QUANTUM CHAOS IN NUCLEAR
PHYSICS



Investigation of quantum chaos in nuclear physics is strongly hampered by the
absence of even the definition of quantum chaos, not to mention the
numerical criterion of the quantum chaoticity.

These drawbacks are caused by the fact that the present concept of chaos is
based on the Lyapunov trajectory instability. For the classical chaotic system
a small variation of initial conditions causes exponential divergence of the
trajectories in the phase space. The distance between two initially close
trajectories increases as eprt, A\ - Lyapunov exponent.

Trajectory is smeared by the uncertainty principle. Therefore:

“Incorrect term “qguantum chaos” means quantum phenomena characteristic
of the classically chaotic systems, quantum signatures of the classical chaos.”
(M.Berry (1991)).

Search for the “guantum signatures” of the classical chaos:

1. Take two classical systems - regular and chaotic.

2. Construct and solve the two corresponding Schrodinger equations.

3. Compare all the properties of the solutions in hope to find something
distinguishing the quantum analogue of the classically chaotic system.

The only such signature found in 40 years of intensive search turned out to be
the level distribution law.




For the quantum analogues of the classically chaotic systems - Wigner law
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This immediately brings us to nuclear physics. Back in 1950-ies Wigner
developed the random matrix approach to the statistical description of
neutron resonances in compound nuclei and derived the above law for the
distribution of those resonances.

Sometimes - statements made that for regular systems Poisson law
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Since the majority of natural systems - intermediate between the regular and
chaotic (“soft chaos”), attempts to invent the interpolation formulae between
the two laws. However it was shown that for lots of the quantum analogs of
regular systems Poisson law does not apply.



Since the main feature of compound resonances is their complex structure,
attempts were made to invent different measures of their wave functions’
complexity as the measures of quantum chaoticity. Still the main drawback -
lack of the quantum chaos definition. The definition “guantum signatures of
the classical chaos” seems quite strange and wrong. Nobody considers the
laws of relativistic mechanics as “relativistic signatures” of the classical
mechanics laws.

Classical mechanics is a particular limiting case of qguantum mechanics and not
vice versa. In transferring from quantum to classical pictures we are
coarsening our description and loosing a lot of purely quantum effects instead
of discovering new purely classical phenomena. More natural - to look for a
more general definition of chaos which holds both for quantum and classical
mechanics.

Thus our idea is to stop clinging to Lyapunov trajectory instability as the main
source of chaos in classical mechanics.



There is a well-known Liouville-Arnold theorem in classical mechanics which
states that a regular system with N degrees of freedom should also have M=N
global integrals of motion (conservation laws) connected with the symmetries
of the system’s Hamiltonian. l.e. the regular system possesses a sufficiently
high symmetry to have the number M of integrals of motion equal to the
number N of its degrees of freedom.

Contrary to trajectory, the notion of symmetry applies to all the fields of
physics, including classical an quantum mechanics. As a consequence of this
theorem one can define the quantum regular system as that whose
Hamiltonian possesses sufficiently high symmetry to have the number M of
conservation laws (“good quantum numbers”) which is equal to the number N
of its degrees of freedom. If one switches on the perturbation which destroys
the system’s symmetries so that M<N, the system becomes chaotic.

Thus we suggest to define as chaotic the gquantum system whose symmetry is
so low that M<N. We suggested this definition back in the 2000-ies (e.g. Phys.
Lett. A243 (1998) 288; Phys. At. Nucl. 62 (1999) 1; J. Phys. A35 (2002) 1907).




Let us apply this definition to nuclei.

Actually each system of more than 2 interacting particles has less integrals of
motion than its degrees of freedom. Therefore all the nuclei heavier than
deuteron are quantum chaotic systems. The neutron resonances of medium
and heavy nuclei for whom Wigner stated his level distribution law have only
3 good quantum numbers: energy, total spin and parity (although now we
know that their parity might be violated). The number of quasi-particles
defining the structure of the low-lying neutron resonances is 8-10. Therefore
these resonances are of course quite typical examples of the quantum chaotic
systems.

Moreover, the theory of the neutron strength function describing these
resonances allows to introduce the quantitative measure of the quantum
chaoticity. Indeed, bearing in mind the Hartree-Fock method which proved
quite successful in constructing a self-consistent mean field in atomic physics,
we can try to represent the Hamiltonian of a compound nuclear system as

H=Hy+V

were H, describes the motion of noninteracting nucleons in their mean field,
while V takes into account residual pair interactions, which can not be
included in the mean field.




We can now seek the wave functions of the system (eigenfunctions ¥; of the
full Hamiltonian H ) as a superposition of various configurations ¢ of the
Hamiltonian H, describing noninteracting particles. Expand now the wave
functions  /; of the total Hamiltonian over the basis of the “regular”

states ¢, :
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and consider the probability PS(E:)=‘C:‘ to find the initial regular single-
quasiparticle component ¢, inthe eigenfunctions ;.

The neutron strength function theory shows that this probability is
concentrated in the energy interval l',p, around the “initial” value &. The

strength function S.(E)=PR.(E)/D under rather general assumptions
shows how the regular state is fragmented over the states of the chaotic
system: k[ k
¢ I
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When the localization interval I, is smaller than the average level

A
distance D, of the regular system
rspr < Dﬂ
the strength function peaks at 8 show vivid traces of the initial regular
states ¢k with quantum numbers [k . Although the symmetry of the regular
system is formally broken, its traces are quite visible - soft chaos.
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When
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the maxima disappear. Disappearance of all the traces of the regular states
broken symmetries. Hard chaos.
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Thus the dimensionless parameter
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is a natural measure of quantum chaoticity.
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It can be shown that in the classical limit Ai—=0:
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I is the period of the classical orbit.
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Position of the s- resonances in nuclei: KR = (2 n -+ 1) 2_
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Thus one can either fix the nucleus A (i.e. R) and see the dependence S§(E),

or fix E=1 eV and look for the dependence S(A4) Neutron strength function
for s-wave neutrons.






In nuclei A=50 and A=160 single particle states 3s and 4s appear at neutron
energy =1 eV. Nuclei with 140<A<200 are deformed - spherical symmetry
broken and single-particle states with fixed angular momentum are
fragmented.

Typical example of weak chaos: the symmetries of the spherical mean
field F'(7#;) are broken by the pair N-N interaction (7} —F, "), but the traces of
those symmetries are still clearly seen (quantum analog of classical KAM
theorem).

Iy =2W(E) W (E)— imaginary part of the optical potential.

Therefore for neutron resonances in medium and heavy nuclei x = 0.5
W(E)~(3+0.1E) MeV, so chaoticity parameter increases with increasing
excitation energy, but remains less than unity up to =100 MeV as well as for
the deepest single-hole states.
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Dy = —75 /SO chaoticity parameter increases with increasing A.
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However classification in terms of the chaoticity amount is not meaningful in
itself.



What really matters is the theoretical approach to quantum chaotic systems.
Our interest in chaos appeared because we realized that there is no sharp
border between the regularity and chaos. Practically all the systems in Nature
are more or less chaotic.

We see that nuclear physics had to deal with quantum chaotic objects for
more than half a century. Not only does the experience of nuclear physics
enable us to clarify connections between symmetries and chaos, but it also
proposes the effective methods to deal with Schrédinger equations for
various degrees of chaoticity (various valuesmf K <1 is the principal small
parameter in nuclear physics, which makes the shell-model basis most
adequate because of its rapid convergence and allows to use optical model as
the main component of various reaction theories.

For x=>1 it is possible to use statistical approaches employing random
matrices’ methods or equation of Fokker- Plank.

Therefore the matter of quantum chaos in nuclear physics is of interest only
because nuclear physics serves a good example of operating with quantum
chaotic systems to all the fields of science which had already faced quantum
chaos or will definitely face it in future.
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Contrary to numerous guesses concerning quantum chaos, the definition is
given of both classical and quantum chaotic systems as a consequence of
Liouville-Arnold theorem [1-3]. Thus quantum chaotic system with N degrees
of freedom should have M < N independent first integrals of motion (good
quantum numbers) defined by the system’s Hamiltonian symmetry.

Therefore any nuclear system besides deuteron is in principle chaotic.
However in each case one should look for the approximate integrals of motion
and the symmetries of the model Hamiltonian /, generating these integrals.

The degree of chaos in each case is defined by the dimensionless parameter
k=0L_/D
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where ' is the spreading width of the model Hamiltonian eigenfunctions over

the eigenstates of the actual Hamiltonian, while D, is level spacing of the model

Hamiltonian.
For k<1 the traces of the H, symmetries are quite obvious (soft chaos —

quantum analogue of the classical KAM theorem). A good example is given by
the maxima of the neutron strength function which are the traces of the
symmetries of the nuclear mean field which are destroyed by the
nucleon-nucleon residual interactions.

For k>1 all the traces of the H, symmetries are lost (hard chaos). An

example is given by the black nucleus model and by Wigner’s random matrix
approach.

For the shell-model Hamiltonian Kincreases with the system’s excitation
energy E* as I ~2W, where W is the magnitude of the imaginary part of the

optical model potential. However K remains smaller than unity even for
E* about 50 MeV. Therefore the shell-model basis serves a good first
approximation in many calculations of the nuclear properties. Actually K is the
main (if not the only) small parameter which makes possible the majority of
numerical calculations in nuclear physics.
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