

14th Lomonosov Conference Moscow State University August 19 -25, 2009

B_s Mixing Parameters and the Search for CP Violation at CDF/DO

H. Eugene Fisk Fermilab

Motivation

- B_s System Decay Modes, etc.
- Mixing Parameter Measurements
- CP Violation : Meas. method/results
- Combination Issues/Methods
- Conclusion
- Outlook

B-physics: Where theory meets expt.

- EW symmetry breaking: determines flavor physics
 CKM matrix, CPV, & FCNC structure.
- b-quark mass, etc. theoretical calculations well adapted to b-physics : HQET, lattice gauge, and other strong symmetries.
- > B-state mass spectra: Much progress incl. lattice
- > Lifetime comparisons: (theory) (exp.)

 $\tau_{\text{B+}} \, / \tau_{\text{Bd}} \,\, = \, 1.063 \pm 0.027 \quad 1.071 \pm 0.009 \\ \text{HFAG}$

- $\tau_{Bs} / \tau_{Bd} = 1.00 \pm 0.01$ 0.939 ± 0.021 HFAG
- $\tau_{\rm Bc} = 0.52^{+0.18}_{-0.12}$ ps 0.463 ± 0.071

Neutral K, D & B mesons

Box diagrams give FCNC:

 $B_{s} \rightarrow B_{s}$ $\rightarrow B_{c}$

 $\begin{array}{cccc} K \leftrightarrow \bar{s} d & D \leftrightarrow c \bar{u} \\ \overline{K} \leftrightarrow s \bar{d} & \overline{D} \leftrightarrow \bar{c} u \end{array} \begin{array}{c} B_d \leftrightarrow \bar{b} d \\ \overline{B}_d \leftrightarrow b \bar{d} \end{array} \begin{array}{c} B_s \leftrightarrow \bar{b} s \\ \overline{B}_s \leftrightarrow b \bar{s} \end{array}$

Evolution of B_s

 $i\frac{d}{dt}\begin{pmatrix}B_{s}^{0}\\\overline{B}_{s}^{0}\end{pmatrix} = \begin{pmatrix}M-\frac{i\Gamma}{2} & M_{12}-\frac{i\Gamma_{12}}{2}\\M_{12}^{*}-\frac{i\Gamma_{12}^{*}}{2} & M-\frac{i\Gamma}{2}\end{pmatrix}\begin{pmatrix}B_{s}^{0}\\\overline{B}_{s}^{0}\end{pmatrix}$ Weak Eigenstates time evolution via the Schroginger equation. **CP Eigenstates** $|B_s^{odd}\rangle = |B_s^0\rangle + |\overline{B}_s^0\rangle, |B_s^{even}\rangle = |B_s^0\rangle - |\overline{B}_s^0\rangle$ Mass Eigenstates $|B_s^H\rangle = p|B_s^0\rangle + q|\overline{B}_s^0\rangle, |B_s^L\rangle = p|B_s^0\rangle - q|\overline{B}_s^0\rangle$ Heavy Heavy If CP is conserved in Mixing, $p = q | B_s^H \rangle = | B_s^{odd} \rangle | B_s^L \rangle = | B_s^{even} \rangle$ $\Delta m_s = M_H - M_L \approx 2 |M_{12}| = 17.77 \pm 0.12 \text{ ps}^{-1}$ Precision better than theory! $\Delta \Gamma_{s}^{CP} = \Gamma_{even} - \Gamma_{odd} \approx 2 |\Gamma_{12}|$ $\Delta \Gamma_s = \Gamma_L - \Gamma_H \approx 2 |\Gamma_{12}| \cos \phi_s$ small for B_d but not for B_s different osc. freqs. $\Gamma_{s} = \frac{\Gamma_{L} + \Gamma_{H}}{2} \quad ; \quad \overline{\tau}_{s} = \frac{1}{\Gamma} \qquad \qquad \phi_{s}^{SM} = arg \left| -\frac{M_{12}}{\Gamma_{L2}} \right| \approx 0.004 \text{ in the SM}$

Evolution of B_s

 $i\frac{d}{dt} \begin{pmatrix} B_s^0 \\ \overline{B}_s^0 \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^* - \frac{i\Gamma_{12}^*}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B_s^0 \\ \overline{B}_s^0 \end{pmatrix}$ Weak Eigenstates time evolution via the Schroginger equation. **CP Eigenstates** $|B_s^{odd}\rangle = |B_s^0\rangle + |\overline{B}_s^0\rangle, |B_s^{even}\rangle = |B_s^0\rangle - |\overline{B}_s^0\rangle$ Mass Eigenstates $|B_s^H\rangle = p|B_s^0\rangle + q|\overline{B}_s^0\rangle, |B_s^L\rangle = p|B_s^0\rangle - q|\overline{B}_s^0\rangle$ Heavy Heavy $\Delta m_{\rm s} = M_H - M_L \approx 2|M_{12}|$ Sensitive to new physics => New high-mass box diagram states. $\Delta \Gamma_{s}^{CP} = \Gamma_{even} - \Gamma_{odd} \approx 2 |\Gamma_{12}|$ Small for B_d (Cabibbo Sup) , B_s Mixing sens. $\Delta \Gamma_s = \Gamma_L - \Gamma_H \approx 2 |\Gamma_{12}| \cos \phi_s$ Very sensitive: $\phi_s \Rightarrow \phi_s + \phi_{\text{New Physics}}$ $\Gamma_{s} = \frac{\Gamma_{L} + \Gamma_{H}}{2} ; \quad \overline{\tau} = \frac{1}{\Gamma} \qquad \longrightarrow \phi_{s}^{SM} \qquad \begin{array}{c} \text{For CPV look for an imaginary} \\ \text{amplitude in a B}_{s} \text{ final state.} \end{array}$

$B_{s} = \psi(\mu^{+}\mu^{-}) + \phi(K^{+}K^{-}) \quad \phi_{s} \sim 0$

Since CP violation is expected to be small, assume no CPV, $\phi_s = 0$ and mass eigenstates are the CP eigenstates: Heavy (H, CP - odd) and Light (L, CP - even) for B_s.

The weak decay states are not flavor specific.

But, since the decay products, ϕ and J/ ψ , are vector particles the final states are CP - odd (L=1) or CP – even (L= 0, 2),

assume no CPV, $\phi_s = 0$ and mass eigenstates are the CP eigenstates: Heavy (H, CP - odd) and Light (L, CP – even) for B_s .

The weak decay states are not flavor specific.

But, since the decay products, ϕ and J/ ψ , are vector particles the final states are CP - odd (L=1) or CP – even (L= 0, 2),

J/ψ

 \bar{B}^{0}_{s}

no CP violation in B_s mixing, $\phi_s \sim 0$ Mass and CP eigenstates the same

CKM and CP Violation: B_d

$$\begin{pmatrix} \mathbf{d'} \\ \mathbf{s'} \\ \mathbf{b'} \end{pmatrix} = \begin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \\ \mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}} \\ \mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}} \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}$$

CP violation in the Standard Model appears in complex phases in the unitary CKM matrix. New physics => new phases?

Area of triangle ~ |CPV|

CPV via interference with or w/o mixing.

CKM and CP Violation: B_s

$$\begin{pmatrix} \mathbf{d'} \\ \mathbf{s'} \\ \mathbf{b'} \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}$$

CP violation in the Standard Model appears in complex phases in the unitary CKM matrix. New physics => new phases?

 $\begin{array}{ll} \mathsf{B}_{s} \text{ unitary} \\ \text{condition:} & \mathsf{V}_{us} \, \mathsf{V}_{ub}^{*} + \mathsf{V}_{cs} \, \mathsf{V}_{cb}^{*} + \mathsf{V}_{ts} \, \mathsf{V}_{tb}^{*} = \mathbf{0} \\ & \mathsf{M} \\$

 $\begin{array}{c} B_{s}^{0} \xrightarrow{\text{Tevatron}} J/\psi \phi \\ \overbrace{\text{sin } 2\beta_{s}}^{N_{i}} \overbrace{\overline{B}_{s}^{0}}^{N_{i}} \end{array}$

CPV via interference with or w/o mixing.

CKM and CP Violation: B_s

$$\begin{pmatrix} \mathbf{d'} \\ \mathbf{s'} \\ \mathbf{b'} \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}$$

CP violation in the Standard Model appears in complex phases in the unitary CKM matrix. New physics => new phases?

1

Squashed triangle

 $\begin{array}{ccc} \mathsf{B}_{s} \text{ unitary condition:} & \mathsf{V}_{us} \, \mathsf{V}_{ub}^{*} + \mathsf{V}_{cs} \, \mathsf{V}_{cb}^{*} + \mathsf{V}_{ts} \, \mathsf{V}_{tb}^{*} = \mathbf{0} & \begin{pmatrix} \mathsf{C} & & \\ & \mathsf{M} \end{pmatrix} \begin{pmatrix} \mathsf{C} & & \\ & \mathsf{M} \end{pmatrix} \overset{\mathsf{T}^{*}}{=} \begin{pmatrix} & \mathsf{I} & \end{pmatrix} \\ & & \mathsf{I} \end{pmatrix} \\ & & & \\ \begin{pmatrix} (\rho, \eta) & & \frac{\mathsf{V}_{ts} \, \mathsf{V}_{tb}^{*}}{\mathsf{V}_{cs} \, \mathsf{V}_{cb}^{*}} & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$

12

Tiny

• How might new physics affect CKM phases?

$$2\beta_{s}^{SM} = 2\arg\left[-V_{ts}V_{tb}^{*}/V_{cs}V_{cb}^{*}\right] \xrightarrow{\sim 0.04}{\rightarrow} 2\beta_{s}^{SM} - \phi_{s}^{NP}$$
$$\phi_{s}^{SM} = \arg\left[-M_{12}/\Gamma_{12}\right] \xrightarrow{\sim} \phi_{s}^{SM} + \phi_{s}^{NP}$$
$$\xrightarrow{\sim 0.004}{\sim} 0.004$$

- DØ and CDF measure the phase for CPV in $B_{s}^{\ 0}$ \rightarrow J / ψ ϕ decays.

- Use opposite-side flavor tagging to identify the initial flavor: B_s or $\overline{B}_s \longrightarrow J/\psi \phi$; tagging efficency and dilution
- Use the known value of Δm_s .

CP Violation in $B_{s} \rightarrow J/\Psi \; \phi$

 Using initial state flavor tagging and no constraints on strong phases:

Standard Model Probability = 7% ; ~1.8 σ

• Ambiguities:

$$2\beta_{s}^{J \vee \psi \phi} \rightarrow \pi - 2\beta_{s}^{J \vee \psi \phi}; \Delta \Gamma_{s} \rightarrow -\Delta \Gamma_{s}; \delta_{\parallel} \rightarrow 2\pi - \delta_{\parallel}; \delta_{\perp} \rightarrow \pi - \delta_{\perp}$$

CP Violation in $B_{s} \rightarrow J/\Psi \; \phi$

 Using initial state flavor tagging and no constraints on CDF strong phases:

Phases in Transversity Analysis $B_s \Rightarrow J/\psi \phi$ and $B_d \Rightarrow J/\psi K^*$

M. Gronau, J.L. Rosner, Phys. Lett. B669, 321 (2008): Strong phases δ_0 and $\delta_{||}$ should be equal to ~10° for B_s and B^o .

CDF/DØ: $B_s \rightarrow J/\psi \phi w/o phase constraints results and the set of the set of$

For the B_s the weak phase is $\phi_s = \arg[-M_{12}/\Gamma_{12}]$. The SM prediction for ϕ_s : $\phi_s^{SM} = 0.004$ But new physics could change this to: $\phi_s = \phi_s^{SM} + \phi_s^{NP}$. Or alternatively using the CKM triangle (α , β , γ) notation: $2\beta_s = 2\beta_s^{SM} - \phi_s^{NP}$ The relative phase between the B_s mixing amplitude and that of specific b $\rightarrow c\bar{c}s$ quark transitions such as for :

 $\overline{\mathrm{B}}^{0}_{\mathrm{s}} \text{ or } \mathrm{B}^{0}_{\mathrm{s}} \rightarrow \mathrm{J}/\psi \phi \text{ in the SM is : } 2\beta^{\mathrm{SM}}_{\mathrm{s}} = 2 \arg[-V_{ts}V^{*}_{tb}/V_{cs}V^{*}_{cb}] \approx 0.04$

Combining CDF and DO Results

If the analysis results are correct the likelihood functions in terms of: $\beta_s^{J/\psi\phi}$ and $\Delta\Gamma_s$ should demonstrate it. To verify that the derived values of β_s and $\Delta\Gamma_s$ and their errors are correct, CDF and DO separately generated 10,000 and 2,000 MC experiments, each with the number of events in their

From each generated experiment the 2-D likelihood function is determined and from that confidence levels are established. To the extent that the two histograms disagree with the Gaussian predictions (red curves) likelihoods, including systematic errors, are adjusted (next transparency).

Likelihood Adjustment Example

In the CDF example shown Here, the ensemble coverage tests indicate that a value of $2\Delta \log L = 8.42$ corresponds to the 95% CL. Since the 95% CL should be 5.99 for Gaussian errors, 8.42 is replaced with 5.99., i.e. the 95% χ^2 CL with two degrees of freedom.

Although CDF and D0 start with different coverage this procedure assures a uniform way to combine results.

CDF's $\Delta \Gamma_s vs. \beta_s^{J/\psi\phi}$ **Scans**

Interference between mixing and decay amplitudes.

CPV in Semi-leptonic B_s Decays?

$$\mathcal{A}_{SL}^{s} = \frac{N(\bar{B}_{s}^{0}(t) \rightarrow \ell^{+}\nu_{\ell}X) - N(B_{s}^{0}(t) \rightarrow \ell^{-}\bar{\nu}_{\ell}X)}{N(\bar{B}_{s}^{0}(t) \rightarrow \ell^{+}\nu_{\ell}X) + N(B_{s}^{0}(t) \rightarrow \ell^{-}\bar{\nu}_{\ell}X)} = \frac{|p/q|_{s}^{2} - |q/p|_{s}^{2}}{|p/q|_{s}^{2} + |q/p|_{s}^{2}}$$
Experimentally, fit to:
Need flavor
tagging

$$\Gamma(B_{s}^{0} \rightarrow \mu^{+}X) \propto \exp(-\Gamma_{s}t)[\cosh(\Delta\Gamma_{s}t/2) + \cos(\Delta m_{s}t)]$$

$$\Gamma(\bar{B}_{s}^{0} \rightarrow \mu^{-}X) \propto (1 + \mathcal{A}_{SL}^{s}) \exp(-\Gamma_{s}t)[\cosh(\Delta\Gamma_{s}t/2) - \cos(\Delta m_{s}t)]$$

$$\Gamma(B_{s}^{0} \rightarrow \mu^{-}X) \propto (1 - \mathcal{A}_{SL}^{s}) \exp(-\Gamma_{s}t)[\cosh(\Delta\Gamma_{s}t/2) - \cos(\Delta m_{s}t)]$$
Flavor
tagging

$$\overline{B}_{s}^{0} \rightarrow D_{s}\mu\nu$$

$$B_{s}^{0} - \overline{B}_{s}^{0} \rightarrow \frac{\mu^{-}}{V_{s}} \times K^{-}$$

$$Two decay modes$$

Two decay modes

 ϕ/K^*

S CPV in Semi-leptonic B_s Decays?

Flavor Specific B_s Lifetime DØ

The measurement consists in the evaluation of the ratio:

The data plus additional integrated luminosity will be analyzed for B_s mixing and CPV studies. http://www-cdf.fnal.gov/physics/new/bottom/090618.blessed-Bsphiphi2.9/

Conclusions

- Measurements by CDF/D0 of B_s mixing parameters: Γ_H , Γ_L , Γ_s , $\Delta\Gamma_s$ vs. β_s with good D0/CDF agreement for integrated luminosity of 2.8 fb⁻¹ (each experiment).
- Combined result for likelihood contours in $\Delta\Gamma_s$ vs. β_s show the most likely result is ~ 2σ from the SM prediction. Stay tuned!
- D0 measurement of the semi-leptonic flavor specific asymmetry for $B_s \rightarrow D_s \mu \nu X$, $\mathcal{A}_{SL}^s = -0.0017 \pm 0.0091^{+0.0012}_{-0.0023}$ This reduces the world average to $(-2.7\pm6.6)\times10^{-3}$ compared to the SM prediction of $(2.1\pm0.57)\times10^{-5}$.
- CDF has a preliminary measurement of: BR($B_s \rightarrow \phi \phi$)/ BR($B_s \rightarrow J/\psi \phi$) = (1.78 ±0.14 ± 0.20) X 10⁻² Implies a future CPV angular analysis.

Outlook

- Present integrated luminosity: 6.1fb⁻¹/6.8fb⁻¹; 2.8fb⁻¹ just reported.
- DO/CDF Fermilab have asked to run through 2011.
- Should get to 10fb⁻¹ if nothing breaks and Fermilab gets enough operating money.
- And LHC stays on a good schedule!

Comment!

Thanks to MSU and all participants for a very good meeting!

The End