{P}) \right)^{2} \qquad X_{\eta'} = \cos \varphi_{G} \cos \varphi_{P} \\ Y_{\eta'} = \cos \varphi_{G} \sin \varphi_{P} \\ Z_{\eta'} = \cos \varphi_{G} \sin \varphi_{P} \\ Z_{\eta'} = \sin \varphi_{G} \quad \Leftrightarrow \text{Gluonium content} \\ \frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\pi^{0} \to \gamma\gamma)} = C_{MI} \left(5\cos(\varphi_{G})\sin(\varphi_{P}) + \sqrt{2} \frac{f_{q}}{f_{s}}\cos(\varphi_{G})\cos(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}} = C_{M3} \left(Z_{NS}\sin(\varphi_{G})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{G})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}} = C_{M3} \left(Z_{NS}\sin(\varphi_{S})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{S})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}} = C_{M3} \left(Z_{NS}\sin(\varphi_{S})\cos(\varphi_{P}) + 2C_{V} Z_{S}\sin(\varphi_{S})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}} = C_{M3} \left(Z_{NS}\sin(\varphi_{S})\cos(\varphi_{S}) + 2C_{V} Z_{S}\sin(\varphi_{S})\sin(\varphi_{P}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}} = C_{M3} \left(Z_{NS}\cos(\varphi_{S}) + 2C_{V} Z_{S}\sin(\varphi_{S}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}} = C_{M3} \left(Z_{NS}\cos(\varphi_{S}) + 2C_{V} Z_{S}\sin(\varphi_{S}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}} = C_{M3} \left(Z_{NS}\cos(\varphi_{S}) + 2C_{V} Z_{S}\cos(\varphi_{S}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M3} \left(Z_{NS}\cos(\varphi_{S}) \right)^{2} \\ \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega$$

24 August 2009

Gluonium content in η'

KLOE JHEP07(2009)105

24 August 2009

Cross sections

24 August 2009

Hadronic cross section and a,,

KLOE has shown, for the first time, that it is possible to measure $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$ at fixed \sqrt{s} with high accuracy using ISR to extract $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ for \sqrt{s} from 2M_{π} to \sqrt{s}

$$s \frac{d \sigma_{\pi\pi}}{dM_{\pi\pi}^2} = \sigma_{\pi\pi}(s) \times H(s)$$

Requires precise calculations of the radiator function H(*s*) PHOKHARA MC NLO generator [EPJC27(2003)]

24 August 2009

Comparison with other measurements

24 August 2009

Future perspective KLOE-2

New DAFNE interaction scheme

New machine magnetic scheme:

Big improvement with same beam currents

Future **DATA TAKING** plans: **STEP-0**[2009]: 5fb⁻¹ γγ taggers **STEP-1**[2011]: >20fb⁻¹ with: Inner Tracker Low Angle Cal Quadrupole Cal

For more information: http://www.lnf.infn.it/kloe2

24 August 2009

24 August 2009
Physics at a Φ-factory

KLOE experiment acquire data at DA Φ NE ϕ -factory A ϕ -factory is a collider e⁺e⁻ running at $\sqrt{s} = M_{\phi}$

24 August 2009

Detector description

The KLOE experiment

Be beam pipe (0.5 mm thick) Instrumented permanent magnet quadrupoles (32 PMTs)

Drift chamber (4 m $\emptyset \times 3.3$ m) 90%He+10% IsoB, composite frame 12582 stereo sense wires

Electromagnetic calorimeter Lead/scintillating fibers 4880 PMTs

Superconducting coil (5 m bore) $B = 0.52 \text{ T} (\int B dl = 2 \text{ T} \cdot \text{m})$

DA\phi NE Best performance

DA Φ NE 24h performance in topping-up mode, december

24 August 2009

K LOng Experiment

Detector design driven by the measurement of direct CPV through the double ratio:

$$\mathsf{R} = \Gamma(K_L \to \pi^+ \pi^-) \Gamma(K_S \to \pi^0 \pi^0) /$$

 $\Gamma(K_{s} \rightarrow \pi^{+}\pi^{-}) \Gamma(K_{t} \rightarrow \pi^{0}\pi^{0})$

Collect as much possible K_L $\lambda(K_L) \sim 350 \text{ cm} \Rightarrow \text{big volume}$

Good reconstruction of the kaon decay vertex

Magnetic field value compromise: highest for PID smallest for tracking

24 August 2009

KLOE – EMC calorimeter

Physics requirements:

High discriminant power on $K^0 \rightarrow 2\pi$ and $K^0 \rightarrow 3\pi^0$ Few mm accuracy on the K neutral decays vertex

Hermetic $\sim 4\pi$

Excellent time resolution

~1 cm accuracy on the γ conversion point Fully efficient in the range 20-300 MeV

<u>"Technical solution:</u>

Fine sampling lead - scintillating fibers $(1 \text{ mm } \emptyset)$ 1 mm fibers + 0.5 mm thick lead foils fiber : lead : glue = 48 : 42 : 10 23 cm thick \rightarrow 15 X₀ 4880 PMT's 98% solid angle coverage End-caps modules C-shaped (minimize dead zones)

Lead

Scintillating

fibers

42

A. DZ scoordinatenthroughen At between the two sides

EMC Calorimeter performance

24 August 2009

KLOE – Drift Chamber

Physics requirements:

Large tracking volume (K_L decay length = 350 cm) High and uniform reconstruction efficiency Good momentum resolution High Transparency

80mm silver plated aluminium field wires 25 mm tungsten sense wires Cell size = 2×2 cm² + 3×3 cm² # layers (all stereo) = 58(12 + 46)# of channels = 12582; # of wires = 52140Stereo angle (variable) = $60 \div 150$ mrad Gas mixture : 90% He + 10% C₄H₁₀ X_0 (gas + wires) ~900 m

V us

24 August 2009

CKM unitarity: G_F universality

Universality of Weak coupling- $G_F = (g_W/M_W)^2$ $G_F^2 \equiv G_{CKM}^2 = (|V_{ud}|^2 + |V_{us}|^2) G_F^2$

 $G_F = \label{eq:GF}$ Precise determination of Vus Test of Lepton universality (Ke3 vs Km3) CKM unitary Lepton-Quark universality of weak interaction

Precise determination of Vus/Vud (Km2/pm2) Sensitivity to New Physics

Lepton Flavor violation test with Ke2/Km2

$K_{e2}/K_{\mu 2}$

24 August 2009

R_{κ} : World average World average: $R_{\mu} = 2.498(14) \times 10^{-5}$ (0.56%) $R_{\mu}^{SM} = (2.477 \pm 0.001)$ 10⁻⁵

Includes NA62 preliminary (40% data set):

 $R_{\mu} = 2.500(16) \times 10^{-5}$ (0.64%)

Sensitivity shown as 95%-CL excluded regions in the tan β - M_µ plane, for fixed values of the 1-3 slepton-mass matrix element, $\Delta_{13} = 10^{-3}, 0.5 \times 10^{-3}, 10^{-4}$

Kaon interferometry

Decoherence and CPTV from QG

Modified Liouville - von Neumann equation for the density matrix of the kaon system:

Study of time evolution of single kaons decaying in π + π - and semileptonic final state

CPLEAR PLB 364, 239 (1999)

 $\alpha = (-0.5 \pm 2.8) \times 10^{-17} \text{ GeV}$ $\beta = (2.5 \pm 2.3) \times 10^{-19} \text{ GeV}$ $\gamma = (1.1 \pm 2.5) \times 10^{-21} \text{ GeV}$

In the complete positivity hypothesis $\alpha = \gamma$, $\beta = 0$ => only one independent parameter: γ

The fit with $I(\pi^+\pi^-,\pi^+\pi^-;\Delta t,\gamma)$ gives: **KLOE FINAL** L=1.5 fb⁻¹

 $\gamma = (0.7 \pm 1.2_{STAT} \pm 0.3_{SYST}) \times 10^{-21} \text{ GeV}$

Scalars

24 August 2009

 $\phi \rightarrow f_0 \gamma$ signal selection

Event topology: **five neutral clusters** above the quadrupole region ($\theta > 22^\circ$) with **minimum energy** (7 MeV) and **proper time**.

Global **kinematic fit** (1st only general constraint - 2nd imposing the π^0 masses) used to **improve reconstruction** and to reject background (high χ^2 or m_{π^0} out of range)

Signal event counting is performed on the $M\gamma\gamma vs M\pi\pi$ dalitz distribution

 $\pi \ {}^{0}\pi \ {}^{0} \leftarrow \qquad f_{0} \rightarrow \pi \ {}^{+}\pi \ {}^{-}$ Event topology: two tracks and one cluster with minimum energy (10 MeV) and proper time. To reduce ISR contamination photon momenta at high polar angle (θ_{γ} > 45°)

Rejection of the background using the **track mass** (particle mass value obtained form \sqrt{s} value and tracks momenta)

Signal counting is performed by fitting the **invariant mass** spectrum of the **dipion system**

KLOE PLB634(2006)148

24 August 2009

A. De Santis - XIV Lomonosov Conference - Moscow

KLOE EPJC49(2007)473

$\phi \rightarrow a_0 \gamma \rightarrow \eta \pi^0$ signal selection

Two different η decays modes used:

- $\eta \rightarrow \gamma \gamma$
- $\eta \rightarrow \pi^+\pi^-\pi^0$

Event topology: **Five neutral clusters** above quadrupole region with proper **energy** (>3MeV) and **time** (<5σ_t)

Global **kinematic fit** applied and relative χ^2 used to reject background (first only general assumption – second assuming masses)

Dedicated cut on "ad-hoc" variable in background hypothesis are used especially to reject $\omega \pi^0$ and $f_0 \gamma$

Event topology: **Two charged tracks** forming a vertex around the IP and **five neutral clusters** with proper **energy** (>10 MeV) and **time** (<5σ)

Global **kinematic fit** applied and relative χ^2 used to reject background (first only general assumption – second assuming Masses)

Events with to **low photon energy** (<20 MeV) discarded

24 August 2009

KLOE Submitted to PLB

$\rightarrow a_{\rho} \gamma \rightarrow \eta \pi^{\rho}$ Data-MC comparison

Final state has: One photon from IP $(0 < E_{\gamma} < 23.8 \text{ MeV})$ Two tracks pair from IP

KLOE Submitted to PLB

Studying final state with both $K_{_S}$ in $\pi^+\pi^-$

4 tracks from IP forming 2 vertices having: $r_{vtx} < 3 \text{ cm}$ and $z_{vtx} < 8 \text{ cm}$

Both K_S invariant mass reconstructed: $(\Delta M_{K1})^2 + (\Delta M_{K2})^2 < (4 \text{ MeV})^2$

Scalar meson invariant mass: $M_{\pi\pi\pi\pi} < 1010 \text{ MeV}$

Missing mass should be zero: $|(M_{\gamma})^2| < 500 \text{ MeV}^2$

24 August 2009

A. De Santis - X

24 August 2009

Pseudoscalars

24 August 2009

A. De Santis - XIV Lomonosov Conference - Moscow

61

$\gamma\gamma$ physics

24 August 2009

Search for $e^+e^- \rightarrow X \rightarrow \pi^0\pi^0$

11 pb⁻1 @ \sqrt{s} = 1 GeV (~240 pb⁻¹ available) Fit to data using only background components χ^2 / dof = 441 / 94

Excess of events wrt known background

24 August 2009

Cross sections

24 August 2009

$$a^{\pi\pi}_{\mu} = \frac{1}{4\pi^3} \int ds \sigma(e^+e^- \to \pi^+\pi^-) K(s)$$

$$s\frac{d\sigma_{\pi\pi}}{dM_{\pi\pi}^2} = \sigma_{\pi\pi} \times H(s)$$

24 August 2009

24 August 2009

A. De Santis - XIV Lomonosov Conference - Moscow

66

Cross section as a function of the \sqrt{s} for two different final states:

Only one vertex at Interaction Point

- Only two tracks connected at vertex
- Four neutral cluster with:

 $\pi^+\pi^-\pi^0\pi^0$

- E_{clu} greater than 10 MeV
- ToF compatible with prompt γ (Tw =4σ_t)
- 22°< θ < 158°

 $\pi^0\pi^0\gamma$

- Five neutral cluster with:
 - E_{clu} greater than 7 MeV
 - ToF compatible with prompt γ (Tw =3s_τ)
 - 22°< θ < 158°

24 August 2009

$e^+e^- \rightarrow \pi^+\pi^-\gamma$ Signal definition

Small angle: $\theta_{\pi\pi} < 15^{\circ}$ or $\theta_{\pi\pi} > 165^{\circ}$ Higher cross section (21 nb vs 3 nb) Less background Kinematically limited

Large angle: 50° < θ_{γ} < 130° Higher background (FSR + $\phi \rightarrow \pi^+ \pi^- \pi^0 / f_0 \gamma$)

All M_{ππ} spectrum

24 August 2009

$e^+e^- \rightarrow \pi^+\pi^-\gamma$ Signal selection $\frac{d \sigma_{\pi \pi \gamma(\gamma)}}{dM_{\pi \pi}^{2}} = \frac{\Delta N_{Obs} - \Delta N_{Bkg}}{\Delta M_{\pi \pi}^{2}} \frac{1}{\varepsilon_{sel}} \frac{1}{\int L dt}$ Background rejection with PID using EMC info (*ee* $\gamma/\mu\mu\gamma$) and kin. cuts ($\phi \rightarrow \pi\pi\pi$) Efficiencies mostly evaluated on data with two independent methods Luminosity from Bhabha scattering events with 55°<θ<125° [EPJC47(2006)589] [Generator used for $\sigma_{\!_{eff}}\!\!:$ BABYAGA (NPB758(2006)22)]

Future perspective KLOE-2

24 August 2009

KLOE-2 Step 1 TRIPLE Cylindrical GEM

5 GEM planesMin radius: 13 cm Max radius: 25 cm $\sigma_{xy} \sim 200 \mu \text{m} \quad \sigma_z \sim 500 \,\mu \text{m}$ Material budget: 0.2 X₀ Vertex resolution @IPpirst?Cfilex3 QCAL-T

LYSO Cristal Pointing geometry LOW θ acceptance 1m cylinder 12 segment Single tile ReadOut with fiber Photon impact point

24 August 2009

CCAL-T

A. De Santis - XIV Lomonosov Conference - Moscow

Absorber