BOTTOMONIUM SPECTROSCOPY AT BABAR

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov-XIV Conference Moscow (2009/08/24)

Outline

- Brief overview: BaBar Data
- Bottomonium Spectra
- Report on selected BaBar analyses of
 - Radiative transitions to the $\eta_{\rm b}({\rm 1S})$ state
 - A few hadronic transitions
 - the Y(5S)-Y(6S) scan
- Conclusions

Bottomonium Transitions

▲ Electromagnetic transitions between the levels can be calculated in the quark model → important tool in understanding the bottomonium internal structure

The Search for the η_b at BaBar

• Decays of η_b not known \rightarrow Search for η_b signal in inclusive photon spectrum

- Search for the radiative transition Y(3S) $\rightarrow \gamma \eta_{b}$ (1S)

• In c.m. frame:
$$E_{\gamma} = \frac{s - m^2}{2\sqrt{s}} \left\{ \begin{array}{l} \sqrt{s} = \text{c.m. energy} = m(Y(3S)) \\ m = m(\eta_b) \end{array} \right\}$$

For η_b mass m = 9.4 GeV/c² → monochromatic line in E_γ spectrum at 915 MeV, i.e. look for a bump near 900 MeV in inclusive photon energy spectrum from data taken at the Y(3S)

Summary of η_{b} Results

• η_b mass:

Y(3*S*) analysis: $m(\eta_b) = 9388.9^{+3.1}_{-2.3} \pm 2.7 \text{ MeV}/c^2$ Phys.Rev.Lett. 100;06200 (2008)

Y(2*S*) analysis: $m(\eta_b) = 9392.9^{+4.6}_{-4.8} \pm 1.8 \text{ MeV}/c^2$ arXiv:0903.1124 (submitted to PRL)

Hyperfine splitting:

Y(3*S*) analysis: $m(Y(1S)) - m(\eta_b) = 71.4^{+2.3}_{-3.1} \pm 2.7 \text{ MeV}/c^2$

Y(2*S*) analysis: $m(Y(1S)) - m(\eta_b) = 67.4_{-4.6}^{+4.8} \pm 1.9 \text{ MeV}/c^2$

Combined mass is m(η_b(1S)) = 9390.4± 3.1 MeV/c² resulting in a hyperfine splitting of 69.9 ± 3.1 MeV/c² Hadronic transitions between bottomonium states

$\Upsilon(mS) \rightarrow \pi\pi + \Upsilon(nS), n=1, m-1$

Hadronic transitions among heavy quarkonium states (low q^2 hadronization processes) \rightarrow excellent testing ground for non-perturbative QCD

QCDME

gluon radiation from a heavy qq bound state calculated in terms of chromoelectric and chromo-magnetic fields in analogy to electromagnetism – transitions between colorless hadrons require emission of at least two gluons

Factorization low momentum gluon emission followed by hadronization multipole picture : $2 \times E1 \Rightarrow b = \pi \pi$

Hadronic transitions between bottomonium states $\Upsilon(mS) \rightarrow \pi\pi + \Upsilon(2, 1S)$

A 11 /	$\Omega \Omega \Omega / $		1 • • .
			1100110
	/ / / / /		

BABAR P

PRD 78, 112002(2008)

		This work	PDG [12]	Prediction
$\Gamma_{ee}(2S) \times \mathcal{B}(\Upsilon(2S) \to \pi^+ \pi^- \Upsilon(1S))$	(eV)	$105.4 \pm 1.0 \pm 4.2$	115 ± 5	
$\Gamma(\Upsilon(2S) \to \eta \Upsilon(1S)) / \Gamma(\Upsilon(2S) \to \pi^+ \pi^- \Upsilon(1S))$	$(\times 10^{-3})$	< 5.2	< 11	2.5 [2]
$\Gamma_{ee}(3S) \times \mathcal{B}(\Upsilon(3S) \to \pi^+\pi^-\Upsilon(1S))$	(eV)	$18.46 {\pm} 0.27 {\pm} 0.77$	$19.8 {\pm} 1.0$	
$\Gamma(\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(2S)) / \Gamma(\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(1S))$		$0.577 {\pm} 0.026 {\pm} 0.060$	$0.63 {\pm} 0.14$	0.3 [2]
$\Gamma(\Upsilon(3S) \to \eta \Upsilon(1S)) / \Gamma(\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(1S))$	$(\times 10^{-2})$	< 1.9	< 5	1.7 [2]
$\mathcal{B}(\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S))$	$(\times 10^{-4})$	$0.800 {\pm} 0.064 {\pm} 0.027$	$0.90 \pm 0.15^{(*)}$	_
$\Gamma(\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(2S)) / \Gamma(\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S))$		$1.16 {\pm} 0.16 {\pm} 0.14$		_
$\Gamma(\Upsilon(4S) \to \eta \Upsilon(1S)) / \Gamma(\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S))$		$2.41 \pm 0.40 \pm 0.12$	_	_
$\mathcal{B}(\Upsilon(2S) \to \pi^+ \pi^- \Upsilon(1S))$	(%)	$17.22 \pm 0.17 \pm 0.75$	$18.8 {\pm} 0.6$	27 ± 2 [2]
$\mathcal{B}(\Upsilon(2S) \to \eta \Upsilon(1S))$	$(\times 10^{-4})$	< 9	< 20	8.1±0.8 [14]
$\mathcal{B}(\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(1S))$	(%)	$4.17 {\pm} 0.06 {\pm} 0.19$	$4.48 {\pm} 0.21$	3.3 ± 0.3 [2]
$\mathcal{B}(\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(2S))$	(%)	$2.40{\pm}0.10{\pm}0.26$	$2.8 {\pm} 0.6$	1.0 ± 0.1 [2]
$\mathcal{B}(\Upsilon(3S) \to \eta \Upsilon(1S))$	$(\times 10^{-4})$	< 8	< 22	$6.7{\pm}0.7$ [14]
$\mathcal{B}(\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(2S))$	$(\times 10^{-4})$	$0.86 {\pm} 0.11 {\pm} 0.07$	$0.88 \pm 0.19^{(*)}$	-
$\mathcal{B}(\Upsilon(4S) \to \eta \Upsilon(1S))$	$(\times 10^{-4})$	$1.96{\pm}0.06{\pm}0.09$	_	_

Energy Scan above the Y(4S)

Motivation

 Search for bottomonium states that do not behave as two-quark states (in analogy to Y(4260), Y(4350) and Y(4660) exotic states); such states would have a mass above the Y(4S) and below 11.2 GeV.

• Procedure

- Precision scan in \sqrt{s} from 10.54 to 11.20 GeV
 - 5 MeV steps collecting ~25 pb⁻¹ at each step (3.3 fb⁻¹ total)
 - 600 pb⁻¹ scan in energy range 10.96 to 11.10 GeV in 8 steps with unequal energy spacing (investigation of Y(6S))
- Measurement

- Inclusive hadronic cross section

$$\begin{split} R_b(s) &= \frac{\sigma_{bb(\gamma)}(s)}{\sigma^0_{\mu\mu}(s)} \\ \sigma_{bb(\gamma)} \colon \text{ cross section for } e^+e^- \to b\bar{b}(\gamma) \\ \sigma^0_{\mu\mu} &= 4\pi\alpha^2/3s \colon 0^{\text{th}} \text{ order cross section for } e^+e^- \to \mu^+\mu \end{split}$$

Summary

- First observation and confirmation of the $\eta_b(1S)$ bottomonium ground state was truly a tour de force piece of physics and unique experience for all who were intimately involved in in BaBar Run 7 and analyses of the data.
- The mass is $m(\eta_b(1S)) = 9390.4 \pm 3.1 \text{ MeV}/c^2$ and hyperfine splitting is $\Delta M_{HFS} = 69.9 \pm 3.1 \text{ MeV}/c^2$.
- Theoretical work on these numbers especially lattice QCD computations- continues but the dust has not settled.
- There are a lot of new results in hadronic transitions between the bottomonium states, but a lot more effort is needed - especially in manpower. Needless to say, theoretical predictions which are at the 10% to 20% level need to be sharpened to a few percent level. There are hints that some of the qualtitative expectations are not born out by experiment e.g. the di-pion mass spectra. Stay tuned for decays of Bottomonium to open charm etc.; for exotics and beyond SM, see Yury's talk.
- Precision scan of R_b in the energy range 10.54 < vs < 11.20 GeV yields parameters for Y(5S) and Y (6S), which differ from the PDG averages. Threshold effects remain to be understood in detail.

BACK-UP SLIDES

Figure 1: The diagram for the $e^+e^- \rightarrow \gamma_{ISR} Y(1S)$ process.

Summary of Results

Phys.Rev.Lett.100;06200 (2008)

• Signal Yield :

- Estimate of Branching Fraction (expected transition rate):

→ BF (Y(3S) $\rightarrow \gamma \eta_b$) = (4.5 ± 0.5 [stat.] ± 1.2 [syst.]) x 10⁻⁴

• Mass of the $\eta_b(1S)$:

- Peak in γ energy spectrum at $E_{\gamma} = 921.2^{+2.1}_{-2.8}$ (stat) MeV
- Corresponds to η_{b} mass
- The hyperfine (Y(1S)- $\eta_b(1S)$) splitting is

 $E_{\gamma} = 921.2^{+2.1}_{-2.8} (\text{stat}) \text{ MeV}$ 9388.9^{+3.1}_{-2.3} (stat) MeV/c² 71.4^{+2.3}_{-3.1} (stat) MeV/c²

QCD Calculations of the η_b mass and branching fraction

•Recksiegel and Sumino, Phys. Lett. B 578, 369 (2004) [hep-ph/0305178]

•Kniehl et al., PRL 92 242001 (2004) [hep-ph/0312086]

•Godfrey and Isgur, PRD 32, 189 (1985)

•Fulcher, PRD 44, 2079 (1991)

 $\sigma_V(s) = \frac{12\pi^2\Gamma_{ee}}{} \cdot W(s)$

- •Eichten and Quigg, PRD 49, 5845 (1994) [hep-ph/9402210]
- •Gupta and Johnson, PRD 53, 312 (1996) [hep-ph/9511267]
- •Ebert et al., PRD 67, 014027 (2003) [hep-ph/0210381]

•Zeng et al., PRD 52, 5229 (1995) [hep-ph/9412269]

$e^+e^- \rightarrow \gamma_{ISR}Y(1S)$ Calculations

	Calculation	$\sigma_{\Upsilon(3S)}~(\mathrm{pb})$	$\sigma_{\Upsilon(4S)}$ (pb)	Ratio	Asymmetric collider correction				
	Benayoun, et. al., 2nd order	25.4	19.8	1.283	Yes				
	Benayoun, et. al., 1st order	28.46	21.62	1.316	No				
	Benayoun, et. al., 2nd order	26.12	20.21	1.292	No				
	Blümlein, et. al., 1st order	28.46	21.62	1.316	No				
	Blümlein, et. al., 2nd order	27.02	20.46	1.320	No				
``	Blümlein, et. al., 3rd order	27.13	20.54	1.321	No				
$x_v)$	→ Production	cross section fo	$r e^+e^- \rightarrow \gamma_{ISR}$	$\Gamma(1S)$ at	$\sqrt{s} = 10.3252 \text{GeV} \ (\sigma_{\Upsilon(3S)}), \text{ produc-}$				
$x_v =$	$2E_\gamma/\sqrt{s}$ tion cross section for	$e^+e^- ightarrow \gamma_{ISR} \Upsilon$	$(1S)$ at $\sqrt{s} = 10$	$0.55\mathrm{GeV}$	$(\sigma_{\Upsilon(4S)})$, and their ratio for various				
	theoretical calculations. The assumed di-electron width of the $\Upsilon(1S)$ is 1.340 MeV.								

SUMMARY OF η_b MEASUREMENTS from Y(3S)

 $\eta_{b} = 9388.9^{+3.1}_{-2.3} \pm 2.7 \text{ MeV}/c^{2}$ Mass: $\Delta M = M(Y(1S)) - M(\eta_b)$: 71.4^{+2.3}₋₃₁ ± 2.7 MeV/c² A. Gray et al., Phys. Rev. D 72, 094507(2005) (L QCD) $\Lambda M = 61 + - 14 MeV/c^2$ +/- 4 MeV/c² lattice spacing: ٠ QCD radiative corrections: +/- 12 MeV/c² relativistic corrections: +/- 6 MeV/c² S. Godfrey and N. Isgur, Phys. Rev. D 32, 189(1985) $\Delta M = 60 \text{ MeV/c}^2$ (Relativized Quark Model with Chromodynamics)

Estimated BF(Y(3S) $\rightarrow \gamma \eta_b$) = (4.8 ± 0.5 ± 1.2)×10⁻⁴

cf. upper limit on B.F. < 4.3 x 10⁻⁴ @ 90% [CLEO III]

	M(PDG) (GeV/c²)	Transition	BF	E*(γ) (GeV)		Transition	BF	E*(γ) (GeV)				BF	E*(γ) (GeV)
Y(3S)	10.3552					Y(3S)->Y(2S)	10.60%						
Y(2S)	10.0233	$ee(@Y3S) \rightarrow \gamma Y(2S)$	0.001%	0.3266									
Y(1S)	9.4603	$ee(@Y3S) \rightarrow \gamma Y(1S)$		0.8562									
χ _{b2} (2P)	10.2687	$Y(3S) \rightarrow \gamma \chi_{b2}(2P)$	13.1%	0.0862	→	$\chi_{b2}(2P) \rightarrow \gamma Y(2S)$	0.0212%	0.2425	→	Y(2S) →	γ χ _{b2} (1P)	0.758%	0.1104
χ _{b1} (2P)	10.2555	$Y(3S) \rightarrow \gamma \chi_{b1}(2P)$	12.6%	0.0993	→	$\chi_{b1}(2P) \rightarrow \gamma Y(2S)$	0.0204%	0.2296	→	Y(2S) →	γ χ _{b1} (1P)	0.731%	0.1296
χ _{b0} (2P)	10.2325	$Y(3S) \rightarrow \gamma \chi_{b0}(2P)$	5.9%	0.1220	→	$\chi_{b0}(2P) \rightarrow \gamma Y(2S)$	0.0096%	0.2071	→	Y(2S) →	γ χ _{b0} (1P) (0.403%	0.1625
χ _{b2} (1P)	9.9122	$Y(3S) \rightarrow \gamma \chi_{b2}(1P)$	(0.4335	→	$\chi_{b2}(1P) \rightarrow \gamma Y(1S)$	0.0005%	0.4416					
χ _{b1} (1P)	9.8928	$Y(3S) \rightarrow \gamma \chi_{b1}(1P)$	(0.4521	→	$\chi_{b1}(1P) \rightarrow \gamma Y(1S)$	0.0005%	0.4238					
χ _{b0} (1P)	9.8594	$Y(3S) \rightarrow \gamma \chi_{b0}(1P)$	0.003%	0.4839	÷	$\chi_{b0}(1P) \rightarrow \gamma Y(1S)$	0.0004%	0.3911					
η _b (1S)	9.3889	$Y(3S) \to \gamma \eta_b(1S)$		0.9212									
η _b (2S)	9.9633	$Y(3S) \rightarrow \gamma \eta_b(2S)$		0.3845	→	$\eta_b(2S) \rightarrow \gamma Y(1S)$		0.4903		-	,		

Hadronic transitions between bottomonium states

"... for the first 22 years after the observation of hadronic transitions among bottomonium states only 6 $\pi\pi$ transitions among the vector Y(nS) bottomonia were known..."

Recently...

CLEO observed

 $\chi_{b1,2}$ (2P) → ω Y(1S) PRL92,222002(2004) $\chi_b(2P) \rightarrow ππ\chi_b(1P)$ PRD73, 012003(2006) Y(2S) → η Y(1S) PRL101, 192001(2008)

BABAR reported extensive measurements of hadronic transitions between Y states using, in particular, bottomonium states Y(3S) and Y(2S) produced via ISR from Y(4S) on-peak recorded data PRD78, 112002(2008) & PRL96, 232001(2006)

Hadronic transitions between bottomonium states $\Upsilon(mS) \rightarrow \pi\pi + \Upsilon(2, 1S)$

BABAR PRL96, 232001(2006)

$230 \ge 10^6 \Upsilon(4S)$

use $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(nS)$ (n=1,2) by reconstructing $\Upsilon(nS)$ meson via its leptonic decay to $\mu^+\mu^-$ and look at $\mu^+\mu^-$ invariant mass $M_{\mu\mu}$ and invariant mass difference $\Delta M = M_{\pi\pi\mu\mu} - M_{\mu\mu}$ compatible with $M(\Upsilon(4S)) - M(\Upsilon(nS))$

Hadronic transitions between bottomonium states $\Upsilon(mS) \rightarrow \pi \pi / \eta / \pi^0 + \Upsilon(nS)$								
Branching Fractions %	BaBar PRD78, 112002(2008) PRL96, 232001(2006)		Belle PRD(RC)79,051103(2009,)	CLEO PRD79, 011103(2009) PRL101, 192001(2008)			
$\begin{split} \Upsilon(2S) & \rightarrow \pi^+ \pi^- \Upsilon(1S) \\ \Upsilon(2S) & \rightarrow \pi^0 \pi^0 \Upsilon(1S) \\ \Upsilon(2S) & \rightarrow \eta \Upsilon(1S) \\ \Upsilon(2S) & \rightarrow \pi^0 \Upsilon(1S) \end{split}$	17.22±0.17±0.75 <9 x 10 ⁻²				$18.02 \pm 0.02 \pm 0.61$ 8.43 \pm 0.16 \pm 0.42 2.1^{+0.7}_{-0.6} \pm 0.3 <1.8 x 10^{-2}			
$Y(3S) \rightarrow \pi^{+}\pi^{-}Y(1S)$ $Y(3S) \rightarrow \pi^{0}\pi^{0}Y(1S)$ $Y(3S) \rightarrow \eta Y(1S)$ $Y(3S) \rightarrow \pi^{0} Y(1S)$	4.17±0.06±0.19 <8 x 10 ⁻²				4.46±0.01±0.13 2.24±0.09±0.11 <1.8 x 10 ⁻² <0.7 x 10 ⁻²			
$Y(3S) \rightarrow \pi^{+}\pi^{-}Y(2S)$ $Y(3S) \rightarrow \pi^{0}\pi^{0}Y(2S)$ $Y(3S) \rightarrow \pi^{0}Y(2S)$ $Y(4S) \rightarrow \pi^{+}\pi^{-}Y(1S)$	$2.40 \pm 0.10 \pm 0.26$ (0.90 \pm 0.15) x 10 ⁻²		(0.85±0.12±0.06) x 10 ⁻²		1.82±0.09±0.12 <5.1 x 10 ⁻²			
Υ(4S) → ηΥ(1S) Υ(4S) → π+π-Υ(2S)	(1.96±0.06±0.09) x 10 ⁻² (0.86±0.11±0.07) x 10 ⁻²							