High-energy neutrinos from Galactic sources

Friedrich-Alexander-Universität Erlangen-Nürnberg

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009

Outline

- Introduction to neutrino astronomy
- Potential Galactic neutrino sources
- Expected fluxes and event rates
- The mystery of the missing PeVatrons
- Prospects for detection of Galactic neutrino sources

Alexander Kappes, XIV Lomonosov Conference, Moscow, 25.08.2009

Alexander Kappes, XIV Lomonosov Conference, Moscow, 25.08.2009

Alexander Kappes, XIV Lomonosov Conference, Moscow, 25.08.2009

Alexander Kappes, XIV Lomonosov Conference, Moscow, 25.08.2009

Cosmic-rays

- Spectrum measured over 12 orders of magnitude in energy
- Power law spectrum (non thermal)
- Consists of particles
- Sources still active

Sources still unknown !

High-energy particle production

Accelerator (source)

- Shock fronts (Fermi acceleration)
- Objects with strong magnetic fields (pulsars, magnetars)

Beam dump (secondary particle production)

- Interaction with photon and matter near the source
- Protons: pion decay

Electrons: inverse Compton-scattering of photons

$$e + \gamma \rightarrow e + \gamma$$
 (TeV)

Potential Galactic neutrino sources

Classes of TeV γ-ray sources:

- 8 SNRs
- 12 PWNe
- 4 Binaries
- 4 Others
- 20 Unidentified

Alexander Kappes, XIV Lomonosov Conference, Moscow, 25.08.2009

Source candidates

supernova remnants (SN1006, optical, radio, X-ray)

micro-quasars (artist's view)

pulsars (Crab pulsar, optical, X-ray)

star-forming regions (Cygnus region, optical)

Alexander Kappes, XIV Lomonosov Conference, Moscow, 25.08.2009

SNR: RX J1713.7-3946

Fermi acceleration:

- energy gain after each crossing of shock front
- repetitive process
- yields power law

SNR: RX J1713.7-3946

Fermi acceleration:

- energy gain after each crossing of shock front
- repetitive process
- yields power law

RX J1713: History of neutrino rate predictions

- Early predictions too optimistic (wrong γ-ray measurements, no v oscillation, no cut-offs)
- Now expecting (1 km³, $E_v > 1$ TeV): 1 3 evt yr⁻¹
- Source size important: $\emptyset = 1.3^{\circ} \rightarrow N_{bkg} \approx 8$

RX J1713: Impact of High Energy Cut-Offs

Effective area increases rapidly with energy
 → high energy cut-offs have large impact on event rates

 $E_v > 1 \text{ TeV}$: 2.1 evt yr⁻¹ (cut-off) \rightarrow 3.6 evt yr⁻¹ (no cut-off)

Binary Systems

- Potentially large γ-ray absorption
 - \rightarrow Neutrino flux much higher than expected

10⁻¹

 $E^2 \times F(E)$ (erg cm⁻² s⁻¹)

- LS 5039:
 - Evts in km³ detector (> 1 TeV) (Kappes et al. (2007))
 - INFC: 0.3 0.7 yr⁻¹ SUPC: 0.1 – 0.3 yr⁻¹
 - Up to 100 times higher ! (Aharonian et al. (2006))
 - Point-like source ($\emptyset \approx 0.1^\circ$)

Pulsar wind nebulae

- PWNe generally expected to accelerate electrons
 - ... but maybe significant fraction of nuclei in pulsar wind !? (e.g. Horn et al. (2006))
- Example Vela X:

1 – 5 evts yr⁻¹ (km³; > 1 TeV) (Kistler & Beacom (2006), Kappes et al. (2007))

Blondin et al. (2001)

Alexander Kappes, XIV Lomonosov Conference, Moscow, 25.08.2009

Molecular clouds

- Interaction of cosmic rays with molecular clouds
- TeV γ-ray emission follows matter density
- Galactic Centre region: garantied neutrino source . . .
 - ... but rather weak (< 1 evt yr^{-1})

Galactic Centre region (HESS, 2006) Galactic Lat. (deg) **Galactic Centre** 0.5 G 0.9+0.1

-0.5

Galactic Long. (deg)

440

420

400

3EG J1744-3011

The missing PeVatrons

- No γ rays above few 10 TeV ("knee" corresponds to ~300 TeV)
- "Direct" γ-rays maybe only in first few hundred years
- Detection by observing secondary ν's or γ-rays from clouds near sources

PeVatron candidates

Part of Galactic plane in γ-rays @ 12 TeV (Milagro)

- If PeVatrons, sources detectable with IceCube
- Energy resolution important

Sky coverage of neutrino telescopes

Alexander Kappes, XIV Lomonosov Conference, Moscow, 25.08.2009

Point-source sensitivities

90% CL sensitivity for E⁻² spectra (preliminary)

Detectability of individual sources depends on many details:

- Cut-off energy
- Source size
- Energy resolution (Lower energy cuts improves Signal/Bckg ratio)

Gamma-ray dark sources

Neutrinos open a new window to the universe . . .

Alexander Kappes, XIV Lomonosov Conference, Moscow, 25.08.2009

Conclusions

- Neutrino telescopes open new window to our galaxy and beyond (complete picture requires multi-messenger approach)
- Galactic high-energy neutrino sources must exist but up to now no source of high-energy neutrino emission identified
- km³-class detectors (IceCube, KM3NeT) will enter discovery region
 - several good source candidates
 - will likely detect cosmic neutrinos within next years
 - detection significance depends on source-specific details
- Expect surprises !

BLANGEN CENTE FOR ASTROPART