

Semileptonic *B* decays at *BaBar*

On behalf of the BaBar collaboration

Michael Sigamani

14th Lomonosov Conference on Elementary Particle physics August 19th-25th, 2009

Outline

- Introduction
- Inclusive semileptonic *B* decays
 - Measurements of moments of the hadronic mass, and combined hadronic mass and energy distribution from $B \rightarrow X_c l \nu$
 - Measurements of moments of the unfolded hadronic mass distribution from $B \rightarrow X_u l v$
 - Inclusive results
- Exclusive semileptonic *B* decays
 - $|V_{cb}|$ and Form Factors from $B \rightarrow D l \nu$ (tagged measurement)
 - $|V_{cb}|$ and Form Factors from $B \rightarrow D^{(*)} l \nu$ (untagged measurement)
 - Exclusive results
- Conclusion

Introduction

Semileptonic $B \rightarrow X_{c(u)} l \vee$ decays provide a clean environment for studies on the *b* quark inside the *B* meson.

As well as a method for measuring CKM elements $|V_{ub}|, |V_{cb}|$

Can be split into two distinct groups

HQE calculates the relation between the total rate $\Gamma_{c(u)}$ and $|V_{c(u)b}|$ $\Gamma(B \rightarrow X_{c(u)} l \nu) = \frac{G^2_F}{192\pi^3} m_B^5 |V_{c(u)b}|^2 (1 + A_{ew}) A^{pert} A^{nonpert}$

- Non perturbative parameters need to be measured precisely in order to extract $|V_{ub}|$ and $|V_{cb}|$ precisely.
 - Kinetic energy of *b* quark, $\boldsymbol{\mu}_{\pi}^{2}$;
 - Chromomagnetic moment, μ_{G}^{2} ;
 - Higher order terms: $\rho_{\rm LS}^{3}$, $\rho_{\rm D}^{3}$.
- Moments have a sensitivity to these quark masses and same non-perturbative parameters
 - Use moments for hadronic mass $< m_X^k >$, lepton energy $< E_l^k >$, and mixed moments

Inclusive semileptonic

- Lepton moments
- Hadronic mass moments

$$\left\langle E_{l}^{n}\right\rangle = N \int (E_{l} - \left\langle E_{l}\right\rangle)^{n} \left(\frac{d\Gamma_{c(u)}}{dE_{l}}\right) dE_{l}$$

$$\left\langle m_X^n \right\rangle = N \int m_X^n \left(\frac{d\Gamma_{c(u)}}{dm_X} \right) dm_X$$

• **Mixed moments** Give a more precise determination of higher order non-perturbative parameters

$$n_X^2 = m_X^2 - 2\Lambda E_X + \Lambda^2$$
$$\Lambda = 0.65 GeV$$

- Translations from moments to non-perturbative parameters available in kinetic and 1S schemes
 - All results in this presentation are calculated in the kinetic scheme

Moments from $B \rightarrow X_c / V$

230 million BB events

0908.2670 [hep-ex] (submitted to PRD)

- Tagged side
 - Fully reconstruct one *B* meson
- Recoil side
 - Select lepton with $p_l^* > 0.8 \text{ GeV/c}$ $(l = e, \mu)$
 - Missing mass consistent with neutrino
 - Remaining particles form X_c system
 - Improve resolution with kinematic fit

Residual background

- $B \rightarrow X_u \, l \, \mathbf{v}$ decays
- Secondary semileptonic *D* decays
- Semileptonic τ decays
- Leptons from $J/\Psi \rightarrow 1\overline{1}$
- Combinatorial background
- BB background
 - $e^+e^- \rightarrow c \ \overline{c} \ \text{or} \ \overline{l} \ \overline{l}$

 π^{+}

Moments measured as lower limits on p_l^* (0.8 - 1.9 GeV) Moments from $B \rightarrow X_c / V$

unmeasured/missing particles

Moments from $B \rightarrow X_c / V$

• Perform combined χ^2 fit in kinetic scheme:

- Hadronic mass moments/mixed moments;
- Lepton energy moments in $B \rightarrow X_c l \nu$;
- Photon energy moments in $B \rightarrow X_s \gamma$;
- Fit on subsets of measurements to reduce correlation
- Uneven mass/mixed moments not used to provide an unbiased comparison with fitted HQE prediction
- 8 fit parameters:

•
$$|V_{cb}|, m_b, m_c, BF(B \rightarrow X_c l \vee), \mu_{\pi^2}, \mu_{G^2}, \rho_{LS}^3, \rho_{D^3}$$

Additionally:

•	$\tau_{B} = (1.585 \pm 0.007) \times 10^{-12} \text{ s}$	(B lifetime) Input parameter
•	$\mu_G^2 = (0.35 \pm 0.07) \mathrm{GeV^2}$	Constraint
•	$\rho_{LS}^{\ \ 3} = (-0.15 \pm 0.10) \text{ GeV}^3$	Constraint

Semileptonic B decays at BaBar – Michael Sigamani

24th August 2009

8

Moments from $B \rightarrow X_{\mu} / V$

- **Tagged side**
 - Fully reconstruct one B meson

Recoil side ٠

- Select lepton with $p_1^* > 1.0 \text{ GeV/c} (l = e, \mu)$
- Remaining particles form X_{μ} system
- Missing mass consistent with neutrino
- Veto K^{\pm} , K_{S} and partially reconstructed D^{*}
- Large $B \rightarrow X_c / V$ background
 - Subtract using a X^2 fit to the hadronic mass spectrum (a)

ັ⇒2500 ອ

Events / 0.8 1500

1000

500

383 million BB events

 $B \rightarrow X \downarrow v$

B->X.Iv

Other

Data

BABAR

10

preliminary

(a)

m_x² / GeV²

*FPCP

Results from B	$\rightarrow X_c / v \text{ and } B$	$\rightarrow X_{\mu} / V$ moments	analyses
-----------------------	--------------------------------------	-----------------------------------	----------

	V _{cb} x 10 ³	m _₀ [GeV]	m _c [GeV]	μ_{π}^{2} [GeV ²]
mass moments	42.05 ± 0.83	4.549 ± 0.049	1.077 ± 0.074	0.476±0.063
mixed moments	41.91±0.85	4.566 ± 0.053	1.101 ± 0.078	0.452±0.069
B→X _u Iv moments		4.604 ± 0.250		0.398±0.240
HFAG (Winter 2009)*	41.54±0.73	4.620 ± 0.035	1.190 ± 0.052	0.424±0.042
BELLE 2008 [Phys.Rev. D78,032016]	41.58±0.90	4.543±0.075	1.055 ± 0.118	0.539±0.079

- Good agreement of results from mixed and mass moments
- Good agreement of results with the HFAG world average
- Good agreement for $B \rightarrow X_c / v$ and $B \rightarrow X_u / v$ results

Exclusive semileptonic

HQET calculates the relation between the total rate Γ and $|V_{cb}| G^2(w)$ $\frac{d\Gamma}{dw}(D) = \frac{G^2_F}{48\pi^3} (m_B + m_D) 2m_D^3 (w^2 - 1)^{3/2} |V_{cb}| G^2(w)$

- $G^{2}(w)$ is the only relevant form factor (FF) in null lepton mass limit.

$$w = V_B \cdot V_D = \frac{(M_B^2 + M_D^2 - q^2)}{2M_B M_D}$$

- (D meson produced at rest) $1.0 \le w \le 1.6$ (D momentum opposite to W)
- HQET expansion of FF (Caprini el al. parameterization: Nucl.Phys.B530 (1998),153) $G(w) = G(1)[1 - 8\rho^2 z + (51\rho^2 - 10)z - (252\rho^2 - 84)z^3]$ $z = \frac{\sqrt{2}}{2}$

$$z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

• Slope of G(w) at w=1, ρ^2 is extracted with fit along with $G(1) | V_{cb} |$

Tagged $B \rightarrow D / V$

0904.4063 [hep-ex] (submitted to PRL)

• Tagged side

- Fully reconstruct one B meson

• Recoil side

- Select lepton with $p_1^* > 0.6 \text{ GeV/c}$ ($l = e, \mu$)
- Reconstruct D^{θ} (9 final states)
- Reconstruct D^+ (7 final states)
- Identify semileptonic *B* decays from the missing mass squared

$$m^{2}_{miss} = [p(Y(4S)) - p(B_{tag}) - p(D) - p(\ell)]^{2}$$

- Extract $B \rightarrow D l \nu$ for each bin of w using a binned maximum likelihood fit to m_{miss}^2
 - 10 bins of w
 - -1.0 < w < 1.6

460 million BB events

Tagged $B \rightarrow D / v$

Use χ^2 fit to *w* spectrum to calculate $G(1) | V_{cb} |$ and ρ^2

	$B^- \rightarrow D^0 \ell^- \bar{\nu}_\ell$	$\overline{B}{}^0 \rightarrow D^+ \ell^- \bar{\nu}_{\ell}$
$G(1) V_{cb} \cdot 10^3$	$41.0\pm2.1\pm1.3$	$44.9 \pm 3.2 \pm 1.6$
ρ^2	$1.14 \pm 0.11 \pm 0.04$	$1.29 \pm 0.14 \pm 0.05$
$\rho_{\rm corr}$	0.943	0.950
χ^2/ndf	3.4/8	5.6/8
Signal Yield	2147 ± 69	1108 ± 45
Recon. efficiency	$(1.99 \pm 0.02) \times 10^{-4}$	$(1.09 \pm 0.02) \times 10^{-4}$
B	$(2.29 \pm 0.08 \pm 0.09)\%$	$(2.21 \pm 0.11 \pm 0.11)\%$

Combined results

Untagged $B \rightarrow D^{(*)} / V$

PRD79, 012002 (2009)

230 million BB events

Untagged $B \rightarrow D^{(*)} / v$

		Parame	ters	comb	ined result
• E	Result from combined fit	$ ho_D^2$		$1.20 \pm$	0.04 ± 0.07
t: s	trom electron and muon	$ ho_{D^*}^2$		$1.22 \pm$	0.02 ± 0.07
5		$\mathcal{B}(D^0\ell\overline{\nu}$)(%)	$2.34 \pm$	0.03 ± 0.13
• F	$BR(B^0)$ obtained from	$\mathcal{B}(D^{*0}\ell)$	刃)(%)	$5.40 \pm$	0.02 ± 0.21
lifetime ratio.		$\chi^2/\text{n.d.}$	f. (probability) 2.2/	/4 (0.71)
	D: $G(1) V_{cb} $	=	$(43.1 \pm 0.8 \pm 2.3)$	$(3) \times 10^{-3}$)
(5.5% error) – Mainly systematics					
	\mathbf{D}^* $\mathbf{D}(t) + \mathbf{U} +$	_	(25.0.1.0.0.1.1.6	$\sim 10^3$	
	$\mathbf{D}: \mathbf{F}(I) \mid \mathbf{V}_{cb} \mid$	=	$(35.9 \pm 0.2 \pm 1.2)$	$() \times 10^{-5}$	/

• Consistent with existing measurements.

Theory Validation

- $G(1)/F(1) = 1.20 \pm 0.09$ agrees well with lattice computation (1.17 ± 0.04).
- Slope difference $\rho_{D^2} \rho_{D^*}^2 = 0$. Consistent with prediction.

Summary of exclusive results

• Presented are inclusive measurements of:

- The first six moments of hadronic mass spectrum for $B \rightarrow X_c l v$
- The first measurements of mixed hadronic moments $< n_x^k > k = 2, 4, 6$
- Moments from the unfolded mass spectrum in $B \rightarrow X_u l v$
- Good consistency between measured parameters from both moments analyses

• Presented are exclusive measurements of:

- $G(1)|V_{cb}|$ from $B \rightarrow D/\nu$ using tagged and untagged sample.
- Combined measurements of $\left| \mathbf{V}_{cb} \right|$ are compatible with existing measurements
- Recent BaBar results have improved total error on world average of $G(1)\,|\,V_{cb}\,|~(4\%)$
- Inclusive $|V_{cb}|$ is at currently at 2%

END

BACKUP SLIDES

Overview of the BaBar experiment

Measurement of the partial branching fraction for B->Xulv and the determination of |Vub| 6th April 2009

As of 2008/04/11 00:00

20

Motivation

CP Violation is accounted for in the SM using $V_{\mbox{\tiny CKM}.}$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Appears as complex phase in

Unitarity of V_{CKM} gives rise to various relations such as: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Measurement of the partial branching fraction for B->Xulv and the determination of |Vub|

6th April 2009

Calibration

To extract moments additional corrections are applied which distort m_X spectrum

- Correct fitted $< m_X^k >$ by:

 - Then apply correction factors on an event by event basis

Other moments measurements

