ATLAS Discovery Potential of the Standard Model Higgs Boson

> Christian Weiser University of Freiburg

(on behalf of the ATLAS Collaboration)

14th Lomonosov Conference on Elementary Particle Physics Moscow, August 2009

Content

- Introduction
- Higgs search channels in ATLAS
 - $H \rightarrow \gamma \gamma$
 - VBF $H\to\tau\tau$
 - $H \rightarrow bb$
 - H \rightarrow ZZ
 - $H \rightarrow WW$
- Combined sensitivity
- Summary

What do we already know?

• Direct searches at LEP

 $M_{H} > 114.4 \ GeV/c^{2}$ (95% CL)

• Direct searches at the TEVATRON

Exclude 160 GeV/ $c^2 < M_H < 170 GeV/c^2$ (95% CL)

• electroweak precision measurements

$$M_H$$
 < 163 GeV/c² (95% CL)
(191 GeV/c² incl. LEP Limit)

3

C.Weiser

ATLAS SM Higgs

Higgs Boson Production

Higgs Boson Decays

Search Channels

For low mass: Combination of large production cross section (gg-fusion) and large BR (H->bb) does not work because of QCD background

Higgs Studies in ATLAS

- Studies presented here:
- Realistic (at least we believe ...) GEANT4 based detector description simulation
- Real reconstruction algorithms
- Trigger simulation
- Effects of additional minimum bias events (Pile-Up), misalignment etc. studied
- Improved generators (NLO etc.)
- Background estimation from data in many cases

```
For all details see CERN-OPEN-2008-020
```

Focus in this talk: Discovery potential in the low and medium mass range (mH ≤ 200 GeV) @ ∫s = 14 TeV

To be (re)studied: Parameter determination (Mass, Spin, CP, Couplings,) Heavy Higgs bosons

$H \rightarrow \gamma \gamma$

No direct coupling tiny BR (≈‰) σ x BR ≈< 100 fb

Backgrounds:

- Irreducible γγ(+X)
 (σ ≈ 30 pb for p_{T,γ}>25 GeV, |η|<2.5
 80 GeV < m_y < 150 GeV)
- Reducible γ+jet, jet+jet

 (γj: σ ≈ 180 nb for p_{T,γ}>25 GeV
 jj: σ ≈ 480 µb for p_T>25 GeV)

Need excellent

- Photon identification
- Photon-jet separation
- Mass resolution

≈ 50% of events:
 at least 1 photon conversion
 → reconstruct from e⁺, e⁻ tracks
 in Inner Detector

14th Lomonosov Conference, Moscow

$H \rightarrow \gamma \gamma$

Inclusive (ask for photons only) analysis:

$\gamma\gamma$ + 1,2 jet analyses (enhance VBF):

10 fb⁻¹

24/8/2009

9

Vector Boson Fusion qqH, $H \rightarrow \tau \tau$

Signature of Vector Boson Fusion (VBF) Production process:

- Two hard forward/backward "Tagging Jets" with large rapidity gap and high invariant mass
- Jet activity suppressed in central part of the detector → Central Jet Veto
- Large discrepancies between generators

Main Backgrounds: • $Z (\rightarrow \tau\tau) + jets$ • $W (\rightarrow \tau\nu) + jets$

• ++

Vector Boson Fusion qqH, $H \rightarrow \tau \tau$

14th Lomonosov Conference, Moscow

\vec{p}_2^{vis} T decay channels: • Lepton-lepton (II) • Lepton-hadron (lh) \vec{p}_2^{ν} • [Hadron-hadron (hh)] Н.-p_{T,miss} \vec{p}_1^{ν} >₀14 ປັ ATLAS \vec{p}_1^{vis} Events / (5 0 12 8 VBF H(120)→ττ→lh $\sqrt{s} = 14 \text{ TeV}, 30 \text{ fb}^1$ Dominating 8 Background 6 $Z \rightarrow \tau \tau$: Estimate on data 4 **from** $Z \rightarrow \mu\mu$ 2 events with $\mu \rightarrow \tau$ transformation 60 80 100 120 140 160 180 m_{ττ} (GeV)

Invariant mass computation: (> 1 neutrino in final state) "Collinear Approximation" (Crucial: MET resolution)

hadron-hadron final state:
No reliable estimate of QCD
background without data
→ No expected significance quoted

24/8/2009

11

$H \rightarrow bb$

The most important channels at the TEVATRON at low mass!

But: Signal to background ratio less favourable at the LHC

Follow idea of J.Butterworth et al. [PRL 100:242001,2008]:

Select events ($\approx 5\%$ of cross section), in which H und W bosons have large transverse momenta: $p_{\tau} > 200 \text{ GeV}$

W/ZH

ATL-PHYS-PUB-2009-088

C.Weiser ATLAS SM Higgs

14th Lomonosov Conference, Moscow 24/8/2009 14

$H \rightarrow ZZ$

$H \rightarrow ZZ$

$H \rightarrow WW$

- Accessible for dominant production process (gg fusion) AND decay mode (m_{μ} > 135 GeV)
- Final state considered: $H \rightarrow WW \rightarrow ev\mu v$
- Two analyses: + 0 jet (gg fusion), +2 jets (vector boson fusion)
- 2 neutrinos \rightarrow no mass peak reconstructable, only transverse mass
- Use angular correlation between leptons:

Fit transverse mass and transverse momentum of The WW system in $\Delta \Phi$ signal and control regions

C.Weiser ATLA

ATLAS SM Higgs

14th Lomonosov Conference, Moscow

24/8/2009 17

Combined Discovery Potential

• 5 σ discovery seems possible with 10 fb⁻¹ for m_u > 127 GeV

• Adding the W/Z H, H \rightarrow bb channel will improve situation for low masses

Exclusion

Combined Exclusion CL

2 fb⁻¹ to exclude m_{μ} > 115 GeV @ 95% CL

C.Weiser ATLAS SM Higgs 14th Lomonosov Conference, Moscow 24/8/2009 19

Conclusions

- Much more realistic detector simulations, Monte Carlo generators, reconstruction tools etc. have improved the quality of the predictions for ATLAS Higgs boson searches significantly
- Strong effort has been put in studying data driven methods to become less dependent on Monte Carlo generators
- A discovery (or exclusion) should be possible over the full mass range from 115 GeV - 1 TeV
- However, the low mass region (just above the LEP limit) is very challenging and several channels may contribute