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Binding Energy of Neutron Pair

Binding energies of single neutron or a pair

Systematics of binding energies of single/pair of

neutrons in neutron rich nuclei
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B.E. one or two neutrons

Neutron Stability of of He and H Isotopes
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Experimental setup.

Drift chambers in front of MAYA monitor the beam particles.
The reactions occur in the volume filled with C4H10 gas.

A matrix of Csl detectors is placed at the back side for detecting
light particles. A small metal cup is used to stop the beam.
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The fitted parameters result in a width of ~0.09 MeV and a
resonance energy ~0.57 MeV above the threshold of the 3H
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8He+2H-->"H+3He
E. Yu. Nikolskii et al., Phys. Rev. C81,064606(2010)
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FIG. 1. Experimental setup. o _
Missing-mass spectra of ’H from the reaction
2H(8He,3He): (b) detection efficiency in arbitrary
units, and (c) in coincidence with tritons.

“..for the 2H(®He,*He)"H reaction, one may expect a cross section of ~2.5 mb/sr, which is

almost 2 orders of magnitude larger than the cross section determined for this reaction
in the work of M. Caamano et al. ....The results... are in conflict with each other.”



L. Grigorenko et al., Phys.Rev. C 84, 021303 (2011)
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Estimated widths for true 4n emission calculated for different orbital configurations;
the low-energy behavior of the widths has an asymptotic dependence ~ E©



"H Summary

The "H problem is still open.
We do not have reliable data on the properties of this exotic nuclei.
Integrating the available data one may expect of a few MeV "H
neutron decay instability.



Mystery! Beyond Neutron Drip
line!: °He °He, and "H
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Does ?He continue the trend for
proton deficient N=7 isotones?

11Be 12+ g.s. 10 j (2-;1-) L=0 g.s. He Y2+ g.s.?




H. T. FORTUNE

PHYSICAL REVIEW C 91, 034306 (2015)

TABLE L

Energies (relative to the *He + n threshold) and widths (both in Me V) of resonances in “He

from the reactions indicated.

Label Reaction E, Width JT Reference
1 Be(x ".r ) 1.13(10) 0.42(10) 1/2 (4]
2.33(10) 0.42(10) 1724
4.93(10) 0.50(10) 5/2%or3;2 1987
2 “Be(*C, '*0) and 1.13 ~40.30 1/2 (5]
“Be("*C. *0) 2.28 ~4).85 1/2% or3/2
_ 4.93 1995
3 “Be('*C, *0) 1.27 0.10(6) 1/2 (6]
2.37(10) 0.7(2) (3/27)
4.30(10) Narrow (5/2%) 1999
5.25(10) Narrow
4 2 p knockout from ''Be (<0.2) 1724 (7]
5 C(''Be. *He + n) <0.2 1724 (8]
C(“B, *He + n) ~0 12+ 2001
~13 ~1 2011
6 *H("'Li. *He + n) (~0) Maybe not a true state (9]
1.33(8) 0.10 fixed 1/2
2.42(10) 0.70 fixed 3/2 2010
7 *H(*He. p) ~0 (172% [10]
~1.3 (1/27) 2007
~2.3
8 *H(*He, p) ~0 1727 [11]
2.002) ~2 1/2 2007
>4.2 =0.5 5/2°
9 *H(*He. p) 0.180(85) 0.18(16) 172" [12]
1.235(115) 0.13(17) (1/27) 2013
3.42(78) 2.90(39) 5/2Yor32"




T. AL KALANEE et al. PHYS. REV. C 88, 034301 (2013)

D(8He,p)°He

“Two peaks can clearly be seen: one approximately 200 keV
above threshold which we identified as g.s. and another around 1.5 MeV.”
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Experimental missing mass spectrum for the (p,8He)p reaction

which is described with three states:ground state (red), first excited (green),
and second excited (blue) states. The dotted line indicates the physical
background due to reactions of the beam with the plastic scintillator.
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Conventional nucleus

8MeV

Resonances In exotic nuclel

*Density of levels
is high.
Practically it is
not possible to
use theoretical
predictions

*Proton rich exotic
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Neutron rich exotic
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Most states at high
excitation energy are
unknown.

States with T>
selected because

of their structure

«9He? 8He+p— °Li (T=5/2)
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Inverse geometry and thick target technique

Scattering chamber

detectors

I High efficiency

I Good energy resolution
¥ 180 degree (c.m.)
measurements are possible
P Excitation function is
continuous

P Low excitation energies ™
could be measured due to

energy amplification in Methane gas
inverse kinematics

K.P.Artemov etal., Yad.Fiz. 52, 634 (1990); Sov.J.Nucl.Phys. 52, 408 (1990)
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Differential Cross Section [mb/sr]
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8He(p,p) results

Angular distributions are
isotropic (low energy)

Except for the low energy rise
(the Wigner cusp), the
distributions are featureless;
no sign of a narrow s-wave or-

p-wave resonances
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8He(p,p) results

Strong evidence for
1/2*+ T=5/2 broad
(~3.5MeV) resonance
at 17.1 MeV excitation
energy in 9L

(and for the isospin
conservation)

9He should be unstable

to n decay by 2.9 MeV

Narrow p (1/2-) state?
To be unobservable
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H. T. Fortune PHYSICAL REVIEW C 91, 034306 (2015)
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In 10He, plotted vs Es in 9He are the energies of the p-shell

+0 state (wide solid line), the (sd)2 0+ state computed

herein (thin solid curve), and the resulting energies of the g.s. (short-
dashed curve) and excited 0+ state (long-dashed curve), assuming a
mixing matrix element of V = 1.05 MeV (see text).



‘He Summary

Good counting statistics and good energy resolution search for T=5/2
states in °Li was made. No narrow resonances were found.

Observed Wigner cusp is a sure indication for a broad 1/2+ resonance.

It leads to the (ground) state in °He of ~3 MeV unstable to

neutron decay.

On this ground one might predict two 0* states in '°He; the ground state
being unstable to a neutron decay by ~1.5 MeV.

The resonance investigation of the T states using rare beams is a rather
new approach, but could be a powerful instrument to study properties of
neutron rich exotic nuclei.

The possession of knowledge does not Kill the sense of wonder and mystery.
There is always more mystery.
- Anais Nin
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History of ®°He Measurements

Accessing 2He directly is experimentally difficult
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T. Al Kalanee et al., PRC 88, 034301 (2013)

+ Previous measurements show evidence for parity inversion

+ First two states are claimed to be:
1. Jm = 1/2+ state 200 keV above neutron separation energy (I =200 keV)
2. Jm = 1/2- state 1.3 MeV above neutron separation energy ('=130 keV)

+ Measurements suffer from poor resolution or poor statistics (or both)

Findings are not reconcilable with nuclear theory!

Ethan Uberseder, Gordan Research Seminar, May 31 2015 I
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8He(p,p)®He Measurement

*

+ Experiment performed at ISAC-II facility

at TRIUMF

+ 500 MeV proton beam impinges on
production target

+ 8He produced using ISOL technique
and reaccelerated via a
superconducting linac to 4 AMeV

+ Excellent beam energy resolution and
purity

+ 8He impinged on 990 torr of methane
gas

Clean identification of recoil
protons from deuterons using
PSPC and Si detectors over all

excitation energies

W W
s 3

)
3

Energy Loss [arb. units]
N
S

71000 2000 3000 4000 5000 6000 7000
Si Detector Energy [MeV]

Ethan Uberseder, Gordan Research Seminar, May 31 2015
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Experimental Setup

Thick Target Inverse Kinematics

Technique

+ Beam enters chamber and is
stopped in the gas volume

+ |f scattering event occurs, proton
recoils forward to detectors

+ Measure excitation spectrum with a
single beam energy and high
efficiency (good for radioactive
beams!)

Active Detection Elements
1. 3 quad-segmented forward silicon detectors (total energy)
2. 8 position sensitive proportional counters (energy loss and angle
reconstruction)
3. Windowless ionization chamber (normalization and incoming
identification)

Ethan Uberseder, Gordan Research Seminar, May 31 2015

T



R. J. Charity et al., Phys.Rev. C 78, 0564307 (2008)
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Hydrogen isotopes references:
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Differential Cross Section [mb/sr]
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MYSTERY OF *He, EXOTIC NEUTRON RICH
LIGHT NUCLEIL AND A WAY TO STUDY THESE
THROUGH THEIR ISOBAR ANALOG STATES

Goldberg v.z.! Rogachev G.', Uberseder E.', Roeder B., Koshchiyl,
Melconian D.!, Chubarian G.!, Hooker J.", Jayatissa H',

Alcorta M., Davids B.%, Fu C.%, Tribble R.!
! Texas A&M University, USA; > TRIUMF, BC, Canada;
3 Shanghai Jiao Tong University, China
E-mail: goldberg@comp.tamu.edu

The original interest to the “He spectrum is evidently related with an unusual N to Z ratio
which is 3.5. Beginning with *He, all heavier isotopes of He are unstable to neutron decay.
During the last 25 years the properties of the lowest states in “He were under intensive
experimental and theoretical investigation. It appears that the nuclear structure of these states
(1/2" and 1/2°) can’t be explained on the ground of our knowledge of conventional nuclei.
The most evident problem is the width of the 1/2° resonance, which (naively) should be
expected to be a shell model p1/2 state. Indeed, different experiments (see [1] for the history
of the theoretical and experimental studies), including a recent one [1] of well studied (d,p)
reaction induced by a rare *He beam, claimed a narrow (~100 keV) 1/2" first excited state.
Various model calculations and even recent ab initio approaches [2] could not reproduce
experimental results giving ten times larger widths for the 1/27, as would be naive
expectations. This clear contradiction between experiment and contemporary theory could be
a sign of an unusual nuclear structure at the border of nucleon stability.

Therefore we used a relatively novel experimental technique of obtaining information on
neutron rich exotic nuclei through their analog states in neighboring nuclei populated in
resonance reactions with rare beams. We have made measurements of the *He+p resonance
elastic scattering to obtain information on 7=5/2 levels in *Li. We used *He beam with energy
of 4MeV/A and intensity ~10* pps provided by the TRIUMF facilities. The measurements of
the excitation function were made by Thick Target Inverse Kinematics method [3—5] (TTIK).
The approach and the high quality of the TRIUMF beam enable us to study the isobaric
analogs of the *He states even if "He was barely unbound or even bound by few tens of keV.

As a result, our high resolution and high counting statistics study of the excitation
functions for the *He+p elastic scattering did not reveal any narrow structures which could be
related with the claimed states in He. However we observed a strong Wigner cusp at the
threshold of decay of *Li into the ®Li(7=2,0") + n channel. This finding gave evidence for the
presence of a /=0 resonance as the isobar analog of the “He ground state. Evidently, these
results show for a new binding energy of *He as well as different properties of its ground
state. However, the accurate data should be provided in a framework of a developed R matrix
approach in which the contribution of unknown 7- resonances at ’Li high excitation energy is
addressed by an optical model potential [6]. This work should be finished soon.

I'll present the results of this work and its consequences for the considerations on some
very exotic nuclei, like '°He and "H. I'll consider the perspective of the present experimental
approach for future studies.

T.Al Kalanee et al. // Phys. Rev. C. 2013. V.88. 034301.
K.M.Nollett // Phys.Rev. C. 2012. V.86. 044330.
K.P.Artemov et al. // Sov. J. Nucl. Phys. 1990. V.52. P.406.
V.Z.Goldberg // ENAMO98. P.319.

G.V.Rogachev et al. // AIP Conf. Proc. 2010. V.1213. P.137.
D.Robson // Phys. Rev. 1965. V.137. P.535.
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