

Searches for Physics beyond the Standard Model

Andrey Shchukin (IHEP) on behalf of the D0 and CDF collaborations

14th Lomonosov Conference on Elementary Particle Physics. August 25, 2009. Moscow.

Tevatron collider

 $P\overline{P}$ collider which provides the highest energy at present: 1.96 TeV Hosts two multi-purpose HEP detectors: D0 and CDF

Operates with excellent performance

Run II Data

Since the beginning of Run II The Tevatron has delivered ~7 fb⁻¹ of integrated luminosity and growing!

D0 and CDF detectors

Typical acceptance values for the detectors:

D0	

Muons	η <2
Electrons	η <3
Silicon tracker	η <3

CDFMuons $|\eta| < 2$ Electrons $|\eta| < 1.5$ Silicon tracker $|\eta| < 2$

New physics searches

-A lot of interesting results!

- Total number of published results is ~80!
- This review will focus on the latest results
- The detailed information about the results and publications can be found at:

http://www-cdf.fnal.gov/physics/exotic/exotic.html (CDF)

http://www-d0.fnal.gov/Run2Physics/np (D0)

High mass resonances

- High mass resonances are sensitive to new physics

Z', Randall-Sundrum graviton

-Two recent CDF searches using *ee* and $\mu\mu$ final states with 2.5 and 2.3 fb⁻¹ respectively.

ee: Phys. Rev. Lett. 102, 031801 (2009),

μμ: Phys. Rev. Lett. 102, 091805 (2009).

ee inv. mass

High mass resonances

Spin 1: SM coupling Z' < 966 GeV (ee) and <1030 GeV ($\mu\mu$) excluded;

Randall-Sundrum Gravitons

5th extra dimension with warped geometry; Gravity is localized on brane other than SM KK excitation have spacing of order of TeV

Signature: narrow high masses resonances Two model parameters: Mass and coupling (k/M_{pl})

Latest CDF results in µµ and ee excludes M < 921 GeV and M<850 GeV respectively (for k/M_{pl}=0.1)

A. Shchukin. 14th Lomonosov Conference on Elementary Particle Physics. 08/25/2009.

95% C.L. Limits on $\sigma imes$ BR(G* $ightarrow \mu \overline{\mu}$) (pb)

10⁻¹

10⁻²

Search for b' quark

Search for b' quark

b' mass < 326 GeV and b'+T_{5/3} mass < 352 GeV excluded at 95% CL

Leptoquarks

Leptoquarks are exotic particles that have color, electric charge, lepton and baryon numbers and appear in extended gauge theories and composite models.

- exist in various extensions of Standard Model;
- would come in 3 different generations corresponding to the three quark and lepton generations;
- can be either scalar or vector particles.

At the Tevatron, leptoquarks pairs would be produced mainly through qq annihilation or gg fusion with identical leading order production cross sections.

Leptoquarks

D0. <u>http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/NP/N68/</u> - 4 fb⁻¹

Search for final state with missing ET from neutrinos and two acoplanar b-jets from leptoquark. b-tagging is used to reduce SM background

Leptoquarks

3 events remain in the data compared to an expected 3.2±0.3±0.6 events from background processes. New cross section limit is set.

Large Extra Dimensions (LED)

Possible solution to hierarchy problem

Arkani-Hamed, Dimopoulos, Dvali model (ADD)

- gravity propagates to n extra spatial dimensions;
- gives massive stable Kaluza-Klein gravitons G_{KK} ;
- can explain why gravity is weak: $1/G \sim M_{Pl}^2 \sim M^{n+2} R^n$

Signatures:

Real graviton

- high E_T single photon + missing E_T

- monojet + missing E_T

Virtual graviton

- high mass pair resonance: ee, $\mu\mu$, $\gamma\gamma$

$\mathsf{LED} \, \mathbf{\gamma} + \mathbf{MET}$

CDF. PRL 101:181602 (2008)

A. Shchukin. 14th Lomonosov Conference on Elementary Particle Physics. 08/25/2009.

$\mathsf{LED} \, \mathbf{\gamma} + \mathbf{MET}$

D0 2.7 fb⁻¹

D0. http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/NP/N63/N63.pdf

Data selection: Photon $E_{\tau} > 90$ GeV;

Missing $E_T > 70$ GeV; No jets with $E_T > 15$ GeV; No tracks with $P_T > 10$ GeV EM shower points to PV

At 95% CL the limits on the fundamental mass scale M_D are set from 970 GeV to 816 GeV for two to eight extra dimensions

SUperSYmmetry searches

- Spin-based symmetry between fermions and bosons
- Can be a solution to many outstanding problems
 - Provides a natural solution to the hierarchy problem
 - Allows to unify gauge couplings at GUT scale
 - Provides a dark matter candidate (R = (-1)^{3(B-L)+2s})
 - No SuperPartners are seen: SUSY is broken

Stop searches

-Lightest stop might be lighter than top quark, it leads to interesting decay modes

- Final state signature (R-parity): 2 leptons, 2 b-jets, MET
 Main background ttbar production
- Challenge can be potentially soft jets (leptons)

D0. PLB 675, 289 (2009) *eμ, μμ*

CDF. http://www-cdf.fnal.gov/physics/exotic/r2a/20090319.stop_dilepton/cdf9775_stop_in_dilep_pub.pdf *eµ*, *µµ*,*ee*

A. Shchukin. 14th Lomonosov Conference on Elementary Particle Physics. 08/25/2009.

Stop searches

CDF 2.7 fb⁻¹

CDF. http://www-cdf.fnal.gov/physics/new/top/2008/tprop/Stop/images2_7InvFb_may20_09/stopDilPublicNote_may20_09.pdf

b-tagging is used

- Good agreement between data and SM is observed.

Trileptons

- Assuming R-parity supersimmetry can be discovered in trilepton final state and missing ET
- Clean signature
- -Largest source of background are diboson processes
- Leptons can be soft and depend on Δm

Trileptons

CDF. http://www-cdf.fnal.gov/physics/exotic/r2a/20090521.trilepton_3fb/cdf9817_susy_trilep_pub.pdf - 3.2 fb⁻¹ D0. http://www-d0.fnal.gov/Run2Physics/WWW/results/final/NP/N09A/N09A.pdf - 2.3 fb⁻¹

CDF		D0			
 5 categories of leptons and tracks combinations p_T thresholds 5-20 GeV MET > 20 GeV 		 Combination of μμl, μτl, eμl, μττ, and eel Optimization of high-pT and low-pT criteria MET > 20 GeV 			
	Background	Data		Background	Data
Trilepton Lepton+Track	1.5±0.2 9.4±1.4	1 6	Low-pT High-pT	5.4±0.6 3.3±0.4	9 4

No evidence for SUSY is observed

Trileptons

D0

CDF

22

Search for $\widetilde{\nu}_{\tau}$

If R-parity is not conserved then single production of super partner is possible

Search for isolated high p_T lepton pairs

Assume $\tilde{\nu}_{\tau}$ is LSP Assume all RPV couplings are zero except λ'_{311} , $\lambda_{321} = \lambda_{312}$ Latest D0 result uses 4.1 fb⁻¹ data

Search for $\widetilde{\nu}_{\tau}$

D0. <u>http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/NP/N64/N64.pdf</u> - 4.1 fb⁻¹

SUSY with Hidden Valleys

SUSY with Hidden Valleys is important class of Hidden Valleys models

- Motivated by recent results from PAMELA, ATIC, EGRET, HESS, Fermi/LAT
- Many phenomenological problems can be explained

- If R-parity is conserved superpartners are produced in pairs and decay to the SM particles and the lightest superpartner

Very distinct final state which never was explored:

- -Missing E_{T} (from darkino)
- Photon
- Two spatially close leptons

SUSY with Hidden Valleys

D0. PRL 103, 081802 (2009) - 4.1 fb⁻¹

Major sources of background are:

- QCD events with real or fake photons and mismeasured MET. These contain jets or photon conversions faking the dark photon

- W $\rightarrow lv$ plus real or fake photon. The dark photon is faked by a accidental overlap of a high p_T track with the lepton

The data is consistent with background.

SUSY with Hidden Valleys

-No evidence for dark photon events is found; For dark photon masses of 0.2, 0.782, and 1.5 GeV chargino masses of 230, 142, and 200 GeV, respectively, are excluded.

Summary

It's a very good time to make high energy physics searches at Tevatron!

- ~7 fb⁻¹ of integrated luminosity (and growing!);
- well understood detectors;
- powerful analysis tools;

Most of presented results use 1-4 fb⁻¹ datasets

- with growing integrated luminosity there can be many promising updates

There are a lot of interesting results which are not covered in this talk Please check web pages: http://www-cdf.fnal.gov/physics/exotic/exotic.html (CDF) http://www-d0.fnal.gov/Run2Physics/np (D0)